
12
IEICE TRANS. COMMUN., VOL.E98–B, NO.1 JANUARY 2015

INVITED PAPER Special Section on Quality of Diversifying Communication Networks and Services

Software-Defined Data Plane Enhancing SDN and NFV

Akihiro NAKAO†a), Member

SUMMARY In this paper, we posit that extension of SDN to sup-
port deeply and flexibly programmable, software-defined data plane sig-
nificantly enhance SDN and NFV and their interaction in terms of (1) en-
hanced interaction between applications and networks, (2) optimization of
network functions, and (3) rapid development of new network protocols.
All of these benefits are expected to contribute to improving the quality
of diversifying communication networks and services. We identify three
major technical challenges for enabling software-defined data plane as (1)
ease of programming, (2) reasonable and predictable performance and (3)
isolation among multiple concurrent logics. We also promote application-
driving thinking towards defining software defined data-plane. We briefly
introduce our project FLARE and its related technologies and review four
use cases of flexible and deeply programmable data plane.
key words: Software-Defined Networking (SDN), Network Functions Vir-
tualisation (NFV), network virtualization

1. Introduction

Software-Defined Networking (SDN) and Network Func-
tions Virtualization (NFV) have recently emerged as fun-
damental technologies for enabling flexible, programmable
networking and have been expected to form the basis of
the Internet of near future for dealing with constantly aris-
ing new problems. In addition, both SDN and NFV have
caught attentions from industries because they have been
introduced as technologies for reducing capital expense
(CAPEX) as well as operational expense (OPEX), where
software-defined programmable network equipment is sup-
posed to dispense with high maintenance cost often incurred
in hardware appliances and to enable rapid deployment of
functional revisions, besides the automation of operation
and management (OAM) of network enabled by program-
matic interface to the equipment may reduce the high cost
of the OAM by manual labor.

Although the synergy between SDN and NFV has only
recently been discussed, they have been proposed sepa-
rately. While SDN primarily focuses on the programmabil-
ity on the control of networking, NFV aims at implement-
ing data processing functions in software on top of virtual
machines (VMs) that exist today as hardware network ap-
pliances. The clear distinction of the focuses of SDN tak-
ing care of networking and NFV of computation may allow
scalable construction of programmable infrastructure, since
data packets can be programmatically redirected by SDN

Manuscript received July 7, 2014.
Manuscript revised September 5, 2014.
†The author is with The University of Tokyo, Tokyo, 113-0033

Japan.
a) E-mail: nakao@iii.u-tokyo.ac.jp

DOI: 10.1587/transcom.E98.B.12

and can be programmatically processed by NFV.
However, we observe two limitations in this model of

separation of SDN and NFV, leaving an interesting research
area as a gap between them. First, SDN often defines prede-
termined interface, so called south-bound interface or SBI,
mainly for the sake of standardization purpose. It is con-
trol plane software including controllers that can be pro-
grammed in software above SBI (and not to mention, above
so called north-bound interface or NBI), but data plane that
implements data forwarding and redirection often remains
to be implemented in hardware as in, e.g., OpenFlow [1]
switches. If we could arbitrarily define data plane by soft-
ware, i.e., software-defined data plane, in carefully designed
sandboxes such as virtual machines inside network equip-
ment, we should be able to enhance the data plane func-
tionalities, e.g., those related to OAM, and publish the SBI
for controllers to use them. Such enhancement is only re-
cently discussed in a few research projects [2], [3]. Second,
NFV is so far limited to implementing network appliances in
software, and deals neither with crafting new protocols nor
with OAM functionalities, which are largely considered as
SDN’s responsibility. However, as mentioned above, SDN’s
data plane is not so much flexibly programmable. Enhanc-
ing SDN with software-defined data plane would compen-
sate the gap in NFV.

In this paper, we posit that enhancing SDN to support-
ing flexibly and deeply programmable, software-defined,
data plane with SBI published for controllers may bring
more innovations in future networking, especially in the
SDN and NFV areas. We also identify at least three benefits
enabled by deeply programmable SDN data plane, (1) en-
hanced interaction between applications and networks, (2)
optimization of network functions, and (3) rapid develop-
ment of new network protocols.

First, embedding application functionalities may not
only optimize their performance but also enables interest-
ing interactions between applications and networks. We in-
troduce such examples in Sect. 5.1. Second, we can offload
NFV’s virtual network functions into SDN’s data plane, i.e.,
closer to the network to reduce latency in processing as ex-
plained in Sects. 5.2 and 5.3. And finally, we can quickly
improve the existing protocol handling by tweaking the data
plane of SDN, as well as defining new protocols in a clean-
slate manner as discussed in Sect. 5.4.

We believe all of these benefits enabled by the enhance-
ment of SDN and NFV would contribute to improving the
quality of diversifying communication networks and ser-

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

NAKAO: SOFTWARE-DEFINED DATA PLANE ENHANCING SDN AND NFV
13

vices of present day. The Internet today has changed dras-
tically with emerging small devices such as smartphones,
wearable glasses and watches, sensors and cloud data cen-
ters, which unfortunately causes constantly arising new
problems. We posit that the key to solving these issues
in ever-diversifying communications is to enhance flexibil-
ity of the programmable communication infrastructure, with
not only programmable control plane but also deeply pro-
grammable data plane as well.

The rest of the paper is organized as follows. Sec-
tion 2 discusses key challenges for deeply and flexibly pro-
grammable data plane in SDN. Section 3 compares vari-
ous technologies for enabling programmable data plane in
SDN. Section 4 introduces our programmable network node
architecture called FLARE and Sect. 5 enumerates various
application use-cases of deep programmability enabled by
software-defined data plane. Finally, Sect. 6 briefly con-
cludes this position paper.

2. Challenges

2.1 Challenges in Deeply Programmable Data Plane

In order to enable flexibly and deeply programmable, we
have identified three major technical challenges, (1) ease of
programming, (2) reasonable and predictable performance
and (3) isolation among multiple concurrent logics.

First, we have to consider lowering the barrier to en-
try for programming network functions. SDN and NFV
are considered as cost-effective solutions, but the premise is
that we need lots of programmers for creating network func-
tions, let alone data plane functionalities. Therefore, one of
the most important challenges to resolve is how we can ac-
commodate programmers of various levels of skills and thus
increase the entire number of programmers. There could
be lots of kinds of programming models for defining pro-
grammable data plane, such as FPGA, Intel Data Plane De-
velopment Kit (DPDK) [4], Network Processors with many
cores [5]–[9], but we need to carefully select these platform
in terms of ease of programming and debugging.

Second, performance is another challenge in pro-
grammable networking. It is often the case with pro-
grammable network equipment that there is trade-off be-
tween the programmability, i.e., how simply and flexibly we
can program and the performance, i.e., how fast we can ex-
ecute programs. Especially, software solutions are mostly
susceptible to performance degradation, although it is highly
flexible and can be quickly designed and implemented. In
the light of this observation, we believe that we should se-
lect the platform with high flexibly but reasonable and at
least predictable performance.

And finally, we believe the capability of programming
multiple concurrent logics on top of a single physical pro-
grammable environment is significant. We can virtualize
the physical hardware resources and provision necessary
amount of virtual resources per logic to achieve program-
ming of multiple logics on top of isolated virtual resources.

Fig. 1 Application-driven programmable networking.

Isolation of resources plays a very important role here.
It is also worthwhile to note regarding the last chal-

lenge that the isolation of resources is important also for
avoiding security threats as a result of enabling flexibly cre-
ating, modifying, dismissing functions by programming, al-
though rigorous argument of security threat is out of scope
of this position paper. With rapid progress of resource iso-
lation in operating system virtualization, various wisdoms
may be applied to this challenge, at least for creating se-
cure and isolated execution environment. However, note
that there is a vast area of research left to be tackled in terms
of assuring secure operation of programmable networking.

2.2 Application-Driven Programmable Networking

Another rather non-technical aspect of thought towards
highly programmable data plane of SDN is to think
application-driven programmable networking, where start-
ing from the application that cannot be built without the help
from the in-network functions, i.e., the network functions
embedded inside the data plane of SDN solution.

We, network researchers, tend to develop generic in-
frastructure to accommodate all the applications. However,
this bottom-up approach does not often capture the idea of
what kind of API and the network functions behind the API
are necessary. It is important to think top-down, from ap-
plications that do not exist today due to the limitation in the
network, down to defining what are necessary inside the data
plane of SDN. US Ignite [10] and PARADISO [11] make the
most out of applications and take similar avenues as ours.

3. Related Work

3.1 Programming Environment

The most straight-forward approach to enabling flexibly and
deeply programmable data plane is to use various kinds of
configurable hardware such as FPGA [12] or to program
software on top of general-purpose and network processors.

There are pros and cons in different programming plat-
forms in terms of (1) ease of programming, (2) reasonable

14
IEICE TRANS. COMMUN., VOL.E98–B, NO.1 JANUARY 2015

Table 1 Pros and cons of various data plane technologies.

Many-core Network Pro-
cessors (operating system)

Many-core Network Pro-
cessors (assembly-language
micro-engine)

Data Plane Development
Kit (DPDK) on General
Purpose Processors

ASIC FPGA

Ease of Programming + - + - -
Performance + + + + +

Logic Isolation + - - - -
Power Efficiency + + - + +

and predictable performance, (3) isolation among multiple
concurrent programmed logics, and (4) power efficiency, as
summarized in Table 1.

In conclusion, we believe that, as of today, the most
appropriate platform for our purpose of providing simple,
yet flexible and deep programmability while retaining rea-
sonable performance, logic isolation and power efficiency
is many-core processors with open-source operating system
support, e.g., with Linux operating system with virtualiza-
tion support, such as MIPS based Octeon [6] from Cavium
[13], various enterprise processors such as XLR, XLP, XLS,
etc. [14] from Broadcom [15] (before acquisition, RMI [7]
and NetLogic [16]), and TileGx series [17] from EZChip [9]
(before acquisition, TILERA [8]).

Many-core network processors are attractive in that,
first, a large number of aggregated flows can be distributed
to many cores and get processed concurrently, and second,
when it comes to virtualization, partitioning and allocate
processor cores helps preparing isolated execution environ-
ment. Although the same story may seem applicable to
Intel’s DPDK [4], higher power consumption and the less
number of cores are yet to be improved for our purpose.
However, it is sometimes useful to employ a hybrid ap-
proach, that is, allocating different kinds of resource for
different processing, as in our FLARE architecture [2] that
combines Intel’s general purpose processors and many-core
network processors (as well as GPGPU, if necessary) and
uses hierarchically combined computational resources.

Micro-engine based many-core processors such as
EZChip [9] and Netronome [5] and FPGA based platforms
such as NetFPGA [12] are also attractive in terms of perfor-
mance we can achieve, but the programming environment
is harder to use than those with operating system support.
However, later in near future, we expect that programming
environments of these platforms will surely be improved and
may fit our purpose. For example, a flexible, intelligent, and
highly-optimized compiler or translator may provide high-
abstraction-level, easy-to-use, and integrated programming
environment even on FPGA or micro-engines.

Another approach is to use hardware, e.g., ASIC [18].
Although this approach is attractive in terms of high perfor-
mance, it is less flexible to modify once programmed logic.
If we could design such a logic that can be quickly modified
according to specified profiles, that would be ideal.

3.2 Related Research Activities

There are several interesting research activities regarding re-

alizing more flexible data-plane processing in SDN. ONF’s
L4-L7 Working Group discusses extending flow matching
from currently limited header fields only to L4 to L7 fields.
Another extension discussed in ONF is to enable Proto-
col Oblivious Forwarding (POF) to handle new protocols,
not limited to the current TCP/IP architecture. Huawei has
demonstrated hardware design that can handle POF in their
product [3].

ETSI NFV discusses enhancement of data processing
into service composition, so called, Service Chaining. Al-
though the current focus is not really on new protocol han-
dling and offloading of virtual functions into SDN data plane
elements, similar ideas could be employed in the extension
to SDN.

OpenDataPlane [19] is the closest approach to what
this paper posits. It is an open-source, cross-platform set
of application programming interfaces (APIs) for the net-
working data plane. It aims at extending vendor-specific
hardware blocks and software libraries to provide data plane
API. Although it is still at the baby stage, we expect this ac-
tivity can be supported by many network processor vendors.

OpenFlow HAL [20] is similar to OpenDataPlane but
limited to OpenFlow specification and still hardware ap-
proach. It seems useful for hardware OpenFlow vendors to
identify primitive hardware abstraction to support to develop
hardware OpenFlow switches, but up to date, it is unclear
how it handles extension of data plane beyond OpenFlow
specification.

4. FLARE : A Platform for Deeply Programmable Net-
work Node

Our FLARE project [2] utilizes a hybrid of computational
resources, such as network processors, general purpose pro-
cessors, (and optionally GPGPU) in a hierarchical manner
so that we can extend data plane processing functions easily
by software program.

In FLARE architecture, we attempt to resolve all three
major technical challenges enumerated in Sect. 2, namely
(1) ease of programming, (2) reasonable and predictable
performance and (3) isolation among multiple concurrent
logics, in realizing software-defined data plane programma-
bility. We introduce Toy-Block networking programming
model [21] to enable drag and drop programming in FLARE
to resolve (1). Also, in order to achieve (2), we com-
bine a hybrid of computation resources especially design
a hierarchical structure of high-frequency small-number-
core processors and low-frequency many-core processors.

NAKAO: SOFTWARE-DEFINED DATA PLANE ENHANCING SDN AND NFV
15

Data plane processing often require scalability in terms of
the number of flows to process and power-efficient low-
frequency yet many core processors are useful for massively
parallel processing for a large number of flows. On the other
hand, powerful, high-frequency, small-number-core general
processors can be best suited for control and management
functionalities. Different kinds of resources are inherently
fitted for different kinds of tasks. And finally, for (3), we em-
ploy a lightweight resource virtualization technique called
resource container for isolation of multiple logics. For the
best isolation, we decide to partition many cores into groups
and deploy a resource container per group.

Our goal is little similar to OpenDataPlane activity in
that the goal is to flexibly and easily extend data plane, but
our proposal is a little different in that we consider isolation
of resource via virtualization as very important key factor.
For example, FLARE can implement multiple concurrent
logics such as OpenFlow 1.0 and OpenFlow 1.3 data plane
elements in isolated environments. Since SDN allows us to
slice the network into isolated execution environment, we
should consider this capability as the first class feature of
the data plane element.

Utilizing FLARE prototypes, we attempt to enable var-
ious use-cases of applications enabled by software-defined
data plane as introduced in detail in Sect. 5.

5. Example Use Cases

In this section, we identify at least four use cases of the
applications enabled by highly programmable software-
defined data plane, each of which falls on to one of these
benefits, (1) enhanced interaction between applications and
networks, (2) optimization of network functions, and (3)
rapid development of new network protocols.

5.1 Application Specific Traffic Control

When it comes to application specific traffic control, we
posit that there are two shortcomings in the current SDN
approaches.

First, the current SDN traffic control is mostly flow-
based. For example, in OpenFlow, the switch matches
the header information of the received packets against
the flow entries and execute corresponding actions if
matched. Thus, the abstraction for programming is three-
fold, <Flow><Action><Stat>, where <Flow> stands for
predefined tuples in packet header information such as IP
addresses and port numbers, <Action> represents associ-
ated actions when the flow is matched, and <Stat> records
packet counts. While the flow-based traffic control is a nat-
ural way from the network operator point view, application
users and developers may not often find it useful, because in
order for them to control their application traffic program-
matically, they must find out the flows, e.g., including the
source port numbers of application traffic that are not usu-
ally of their concern. For application users and develop-
ers, process-based traffic control is more natural than flow-

based one, where we can use application names, the state of
the application processes, as well as device IDs and status,
etc., for the basis of the control. If we extend the Openflow
model, the right abstraction for programming in this case
may be one like <Application/Device><Action><Stat>, al-
though we may not have to follow OpenFlow’s convention
for programming abstraction, and one could rather define
one’s own programming abstraction, as long as it is open
and published as an API.

Second, even if applications keep track of their flow
information, they need to let the SDN controller know the
flow information out of band, that is, besides the application
data traffic, they must open control channels to convey such
flow information to the SDN controller so that they may be
able to control their flows. This approach is prohibitive for
small devices such as smartphones and sensors since that
may become significant overhead for them.

In order to tackle these issues, we propose a method to
modify operating systems of the end systems such as smart-
phones, so that we can find application process information
and convey such information through an in-band communi-
cation. Our prototype system attaches the application pro-
cess information at the end of each packet, i.e., trailer, on
the part of the end systems, and decodes (and removes after
that) the information on the part of the programmable node
located at the first hop from it. In this way, we learn the map-
ping of the information on application processes and flows
and inform the SDN controller so that subsequent nodes can
just perform flow-based traffic control.

For example, our prototype system for realizing appli-
cation specific traffic control for TCP applications is shown
in Fig. 2. We install our simple application on smartphones
for capturing the very first packet an application emits, i.e.,
a TCP SYN packet in case the application establishes a TCP
session, and then for attaching process information such as
application name and status and/or a device ID and status,
etc. at the end of the packet, namely, as trailer bits. In more
detail, we first capture the header information of a TCP SYN
packet and examine the process table and the socket table
of the operating system to look for corresponding process
name and status, and attach the information as the trailer
bits.

The programmable node at the first hop then detects
such unusual TCP SYN (with non-zero payload size) and
decodes (and removes) the information at the trailer. It ob-
serves the flow information of the TCP SYN packet at the
same time and maps the information on the application pro-
cesses and that of the flow, so that the SDN controller can
tell subsequent SDN switches along the route to the destina-
tion to perform QoS traffic control such as bandwidth throt-
tling for particular applications using the traditional flow-
based traffic control.

Implementing our prototype system on our FLARE
platform [2] explained above, we have already proved that
our proposed system works quite well unless ISPs do not
filter unusual TCP SYN in fear of SYN Flooding, which is
not really performed in most MVNO services of today.

16
IEICE TRANS. COMMUN., VOL.E98–B, NO.1 JANUARY 2015

Fig. 2 Application specific traffic control.

Some may argue that piggy-backing data in TCP SYN
may render incompatibility and security issues. However,
such unusual piggy-backing is not uncommon today. For
example, Google does this in TCP Fast Open (TFO) [22]
for the different purpose than ours, where they attempt to re-
duce the number of packets and the delay in three-way hand-
shaking, storing “cookies” in newly emitted TCP SYN’s
payloads for already authenticated end systems via the past
three-way handshakes.

Others may also argue that we could perform this sort
of traffic shaping right on the devices such as smartphones
and wearables. However, although it might provision the
bandwidth right at the devices and the very end of access
network connectivity, we could not control traffic shaping
beyond that, thus, this method could not achieve our purpose
of application specific traffic control for end-to-end commu-
nications.

We should note that in order to achieve this type of
application specific traffic control, data-plane functionality
must be extended from the current SDN model where data-
plane elements have limited pattern match capabilities and
too few actions. Especially, the manipulation of the packet
trailer at Layer 7 (L7) is largely missing from the current
SDN data-plane and the extension to support such manipu-
lation is useful to enable new applications such as applica-
tion specific traffic control.

We have recently deployed the system that is essen-
tially the same as the example shown in this subsection in
our joint collaboration with an ISP in Japan. We believe that

empowering MVNOs with application/device specific traffic
engineering would become the norm of the next generation
MVNO business.

5.2 M2M Smart Gateways

Research on M2M (Machine-to-Machine) communications
has recently been acquiring much attention both in indus-
tries and academia. From the SDN and NFV research point
of view, so-called M2M smart gateways may be of interest,
since flexible programmability for in-network data process-
ing is obviously a useful option for constructing such M2M
smart gateways, where various intelligent functionalities are
supposed to be implemented between a large number of dis-
tributed sensors and the traditional transport network. For
example, such smart functions include protocol conversions
between sensor-optimized protocols and the traditional In-
ternet protocols [23], and data aggregation for enabling effi-
cient M2M communications.

We have recently attempted to resolve the issue of the
explosion in the number of flows in M2M networks. Our
proposal involves the following two ideas, flow aggrega-
tion/release and route control.

The first idea of flow aggregation and release is
straight-forward as follows. In M2M network lots of short
packets are generated from trillions of sensors and collected
at the cloud data centers. We foresee at least two network
problems in such an architecture: (1) if we forward all the
short packets as they are, filling queues with lots of short

NAKAO: SOFTWARE-DEFINED DATA PLANE ENHANCING SDN AND NFV
17

packets may cause long latency, and (2) core switches and
routers may have to account for lots of flows produced by
a large number of sensors. In order to solve these issues,
we propose to aggregate packets belonging to the same flow
into larger packets at the smart M2M gateways and release
them before their getting at the data centers to solve the first
problem. If we observe packets belonging to different flows
are headed along the same route, we aggregate those packets
to reduce the number of flows and release them at the fork
points of the routes that individual flows must follow, thus,
solving the second problem.

The second idea is to perform route control for the sake
of facilitating flow aggregation mentioned above. We con-
sider SDN is useful for this sort of mechanism, since the
logically central controller can control the route so that mul-
tiple flows can follow the same route as much as possible to
optimize the flow aggregation.

We have designed and implemented a prototype sys-
tem for flow aggregation/release and route control, and have
learned that one of the requirements for such a system is
to perform flow aggregation/release as quickly as possible
(at the line speed) and without much processing delay, es-
pecially for mission critical applications such as disaster re-
covery and public safety. Although it would be possible to
implement route controls via SDN and flow aggregation and
release as virtual network functions in NFV, merely orches-
trating these two functions by redirection of packets may not
be optimal, since it incurs much delay in the redirection of
packets back-and-forth between two components. The ideal
solution is to offload such flow aggregation/release virtual
network functions into the data-plane of SDN switches and
expose a new set of southbound APIs to NFV control layer
so that we can perform the whole process without the redi-
rection between SDN and NFV components.

5.3 Custom Actions for OpenFlow Switches

OpenFlow is a great SDN solution for flexibly adding pro-
grammability on network operations over the control plane.
In the context of coupling SDN and NFV to enable specific
intelligent in-network processing, we foresee lots of exam-
ple network appliance solutions currently implemented in
hardware platforms are ported to virtual machines (VMs) on
top of commodity hardware and switches, while the redirec-
tion of flows to specific in-network virtual functions on VMs
are controlled by SDN switch solutions such as OpenFlow.
However, we posit that some of simple functionalities could
be offloaded to the data plane of SDN switches to reduce
latency of processing, if SDN switches are implemented in
software, that is, the boundary between NFV and SDN so-
lutions become unclear.

One example we pursue in this area of research is cus-
tom actions for OpenFlow software switches. Our FLARE
system adopts Toy Block Networking programming model
[21], and especially supports Click software optimized for
our platform. Our toy-block networking model allows con-
struction of data plane network functionalities in software

Fig. 3 Custom actions for OpenFlow switches.

blocks just like infants playing with toy-blocks to create
shapes, reusing the existing blocks to quickly form desirable
larger compound blocks.

Using our toy-block networking model, we implement
OpenFlow Switch Version 1.3 as a Click element, so that we
can attach extra functionalities to the OpenFlow switching
logic, especially extending the standard actions to support-
ing a variety of custom actions by just connecting a virtual
port of OpenFlow Click element to the elements that imple-
ment the custom actions.

In order to show the proof of concept of cross-boundary
optimization between SDN and NFV, we have designed and
implemented various custom actions connected to the Open-
Flow switching logic. The construction of such a logic can
be performed in our prototype GUI just through drag and
drop of each network functions and drawing edges along
data paths depicted in Fig. 3.

Usually, custom actions must be executed at the con-
troller via Packet-In and Packet-Out, which leads to signifi-
cant latency overhead since packets that OpenFlow switches
do not know how to handle must be sent to the controller
(Packet-In) and after necessary processing, sent back to the
switches again (Packet-Out).

Our proposal of offloading packet processing being
done in the controller into the switches is similar to servers
offloading IP and TCP checksum calculation, ARP reply,
and various TCP optimization such as TCP Offload Engines
(TOE) [24], into NICs so that both server load and response
time may be reduced. The other optimizations such as TCP
Transmit Segmentation Offload (TSO) and Large Receive
offload (LRO) for TCP (TRO) [25], etc. have been already
implemented in the recent Linux Kernel [26].

As such example custom actions, we have evaluated
several security related virtual functions such as p2p loca-
tor, bot miner, and port scanner [27] connected to OpenFlow
switch logic. According to our preliminary evaluations, we
show the effectiveness of our optimization in terms of pro-
cessing time. While OpenFlow Packet-In data processing
takes milliseconds of response time, our approach reduces
this time down to microseconds.

As a result, we show that software-defined data plane

18
IEICE TRANS. COMMUN., VOL.E98–B, NO.1 JANUARY 2015

can easily achieve cross-boundary optimization of SDN and
NFV functionalities. We strongly believe that there are
lots of other functionalities offloaded from the NFV area to
SDN data plane area, once software-defined data plane of-
fers deeper programmability.

5.4 Content/Information Centric Networking

Even drastic example applications of software-defined data
plane are new network architectures.

Content Centric Networking (CCN) [28], Data Ori-
ented Network Architecture (DONA) [29], Named Data
Networking (NDN) [30], and Information Centric Network-
ing [31] are research activities attempting to depart from the
Internet, namely, the existing TCP/IP networking and to de-
fine new ways of naming content objects. Instead of spec-
ifying the location of the content objects such as Universal
Resource Locators (URLs) indicating the end-systems that
store and provide the content objects, these network archi-
tectures define the ways of naming content objects directly.
They inherently require in-network caching, because mul-
tiple end-systems may carry the cached data copies of the
original content and behave exactly like the origin servers
of the content objects.

Although content oriented networking architectures do
not assume the underlying IP networks and could be imple-
mented in a clean-slate manner, most research projects allow
their implementations overlaid on top of IP networks. How-
ever, overlay approaches often defeat the purpose of con-
tent oriented architectures, because the overlays inherit the
shortcomings of the underlying layers.

In the present research efforts regarding SDN and NFV
have not fully investigated into building new network pro-
tocol stacks yet. Only a few research projects discusses
the possibility of protocol oblivious forwarding (POF) in
SDN switches, but the programmability (flexibility) and the
ease of programming are limited yet, compared to the pro-
grammability discussed in the NFV research arena.

We posit that we could accelerate the research and de-
velopment of innovative clean-slate network architectures
such as content oriented ones, if we could make the best use
of SDN and NFV, namely, incorporate flexibility and ease of
programming into SDN software-defined data plane so that
we may define capabilities for handling new protocols as a
subset of southbound API and publish it to both controllers
and virtual network functions.

6. Conclusion

In this paper, we posit that software-defined data plane in
SDN may lift the boundary between SDN and NFV since we
observe more and more functions in both areas being imple-
mented flexibly in software, as in Linux platforms on gen-
eral purpose processors and operating-system-based many
core network processors, which allows one (1) to define use-
ful data processing within data plane in SDN and (2) to pub-
lish the access method to them as a (sub)set of southbound

interface (SBI) so that virtual network functions in NFV and
applications may call SBI to utilize functions efficiently.

Although one may view the concept of supporting
deeper programmability in software-defined data plane as
a mere extension to the current SDN, we believe that its im-
plication is significant in that we may be able to change
the paradigm of the networked systems and applications.
The benefits identified in this paper are summarized as fol-
lows but the applications of deeper programmability are cer-
tainly not limited to the following: (1) bringing interaction
and cooperations between applications and networks such
as application specific traffic control, by defining new pro-
tocols on top of the existing Internet protocols, and realizing
even offload of application functions on the end-systems,
e.g., smartphones, into data plane of SDN switches so
that network may assist data processing of resource scarce
end-systems closer than the nearby cloud data centers, (2)
achieving cross-boundary optimization between SDN and
NFV by offloading a part of virtual network functions under
the southbound API, so that they may be executed without
much delay (avoiding Packet-In/Out), and, (3) accelerating
the research and development of clean slate network archi-
tectures.

We strongly believe that enabling deeper programma-
bility in SDN data-plane with ease of programming open the
door to bringing more innovations by offloading useful ca-
pabilities from NFV and applications into SDN by defining
flexible boundary between them than just combining usage
of two worlds as they are and that the benefits brought by
the enhancement to SDN and NFV surely lead to improv-
ing the quality of diversifying communication networks and
services of today.

References

[1] “Openflow.” http://archive.openflow.org
[2] “Flare: Deeply programmable network node architecture.” http://

netseminar.stanford.edu/10 18 12.html
[3] “Protocol oblivious forwarding.” http://www.poforwarding.org
[4] “Intel data plane development kit (dpdk).” http://dpdk.org
[5] “Netronome, inc.” http://www.netronome.com
[6] “Octeon multi-core processor family.” http://www.cavium.com/

OCTEON MIPS64.html
[7] “Raza microelectronics, inc.”
[8] “Tilera, inc.” http://www.tilera.com
[9] “Ezchip, inc.” http://www.ezchip.com

[10] “Us ignite.” http://us-ignite.org
[11] “Paradiso.” http://paradiso-fp7.eu
[12] “Netfpga.” http://netfpga.org
[13] “Cavium, inc.” http://www.cavium.com
[14] “Xlr, xlp, xls processors.” http://www.broadcom.com/products/

Processors/Enterprise
[15] “Broadcom, inc.” http://www.broadcom.com
[16] “Netlogic microsystems, inc.” http://www.netlogicmicro.com
[17] “Tilegx processor family.” http://www.tilera.com/products/

processors/TILE-Gx Family
[18] “Barefoot networks.” http://www.barefootnetworks.com
[19] “Opendataplane.” http://www.opendataplane.org
[20] “Openflow hardware abstraction.” http://archive.openflow.org/wk/

index.php/HardwareAbstractions
[21] M. Fukushima, Y. Yoshida, A. Tagami, S. Yamamoto, and A. Nakao,

NAKAO: SOFTWARE-DEFINED DATA PLANE ENHANCING SDN AND NFV
19

“Toy block networking: Easily deploying diverse network functions
in programmable networks,” Proc. ADMNET Workshop, COM-
SAC, 2014.

[22] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan,
“Tcp fast open,” Proc. 7th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT), 2011.

[23] G. Mulligan, “The 6lowpan architecture,” Proc. 4th Workshop on
Embedded Networked Sensors, EmNets ’07, pp.78–82, New York,
NY, USA, ACM, 2007.

[24] J.C. Mogul, “Tcp offload is a dumb idea whose time has come,”
HotOS (M.B. Jones, ed.), pp.25–30, USENIX, 2003.

[25] A. Menon and W. Zwaenepoel, “Optimizing TCP receive perfor-
mance,” USENIX 2008 Annual Technical Conference on Annual
Technical Conference, ATC’08, pp.85–98, Berkeley, CA, USA,
USENIX Association, 2008.

[26] “The linux kernel archives.” http://www.kernel.org
[27] H. Farhadi, P. Du, and A. Nakao, “User-defined actions for SDN,”

Proc. Ninth International Conference on Future Internet Technolo-
gies, CFI ’14, pp.3:1–3:6, New York, NY, USA, ACM, 2014.

[28] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,
and R.L. Braynard, “Networking named content,” Proc. 5th Interna-
tional Conference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’09, pp.1–12, New York, NY, USA, ACM, 2009.

[29] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network ar-
chitecture,” Proc. 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIG-
COMM ’07, pp.181–192, New York, NY, USA, ACM, 2007.

[30] “Named data networking.” http://named-data.net
[31] D. Trossen, M. Sarela, and K. Sollins, “Arguments for

an information-centric internetworking architecture,” SIGCOMM
Comput. Commun. Rev., vol.40, pp.26–33, April 2010.

Akihiro Nakao received B.S. (1991) in
Physics, M.E. (1994) in Information Engineer-
ing from the University of Tokyo. He was
at IBM Yamato Laboratory, Tokyo Research
Laboratory, and IBM Texas Austin from 1994
till 2005. He received M.S. (2001) and Ph.D.
(2005) in Computer Science from Princeton
University. He has been teaching as an associate
professor (2005–2014) and as a professor (2014-
present) in Applied Computer Science, at Inter-
faculty Initiative in Information Studies, Gradu-

ate School of Interdisciplinary Information Studies, the University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

