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Rapid Single-Flux-Quantum Truncated Multiplier Based on
Bit-Level Processing

Nobutaka KITO†a), Member, Ryota ODAKA†, Nonmember, and Kazuyoshi TAKAGI††, Member

SUMMARY A rapid single-flux-quantum (RSFQ) truncated multiplier
based on bit-level processing is proposed. In the multiplier, two operands
are transformed to two serialized patterns of bits (pulses), and the mul-
tiplication is carried out by processing those bits. The result is obtained
by counting bits. By calculating in bit-level, the proposed multiplier can
be implemented in small area. The gate level design of the multiplier is
shown. The layout of the 4-bit multiplier was also designed.
key words: rapid single flux quantum circuit, truncated multiplier, pulse
logic

1. Introduction

Superconducting computing devices have been considered
as potentially alternative devices of mainstream semicon-
ductor computing devices [1]. The superconducting rapid
single-flux-quantum (RSFQ) circuit technology [2] is a
promising digital circuit technology for high-speed and low-
power operations.

In RSFQ logic circuit design, bit-serial or bit-slice pro-
cessing has been used for arithmetic circuits than parallel
processing which consumes larger circuit area. For exam-
ple, a bit-serial adder and a bit-serial multiplier have been
proposed [3], [4]. Designing layouts of large RSFQ logic
circuits is a hard task because timing design of large circuits
is tough. Simple and compact designs of arithmetic circuits
are desired especially for multipliers which consume large
area.

In this brief, we propose an RSFQ truncated multiplier
based on bit-level processing. Generally, truncated multi-
pliers, which discard lower part of partial product bits of a
complete multiplier to save circuit area, are realized as par-
allel processing circuits. The proposed truncated multiplier
processes in bit-level to realize small circuit area. In the
multiplier, each operand is transformed to a serialized pat-
tern of bits (pulses). The multiplication is done for those
bits on two lines, and the multiplication result is obtained
by counting bits of the same weight for 2n−1 cycles in n-bit
multiplication.

In bit-serial processing, each bit in n-bit operands fed
serially has its corresponding weight. On the other hand,
in the proposed multiplier, n-bit operands fed in parallel are
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converted into (2n − 1)-bit bit-patterns and each bit in the
patterns has the same weight. The proposed multiplier takes
longer time for processing than bit-serial multipliers, how-
ever, the multiplier is simple and can be realized in compact
area.

The proposed truncated multiplier is suitable for appli-
cations which tolerate small error. Recently, hardware ac-
celerators for neural network processing such as [5] attract
attention. It is well known that inference using neural net-
works can be carried out in low precision. 8-bit data type
has been used in the accelerator in [5], and support for 4-
bit data type has been added in NVIDIA Turing architecture
GPUs [6] and AMD Vega architecture GPUs. The proposed
multiplier will be suitable for such applications.

We designed a 4-bit layout of the proposed multiplier
with the cell library developed for AIST advanced process
(ADP2) [7]. Its functionality was evaluated by logic simula-
tion. Its maximum absolute error in its multiplication result
was also evaluated.

2. Preliminaries

2.1 Truncated Multiplication

We consider n-bit unsigned truncated multiplication of mul-
tiplicand X: [0.x1 · · · xn]2 and multiplier Y: [0.y1 · · · yn]2. We
let the resultant product be Z: [0.z1 · · · zn]2. X, Y , and Z are
fixed-point numbers (0(= [0.0 · · · 0]2) ≤ X,Y,Z ≤ 1 − 2−n(=
[0.1 · · · 1]2)), and each of xi, yi, and zi is either 0 or 1.

In truncated multiplication, lower part of partial prod-
uct bits is discarded. We show partial product bits in Fig. 1.
The upper bits enclosed by the dashed lines, whose weights
are larger than 2−n−1, are summed up. The middle bits with
weight 2−n−1 are used for compensating the result, and the

Fig. 1 Truncation of partial product bits in an multiplier.
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lower bits enclosed by dashed lines are discarded. As shown
in the figure, the unit in the last place (ulp) of the result is
2−n.

The result of the truncated multiplication is represented
as follows:

Z =
∑

i+ j≤n

x jyi2
−(i+ j) + f (x1yn, . . . , xny1) · 2−n (1)

where f is an error-compensation function.
In this brief, f (b1, . . . , bn) = (b1+· · ·+bn) is considered

as the compensation function. The compensation using the
function is equivalent to rounding each partial product Pi =

X · yi · 2−i to its nearest value.

2.2 RSFQ Circuits

In RSFQ circuits, voltage pulses are used to represent logic
values. Each basic logic gate, such as AND, OR, and XOR,
has a clock input terminal as shown in Fig. 2 (a) and works
synchronized with clock pulses. When a pulse arrives at
a data input of a gate during an interval between adjacent
clock pulses, the input value corresponding to the interval
is “1” as shown in Fig. 2 (b). If no pulse arrives during the
interval, the input value is “0”. It is prohibited to feed plural
pulses for a data input of a basic logic gate during an in-
terval. The output of a gate is synchronized with the clock
pulse.

In addition to basic logic gates, several special gates
exist as shown in Fig. 3. In the figure, the symbol and the
pulse-transferring finite state machine (PTFSMs) [8] of each
gate are shown. The non-destructive read-out (NDRO) gate
has two internal states, i.e., S T0 and S T1, as shown in
Fig. 3 (a). It outputs a pulse at dout only when its internal
state is S T1 and a pulse arrives at its clk terminal. The T1

Fig. 2 RSFQ AND gate (a) and its behavior (b).

Fig. 3 Special gates in RSFQ circuits and their behaviors (Non-
destructive read-out (NDRO) gate (a), T1 gate (b), and confluence buffer
(CB) (c)).

gate in Fig. 3 (b) works like a counter of pulses. When inter-
nal state of a T1 gate is S T1, it outputs a pulse at carry or
sum terminal once a pulse arrives at din or clk terminal, re-
spectively. The confluence buffer (CB) in Fig. 3 (c) merges
pulses on its two inputs into its output.

3. RSFQ Truncated Multiplier Based on Bit-Level Pro-
cessing

3.1 Structure

We propose an RSFQ truncated multiplier based on bit-level
processing. We show its structure in Fig. 4. It consists of a
pattern generator, two bit generators, an AND gate, and a
pulse counter.

The pattern generator has n-bit pattern output
S : (s1, s2, · · · , sn). It outputs one of 2n − 1 patterns except
the all-0 pattern (or 2n patterns including the all-0 pattern)
to S exhaustively without overlap in each clock cycle of a
period of 2n − 1 (or 2n) cycles. We let the number of clock
cycles in a period be T . T is 2n − 1 or 2n.

The structure of the bit generator is shown in Fig. 5.
Its inputs are n-bit pattern R: (r1, r2, · · · , rn), n-bit operand
Q: (q1, q2, · · · , qn), one-bit clock input clk, and one-bit re-
set input rst. Its output is one-bit signal b. An operand
of the multiplier is fed to Q. b is calculated according
to the operand value and an input pattern of R fed from
the pattern generator. The output of the pattern genera-
tor S is connected to the two bit generators differently as
shown in Fig. 4. si is connected to ri of the bit generator
for Y , and is connected to rn+1−i of the bit generator for
X. The input operands X and Y are treated as n-bit pat-
terns (x1, x2, · · · , xn) and (y1, y2, · · · , yn), respectively. xi is
connected to qi of the bit generator for X, and yi is con-
nected to qi of the bit generator for Y . Once operand values
of the multiplier are fed to the bit generators, those values
are latched in the generators. rst of the generator is used for
resetting the latches at the beginning of new calculation.

Each bit generator converts an operand into a serialized
pattern of bits (pulses). The AND gate computes logical
AND of bits on two lines. Weight of each bit (pulse) from
the gate is 1 ulp. The pulse counter counts up pulses from
the gate for T cycles, and outputs the counted result every T
cycles. The counted result is the multiplication result.

Fig. 4 Truncated multiplier based on bit-level processing.
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Fig. 5 Structure of the bit generator.

3.2 Calculation

We show the calculation of the multiplier. At first, the func-
tion of the bit generator is shown. Then, the calculation of
the generators and the AND gate is shown.

In the bit generator of Fig. 5, NDRO gates in the first
row are used to generate part of wh signals (1 < h ≤ n).
For those NDRO gates, the orders of pulse arrivals are rep-
resented by inequalities [9]. Pulses distributed from clk ter-
minal of the generator are fed into set terminals of those
NDROs to set their internal state at first. Then, the NDRO
for wh receives (r1 + · · · + rh−1) pulses at its rst terminal
through CBs. Finally, the NDRO for wh may receive a pulse
fed to rh at its clk terminal, and it outputs a pulse according
to its internal state. The value of signal wh is described as
follows:

wh = rh ∧ rh−1 ∧ · · · ∧ r1 = rh ∧
⎛⎜⎜⎜⎜⎜⎝∧

k<h

rk

⎞⎟⎟⎟⎟⎟⎠ .
Note that, among all wh signals, at most one signal takes
“1”, and the others are “0”. In a period of T cycles, wh takes
“1” in 2(n−h) cycles (1 ≤ h ≤ n).

The internal states of the NDROs in the second row of
the bit generator are set by operand Q beforehand. Each
NDRO in the second row outputs a pulse (bit) according to
its internal state when it receives a pulse at its clk terminal.
Among those NDROs, at most one NDRO outputs a pulse
at each clock cycle. CBs are used for calculating logical OR
of the outputs instead of OR gates to save circuit area. The
output of the generator is represented as follow:

b =
∨
h≤n

⎛⎜⎜⎜⎜⎜⎝qh ∧ rh ∧
⎛⎜⎜⎜⎜⎜⎝∧

k<h

rk

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ .

b takes “1” in
∑

h≤n(qh · 2(n−h)) cycles in a period of T cy-
cles. For example, if q1 = · · · = qn = 1, b takes “1” in 2n − 1
(=q1 ·2n−1+· · ·+qn ·20) cycles in a period of T cycles. By the
bit generators, X and Y are converted to bit-patterns and the

number of “1” in the bit-patterns corresponds to magnitude
of them. Because the bit generator for X and the bit gener-
ator for Y are connected to the pattern generator differently,
outputs of the bit generators are calculated differently.

The AND gate in Fig. 4 receives outputs of the two bit
generators. The output of the AND gate p (= by ∧ bx) is
represented as follows:

p =

⎛⎜⎜⎜⎜⎜⎜⎝
∨
i≤n

⎛⎜⎜⎜⎜⎜⎝yi ∧ si ∧
⎛⎜⎜⎜⎜⎜⎝∧

k<i

sk

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

∧
⎛⎜⎜⎜⎜⎜⎜⎝
∨
j≤n

⎛⎜⎜⎜⎜⎜⎜⎝x j ∧ sn+1− j ∧
⎛⎜⎜⎜⎜⎜⎜⎝
∧
k< j

sn+1−k

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

=
∨

i+ j≤n+1

{
x j ∧ yi ∧

(∧
k<i

sk

)
∧ si ∧ sn+1− j ∧

( ∧
n+1− j<k

sk

)}
.

The above formula indicates that if x j = yi = 1 and i + j ≤
n + 1, the AND gate outputs “1” when the output of the
pattern generator S is as follows:

S j,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, · · · , 0︸���︷︷���︸
i−1

, 1, ∗, · · · , ∗︸���︷︷���︸
n−(i+ j)

, 1, 0, · · · , 0︸���︷︷���︸
j−1

) (i + j ≤ n)

(0, · · · , 0︸���︷︷���︸
i−1

, 1, 0, · · · , 0︸���︷︷���︸
j−1

) (i + j = n + 1)

where ∗ denotes “don’t care”. Among different pairs of j
and i, S j,i does not overlap each other.

The pattern generator feeds all n-bit patterns other than
the all-0 pattern. If x j = yi = 1 and i + j ≤ n, the AND
gate outputs at least 2n−(i+ j) pulses in a period of T cycles
because there are n − (i + j) bits of don’t cares in S j,i. Thus,
the number of pulses the AND gate outputs in a period of T
cycles is described as follows:∑

i+ j≤n

x jyi2
n−(i+ j) +

∑
i+ j=n+1

x jyi

because any pair of different S j,i has no overlap. The former
term corresponds to the former term in Formula (1), and the
latter one corresponds to the compensation function. There-
fore, the counted result of the pulse counter corresponds to
the result of the truncated multiplication.

To show the operation of the truncated multiplier visu-
ally, we consider a 4-bit design as an example. The Kar-
naugh maps of the bit generators for bx and by with re-
spect to the output of the pattern generator S are shown in
Figs. 6 (a) and (b), respectively. In the maps, the operand
value is transformed as the number of ones. 24−i grids cor-
responding to xi or yi are rounded by broken lines.

Figure 6 (c) is the Karnaugh map of the output of the
AND gate when X = [0.1111]2 and Y = [0.1000]2. In the
figure, the number of grids covered by vertical (orange) bro-
ken lines corresponding to X = [0.1111]2 is 15, and those
grids are divided by the horizontal (blue) broken lines cor-
responding to Y = [0.1000]2. The pulse counter receives 8
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Fig. 8 Layout of a 4-bit design of the proposed truncated multiplier.

Fig. 6 Karnaugh maps of bx and by for n = 4 ((a) and (b), respectively),
and Karnaugh map of p when X = [0.1111]2 and Y = [0.1000]2 (c).

Fig. 7 Detailed design of the pulse counter.

(=[1000]2) pulses in a period of T cycles because the num-
ber of ones in Fig. 6 (c) is 8. Therefore, it outputs [0.1000]2

as the result.

3.3 Detailed Design

For the pattern generator, a linear feed-back shift regis-
ter (LFSR) could be used. For given n, an LFSR whose
period T is 2n − 1 can be designed.

We show a detailed design of the pulse counter in Fig. 7
as an example. Each T1 counts up its input pulses, and out-
puts a carry pulse every two input pulses. Once we feed a
pulse for f inish, the result preserved as the internal states of
the T1s is obtained at circuit outputs zn, zn−1, . . . , z1. To ob-
tain the result, wn signal in the bit generator can be utilized
to feed a pulse for f inish terminal because it feeds a pulse
every T cycles.

4. Evaluation Results

We designed a layout of a 4-bit design of the proposed trun-
cated multiplier. An LFSR was used as the pattern generator
and the pulse counter shown in Sect. 3.3 was used in the lay-
out. We used Cadence Virtuoso and the cell library designed

for AIST advanced process (ADP2) [7].
The layout of the multiplier is shown in Fig. 8. Its cir-

cuit area is 0.57 mm2 (0.45 × 1.26 mm2), and the number of
Josephson junctions (JJs) is 996. By the logic level simula-
tion considering delay of gates using Cadence Verilog-XL,
the functionality of the circuit was verified. It was estimated
to work at high-frequency up to 40 GHz. It outputs a multi-
plication result every 15 (= 24 − 1) cycles.

A bit-serial design of a multiplier was proposed in
[4]. In [4], integer multiplication is carried out internally
using systolic processing elements (PEs). Each PE con-
sumes 639 JJs, and 2,556 JJs are necessary for a 4-bit mul-
tiplier. Therefore, the number of JJs of the proposed design
is smaller than that of the bit-serial design.

The error in the multiplication result of the 4-bit design
was evaluated by numerical simulation. Its maximum abso-
lute error is 1.0625 ulp. When multiplication is carried out
normally and its 4-bit result is derived by rounding toward 0,
i.e., the result is derived by simply cutting the lower bits of
the true multiplication result, the maximum absolute error is
0.9375 ulp. Therefore, the error of the proposed multiplier
is not large.

4-bit data type is supported in the state-of-the-art semi-
conductor GPUs [6] now for machine-learning applications
using neural networks. The proposed multiplier would be
useful for such applications.

5. Conclusion

We proposed a truncated multiplier for RSFQ circuits. The
multiplier transforms its binary operands into two serialized
patterns of pulses, and its result is obtained by counting
pulses of the same weight. By the bit-level processing, it
can be implemented in small circuit area. The layout of a
4-bit design was shown, and was estimated to work at high-
frequency up to 40 GHz.
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