
130
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

PAPER

Efficient Supergraph Search Using Graph Coding

Shun IMAI†, Nonmember and Akihiro INOKUCHI†a), Member

SUMMARY This paper proposes a method for searching for graphs in
the database which are contained as subgraphs by a given query. In the
proposed method, the search index does not require any knowledge of the
query set or the frequent subgraph patterns. In conventional techniques,
enumerating and selecting frequent subgraph patterns is computationally
expensive, and the distribution of the query set must be known in advance.
Subsequent changes to the query set require the frequent patterns to be
selected again and the index to be reconstructed. The proposed method
overcomes these difficulties through graph coding, using a tree structured
index that contains infrequent subgraph patterns in the shallow part of the
tree. By traversing this code tree, we are able to rapidly determine whether
multiple graphs in the database contain subgraphs that match the query,
producing a powerful pruning or filtering effect. Furthermore, the filtering
and verification steps of the graph search can be conducted concurrently,
rather than requiring separate algorithms. As the proposed method does not
require the frequent subgraph patterns and the query set, it is significantly
faster than previous techniques; this independence from the query set also
means that there is no need to reconstruct the search index when the query
set changes. A series of experiments using a real-world dataset demonstrate
the efficiency of the proposed method, achieving a search speed several
orders of magnitude faster than the previous best.
key words: supergraph search, indexing, graph coding, canonical form,
subgraph isomorphism

1. Introduction

Graph searches are a fundamental component in ap-
plications such as chemo-informatics [19], [26], bio-
informatics [1], computer-aided design [14], computer vi-
sion [16], [18], pattern recognition, XML, social networks,
World Wide Web, and software analysis. For a database
consisting of the set of graphs G = {g1, g2, · · · , gn} and a
given query q, there are two types of graph searches depend-
ing on the desired output:

• Subgraph search: {gi ∈ G | q ⊆ gi} [3], [7], [8], [11],
[17], [22], [24]

• Supergraph search: {gi ∈ G | gi ⊆ q} [4], [13], [21],
[23], [25].

where p ⊆ g indicates that p is a subgraph of g. In this
paper, we focus on supergraph searches.

A labeled graph is represented by g = (V, E, L, �),
where V is a set of vertices, E ⊆ V ×V is a set of edges, L is
a set of labels, and � : V ∪ E → L is a function that assigns

Manuscript received January 10, 2019.
Manuscript revised July 20, 2019.
Manuscript publicized September 26, 2019.
†The authors are with Department of Science and Engineering,

Kwansei Gakuin University, Sanda-shi, 669–1337 Japan.
a) E-mail: inokuchi@kwansei.ac.jp

DOI: 10.1587/transinf.2019EDP7011

a label to each vertex or edge in the graph. Additionally, the
sets of vertices and edges in graph g are represented by V(g)
and E(g), respectively. We denote the degree of a vertex v
in a graph g as d(g, v).

Definition 1 (Subgraph): Given two graphs g = (V, E, L, �)
and g′ = (V ′, E′, L′, �′), g′ is called a subgraph of g if there
exists an injective function (one-to-one mapping) φ : V ′ →
V that satisfies the following three conditions ∀v, v1, v2 ∈ V ′:

(1) �′(v) = �(φ(v)).
(2-1) (φ(v1), φ(v2)) ∈ E, if (v1, v2) ∈ E′.
(2-2) �′((v1, v2)) = �((φ(v1), φ(v2))).

The subgraph isomorphism problem is the NP-complete
problem of finding mappings between g and g′. The setΦ of
all possible permutations of integers 1, 2, · · · , |V | may con-
tain many mappings that satisfy the conditions. g is called
a supergraph of g′ when g′ ⊆ g. Additionally, a subgraph
g′ of g is an induced subgraph if and only if two vertices in
V(g′) are adjacent in g′ and are also adjacent in g. When a
graph is isomorphic to itself, this is referred to as an auto-
morphism. In this paper, we deal with connected undirected
graphs, although the proposed method can be extended to
unconnected graphs or directed graphs.

Given a graph p, the support σ(p,G) for p is defined as

σ(p,G) = |{i | gi ∈ G, p ⊆ gi}|.
Furthermore, given a certain threshold σ′, the graph p that
satisfies σ(p,G) ≥ σ′ is referred to as a frequent subgraph
pattern [9]. In this paper, the set of all frequent subgraph
patterns enumerated from G is written as F = {p | p ⊆
gi, gi ∈ G, σ(p,G) ≥ σ′}.

A supergraph search attempts to identify graphs in G
satisfying gi ⊆ q for a given query q. As the subgraph
isomorphism problem is NP-complete [5], [6], solving it for
each graph in G and q is very inefficient. Therefore, in con-
ventional method, the following properties are often used:

• For a graph p � q, gi cannot be a subgraph of q if
p ⊆ gi.

• When the number of vertices in p is smaller than the
number of vertices in gi ∈ G, it is quicker to determine
whether p ⊆ q than whether gi ⊆ q.

Therefore, for P = {p | p � q} ⊆ F, if we first seek

G′ = G −
⋃

p∈P

{g | g ∈ G, p ⊆ g}

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

IMAI and INOKUCHI: EFFICIENT SUPERGRAPH SEARCH USING GRAPH CODING
131

Fig. 1 Example of supergraph search.

and then solve the subgraph isomorphism problem for each
graph of G′ and q, the search can be accelerated. The pro-
cess in which ∪p∈P{g | g ∈ G, p ⊆ g} is removed from
G is known as filtering. Furthermore, solving the sub-
graph isomorphism problem for each graph in G′ and q is
known as verification. Various methods have been devel-
oped for choosing patterns from F to filter as many graphs
in G as possible. Representative methods for this problem
are the LW-index [21], PrefIndex [25], GPTree [23], and IG-
Query [4].

Figure 1 (a) shows four graphs in a database, and two
patterns chosen from F (see Fig. 1 (b)) are contained in an
index. The index has information that p1 ⊂ g1, p1 ⊂
g2, p2 ⊂ g2, and p2 ⊂ g3. Given the query shown in
Fig. 1 (c), conventional supergraph search techniques first
check whether p1 ⊆ q and p2 ⊆ q, and then obtain G′ =
{g1, g4} in the filtering phase. In the verification phase, they
solve whether g1 ⊆ q and g4 ⊆ q.

2. Issues with Conventional Methods

In this section, we identify the drawbacks of conventional
methods and the characteristics of the proposed method.

• When using the LW-index, choosing an optimal sub-
set of frequent subgraph patterns from F to be used in
an index requires O(k|F||Q||G|) operations, where k is
the number of patterns chosen from F and Q is a set
of queries. An improved method can select a subop-
timal solution in O(k|F||G|). However, the computa-
tion time depends on |F|. In addition, algorithms for
enumerating frequent subgraph patterns are extremely
time-consuming.

• For a query q, some frequent subgraph patterns p are
considered to be suitable for filtering graphs that are
not included in q. However, when p appears frequently
in G, there is a high probability that p will also appear
frequently in Q. Thus, it is not necessarily true that fre-
quent subgraphs are suitable for filtering as mentioned
in the article [27]. In fact, some infrequent subgraphs
may be better suited to filtering.

• Under the assumption that the distribution of Q is
known in advance of constructing an index, many con-
ventional methods choose some frequent subgraph pat-
terns that are considered suitable for indexing. For this
reason, they cannot be applied when Q is not known
in advance. Moreover, when the distribution of Q

changes, it is necessary to choose the patterns again
and construct another index.

• There may be many mappings between a graph gi in
the database and a pattern p that is a subgraph of gi. As
the index stores all of the mappings between gi and p,
the index size can become very huge.

To overcome these drawbacks, we propose a method
that does not require F and Q when constructing an index,
but achieves a few orders of magnitude faster than the LW-
index. The characteristics of the proposed method are as
follows.

• F and Q are not required, and the computation time
required to construct the index is O(|G|).

• The proposed index has a tree structure, and there are
infrequent subgraph patterns in the shallow part of the
tree, which is similar to feature-based index [17].

• As Q is not required when constructing the index, there
is no need to reconstruct the index if the distribution
of Q changes. Furthermore, even if some graphs are
added to, deleted from, or updated in G, the index can
be changed simply.

• As it does not store any mappings between graphs in
the databases and patterns in the index, our index is
very compact.

• The filtering and verification are computed in the same
algorithm rather than through individual, specific algo-
rithms.

• Searching is a few orders of magnitude faster than the
current fastest LW-index.

The remainder of this paper is organized as follows.
In Sect. 3.1, we define some graphs codes to represent la-
beled graphs. In Sect. 3.2, we propose an index called a
code tree to store graphs in a database and discuss the inser-
tion, deletion, and update of database elements. In Sect. 3.3,
we propose a method of searching for graphs that are sub-
graphs of the given query by traversing the code tree. In
Sect. 3.4, we explain some methods for optimizing our pro-
posed graph search method. In Sect. 4, we verify the com-
putational efficiency of the proposed method and compare it
with the conventional method in terms of computation time
using a real-world dataset. Finally, we conclude this paper
in Sect. 5.

3. Proposed Method

3.1 Graph Representation

We define three types of graph code. These codes are used
in frequent subgraph mining algorithms such as AcGM [10]
and gSpan [20].

Given a graph g = (V, E, L, �), the vertices in V
are assigned ID numbers from 1 to |V | and denoted as
v1, v2, · · · , v|V |. g is represented by an adjacency matrix.
If (vi, v j) ∈ E, then the (i, j)-th element of the matrix is
�((vi, v j)); in all other cases, this is zero.

132
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Definition 2 (AcGM code): IDs from 1 to |V | are assigned
to vertices in V such that a subgraph induced by vertices
v1, v2, · · · , vi (1 ≤ i ≤ |V |) must be connected. By laying
out elements in the upper triangular portion of the adjacency
matrix for the graph g, as shown in Fig. 2, the AcGM code
of the graph g is defined as

code(g, 〈v1, v2, · · · , v|V |〉) = c1c2 · · · c|V |, (1)

where

ci = �(vi)x1,i x2,i · · · xi−2,i xi−1,i.

We call ci a code fragment, and say that c1c2 . . . ci is a
prefix of Eq. (1). Furthermore, when a prefix of code α is
β, we write β ⊆ α. If a prefix of the code of graph g is the
same as the code of graph g′, g′ is an induced subgraph of g.
There are several codes representing an isomorphic graph g.
We denote a set of codes for g as Ω(g).

Definition 3 (AcGM code order): Given the AcGM codes
α = a1a2 · · · ak and β = b1b2 · · · bh, β ≺ α if and only if
either of the following statements is true.

• There is some t that satisfies 1 ≤ t ≤ min(k, h), and
aq = bq and bt ≺e at in relation to q < t.

• β ⊆ α.

Here, ≺e represents the lexicographic order between the
code fragments.

Example 1: The graphs shown in Fig. 3 (b), (c), and (d)
have different vertex ID assignments for the vertices shown
in Fig. 3 (a). The codes for the graphs are as shown below.

α = X Xa Xab X0bc X0d00

β = X Xd X0b X0aa X0dc0

γ = X Xa Xba X00d Xc0b0

According to the definition of the code order, α ≺ γ ≺ β.

Fig. 2 Adjacency matrix of a graph.

Fig. 3 Isomorphic graphs with different ways of assigning the vertex ID.

Lemma 1: If the AcGM codes α = a1a2 · · · ak and β =
b1b2 · · · bh are such that ai = �i x1,i · · · xi−1,i and bi =

�′i x′1,i · · · x′i−1,i satisfy the following conditions for all i ≤ k,
the graph represented by α is a subgraph of the graph repre-
sented by β.

(1) �i = �′i .
(2) x j,i = x′j,i or x j,i = 0 for all j < i.

Proof 1: Let g and g′ be the graphs expressed by α and β,
respectively. �i = �′i suggests that the label of vertex vi in
g is the same as that of vertex v′i in g′, which satisfies Def-
inition 1(1) for a function φ where φ(i) = i. In addition,
x j,i = x′j,i or x j,i = 0 suggests that there is an edge between
v′i and v′j when there is an edge between vi and v j, which
satisfies Definition 1(2-1) for the function φ. Furthermore,
x j,i = x′j,i also suggests that the label of edge (i, j) in g is the
same as the label of edge (i, j) in g′, which satisfies Defini-
tion 1(2-2). Therefore, Lemma 1 has been proved because
the injection where φ(i) = i exists between g and g′.

In this paper, we extend the AcGM code to a code
with vertex degrees for the following reason. For (v1, v2) ∈
V(g1) × V(g2), if d(g1, v1) > d(g2, v2), an injective function
φ that maps v1 to v2 is not a mapping for g1 ⊆ g2. Thus,
the degrees of the vertices provide important information
for checking whether g1 ⊆ g2.

Definition 4 (extended AcGM code): IDs from 1 to |V | are
assigned to vertices according to Definition 2. We denote
the connected subgraph induced by vertices v1, v2, · · · , vi as
gi. By laying out elements in the upper triangular portion of
the adjacency matrix for the graph g, the extended AcGM
code (exAcGM code) of the graph g is defined as

code(g, 〈v1, v2, · · · , v|V |〉) = c1c2 · · · c|V |,
where

ci = �(vi)d(gi, vi)d(g, vi)x1,i x2,i · · · xi−2,i xi−1,i.

For example, the exAcGM code for the graph in Fig. 3 (b) is
given as X02 X14a X23ab X220bc X110d00.

Lemma 2: If the exAcGM codes α = a1a2 · · · ak and β =
b1b2 · · · bh are such that ai = �idi1di2x1,i · · · xi−1,i and bi =

�′i d
′
i1d′i2x′1,i · · · x′i−1,i satisfy the following conditions for all

i ≤ k, the graph represented by α is a subgraph of the graph
represented by β.

(1) �i = �′i .
(2) x j,i = x′j,i or x j,i = 0 for all j < i.
(3) di1 ≤ d′i1 and di2 ≤ d′i2.

Proof 2: This can be proved in the same way as Lemma 1.

We now define the depth-first search (DFS) code used
in gSpan [20].

Definition 5 (DFS code): Given a graph g, a depth-first
search of g is performed from a certain vertex in g. The

IMAI and INOKUCHI: EFFICIENT SUPERGRAPH SEARCH USING GRAPH CODING
133

depth-first discovery of the vertices and edges forms lexi-
cographic orders. We use subscripts to label these orders
according to their discovery times. When i < j, vi was dis-
covered before v j. Similarly, a < b means that ea = (v, u)
was discovered before eb = (v′, u′). The DFS code for graph
g is defined as

code(g, 〈e1, e2, · · · , e|E|〉) = c1c2 · · · c|E|,
where ci has information on edge (v, u) with two ver-
tices v and u, and is defined as the 5-tuple ci =

(v, u, �(v), �(u), �((v, u))).

The prefix of the DFS code, the relationship ⊆, and the
total-order relationship among the codes are defined in the
same way as for the AcGM code. It’s detailed definition of
the DFS lexicographic order is given in [20].

Example 2: The depth-first search assigns vertex IDs to
vertices in the graphs as shown in Fig. 3 (b), (c), and (d).
The DFS codes for these graphs are presented in Table 1.
According to the definition of the code order, γ ≺ α ≺ β.
Lemma 3: If a DFS code α is a prefix of another DFS code
β generated by traversing subsets of V(g) and E(g) in a graph
g, the graph represented by α is a subgraph of the graph
represented by β.

Proof 3: Let the DFS codes α and β be α = c1c2 · · · ck and
β = c′1c′2 · · · c′h, where

ci = (vi, ui, �(vi), �(ui), �((vi, ui))) and

c′i = (v′i , u
′
i , �
′(v′i), �

′(u′i), �
′((v′i , u

′
i))).

If α is a prefix of β, ci = c′i holds for all i ≤ k. Therefore,
�(vi) = �′(vi), �(ui) = �′(ui), and �((vi, ui)) = �′((vi, ui)),
which satisfies Definitions 1(1), (2-1), and (2-2) for a func-
tion φ where φ(i) = i. Therefore, Lemma 3 has been proved
because the injection where φ(i) = i exists between g and g′.

When g ∈ G is a subgraph of a query q, there must be
at least one code for q that satisfies one of the above lem-
mas with respect to the code for g. Conversely, if there are
no codes of q that satisfy the lemmas with the code for g,
q is not a subgraph of g. Therefore, given a query q, we
can consider a method for generating various codes of q and
searching for graphs in G that satisfy one of the lemmas with
respect to the code of q. However, as multiple codes are
generated for q for each graph in the database, this straight-
forward method is very inefficient. Therefore, in the next
subsection, we propose a code tree to share the subgraph

Table 1 DFS codes for graphs in Fig. 3.

α β γ
ci (Fig. 3 (b)) (Fig. 3 (c)) (Fig. 3 (d))

c1 (1, 2, X, X, a) (1, 2, X, X, d) (1, 2, X, X, a)
c2 (2, 3, X, X, b) (2, 3, X, X, b) (2, 3, X, X, a)
c3 (3, 1, X, X, a) (3, 4, X, X, a) (3, 1, X, X, b)
c4 (3, 4, X, X, c) (4, 2, X, X, a) (3, 4, X, X, d)
c5 (4, 2, X, X, b) (3, 5, X, X, c) (3, 5, X, X, b)
c6 (2, 5, X, X, d) (5, 2, X, X, b) (5, 1, X, X, c)

isomorphic calculation between prefixes of multiple graphs
in G and q and reduce the total computation time.

3.2 Indexing the Graph Database

Definition 6 (code tree): We define the code tree T as
(�,N, B), where � ∈ N is the root node, N is a set of nodes,
and B is a set of branches. In addition, each node has a code
fragment and a set of graph IDs, and we denote a concatena-
tion of code fragments on the path from the root to the node
n as s(n). When a code for gi ∈ G is identical to s(n), i is
included in the set of IDs for the node n.

We denote the code fragments and ID sets of node n as
f r(n) and ID(n), respectively. We assume that f r(�) = null
and ID(�) = ∅. An example of a code tree is presented
below.

Example 3: The database G = {g1, g2, g3, g4} consists of
the four graphs shown in Fig. 4. We can generate various
codes from one of the graphs, but when one of the codes is
generated from each graph in G, the respective AcGM codes
are

code(g1, 〈v1, v2, v3, v4〉)= X Xa X0a Xaaa,

code(g2, 〈v1, v2, v3, v4〉)= X Xa Xaa Xa00,

code(g3, 〈v1, v2, v3〉) = X Xa X0a, and

code(g4, 〈v1, v2, v3, v4〉)= X Xa Xa0 X0aa.

The code tree T1 for these graphs is shown on the right side
of Fig. 4. Node n5 has the code fragment Xaaa and the graph
ID set ID(n) = {1}. If we concatenate the code fragments
on each node from the root node � = n1 to node n5, we
obtain X Xa X0a Xaaa, and the graph represented by the
concatenation is g1. Not only the code for g1, all of the
above four codes are represented by certain paths from the
root node to other nodes whose IDs are not empty in T1. The
number of graph IDs included in all nodes of the code tree
is equal to the number of graphs in the database.

Algorithm 1 shows the pseudocode for constructing a
code tree for a given database G. Algorithm 1 is applicable
to either AcGM, exAcGM, or DFS code without requiring
any changes. Line 1 of Algorithm 1 initializes the code tree
consisting of only root node. In Line 3, an arbitrary code

Fig. 4 Code tree example.

134
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Algorithm 1: index
Data: a set of graphs G
Result: an index tree T

1 T ← (�, {�}, ∅);
2 for gi ∈ G do
3 c1c2 · · · ck ← getCode(gi);
4 addPathToTree(c1c2 · · · ck,�,T, i);
5 return T ;

Algorithm 2: addPathToTree
Data: code c1c2 · · · ch, an index tree T , the current node n, the

graph ID id
1 if c1c2 · · · ch = null then
2 n← (f r(n), ID(n) ∪ {id});
3 return ;

4 for m ∈ children(n) do
5 if f r(m) = c1 then
6 addPathToTree(c2c3 · · · ch,m,T, id);
7 return ;

8 m← createNode(c1);
9 T ← (�,V(T) ∪ {m}, E(T) ∪ {(n,m)});

10 addPathToTree(c2 · · · ch,m,T, id);

is generated for each graph in G. The code is added to the
tree such that the code becomes s(n) for a certain node n us-
ing Algorithm 2. On Lines 1–3 of Algorithm 2, if the code
is blank, the ID of gi is added to the ID list for the current
node n. Otherwise, the fragment for each child node of n is
compared to c1; if they match, we move to this child node
in Line 6. Conversely, if there is no node whose fragment
matches c1, a new node is created as a child of n with frag-
ment c1 in Line 8 and added to the code tree in Line 9. To
construct the code tree, Algorithm 1 does not require the set
of all frequent subgraph patterns F enumerated from G or
the set of queries Q. This is one of the characteristics of
the proposed method, and it is different from conventional
methods such as PrefIndex and LW-index. Therefore, it is
not necessary to reconstruct the index, even if the distribu-
tion of Q changes,

Conventional supergraph search methods store all pos-
sible mappings between graphs in the database and pat-
terns in their indices. For example, a pattern represented by
node n3 corresponds to four pairs of vertices (v1, v2), (v2, v1),
(v2, v3), and (v3, v2) in g3, ten pairs for g1, eight pairs for g2,
and eight pairs for g4. Using conventional methods, all of
their mappings would be stored in the indices. In addition,
because the patterns in the indices are frequent subgraph
patterns in G, the memory space of the indices increases
exponentially with the number of vertices in the graphs of
the database. Conversely, the code tree does not store any
mappings between graphs in the database and patterns rep-
resented by concatenated fragments.

Lemma 4: When graphs in the database are expressed in
the AcGM or exACGM code, the memory space and num-
ber of nodes in the code tree are at most O(Σn

i=1|V(gi)|2) and

O(Σn
i=1|V(gi)|), respectively.

Proof 4: The memory space required to express a graph in
the AcGM or exAcGM code is proportional to the size of
the adjacency matrix for that graph. In addition, the mem-
ory space required by the adjacency matrix is proportional to
the square of the number of vertices in the graph. Therefore,
for the database D including n graphs, the memory space is
at most O(Σn

i=1|V(gi)|2). When adding a new graph g to a
code tree, if there are no nodes n for which s(n) is identical
to the code of the graph, the number of nodes in the code
tree increases by |V(g)|, because the number of nodes added
is the same as the number of vertices in g. Therefore, the
number of nodes in the code tree for the database D includ-
ing n graphs is at most O(Σn

i=1|V(gi)|). Therefore, Lemma 4
has been proved.

Lemma 5: When graphs in the database are expressed in
the DFS code, the size and number of nodes in the code tree
are at most O(Σn

i=1|E(gi)|).
Proof 5: A graph with m edges is expressed in the DFS
code with m 5-tuples. Therefore, for the database D in-
cluding n graphs, the required memory space is at most
O(Σn

i=1|E(gi)|). When adding a new graph to a code tree,
if there are no nodes n for which s(n) is identical to the code
of the graph, the number of nodes in the code tree increases
by |E(g)|, because the number of nodes added is the same as
the number of edges in g. Therefore, the number of nodes
in the code tree for the database D including n graphs is at
most O(Σn

i=1|E(gi)|). Therefore, Lemma 5 has been proved.

Therefore, the size of the code tree becomes compact com-
pared with storing all mappings between graphs in the
database and patterns in the index. The complexity of con-
structing the code tree is O(Σn

i=1|E(gi)|), because an arbitrary
code for each graph g is generated in O(|E(g)|). When the
average number of edges in the database is E, its computa-
tional complexity is O(E|G|).

Next, we discuss the insertion, deletion, and update of
database elements. When the graph gn+1 is inserted in G,
there is no need to reconstruct the existing index, and only
the loop statement of Algorithm 1 is executed. When delet-
ing graph gi from G, i is excluded from the ID list for node
n including i. Finally, when updating gi in G, after delet-
ing gi, the updated graph gi is inserted. With this proposed
method, it is not necessary to enumerate frequent subgraph
patterns in G when inserting, deleting, or updating graphs
in the database. Conversely, with conventional methods
such as LW-index that use frequent patterns, when the graph
database G becomes G′ following insertion, deletion, and/or
update operations, the frequent subgraph patterns enumer-
ated from G may be very different to those enumerated from
G′. In this case, it is necessary to reconstruct the index after
obtaining frequent subgraph patterns from G′.

3.3 Supergraph Search Using Code Tree

Next, we propose a method for searching graphs in G that

IMAI and INOKUCHI: EFFICIENT SUPERGRAPH SEARCH USING GRAPH CODING
135

is applicable to graph codes such as AcGM, exAcGM, and
DFS. The proposed method assigns vertex IDs to ver-
tices in q in accordance with the code definitions in par-
allel with traversing the code tree. Algorithm 3 is called
by search(∅, q,�, 〈〉) and returns the set of IDs of graphs
that are subgraphs of q. In Line 2, we obtain the set
of code fragments c that can be connected to the end of
code(q,w1,w2, · · · ,wh). Here, for all elements (w, c) ∈ C,
c1c2 · · · chc is the prefix of one of possible codes for q. Next,
for each pair (m, (w, c)) of children of node n and elements
in C, Algorithm 4 or 5 is called on Line 5.

First, we consider the case in which graphs are ex-
pressed in the AcGM code. With the function compare, we
check whether a subgraph in multiple graphs in G is a sub-
graph of q according to Lemma 1. Conditions (1) and (2) in
Lemma 1 correspond to

(1) �(vi) = �(v′i) and
(2) ∀ j < i (x j,i = x′j,i ∨ x j,i = 0)

in Line 1 of Algorithm 3, respectively†. If Algorithm 4 al-

Algorithm 3: search
Data: a set of graph IDs S , the query q, the current node n, and

argument 〈w1,w2, · · ·wh〉 to create a code from q
Result: a set of graph IDs S

1 S ← S ∪ ID(n);
2 C ← {(w, c) | c1c2 · · · chc = code(q, 〈w1,w2, · · ·wh,w〉),

c1c2 · · · chc ⊆ s, s ∈ Ω(q)};
3 N ← children(n);
4 for (m, (w, c)) ∈ N ×C do
5 if compare(f r(m), c) then
6 S ← search(S , q, m, 〈w1,w2, · · ·wh,w〉);
7 return S ;

Algorithm 4: “compare” function for AcGM
code

Data: fragments �(vi)x1,i x2,i · · · xi−1,i for g ∈ G and
�(v′i)x′1,i x

′
2,i · · · x′i−1,i for query q

Result: true or false
1 if �(vi) = �(v′i) ∧ ∀ j < i (x j,i = x′j,i ∨ x j,i = 0) then
2 return true;

else
3 return false;

Algorithm 5: “compare” function for DFS code
Data: fragments c1 and c2

Result: true or false
1 if c1 = c2 then
2 return true;

else
3 return false;

†When graphs in the database and queries are expressed in the
exAcGM code, condition (3) in Lemma 2 is added to Line 1 of
Algorithm 4.

ways returns a value of “false” at node m, graphs whose IDs
are in ID(m′) for all descendants m′ of m are not subgraphs
of q. Thus, it is possible to prune the search space by back-
tracking to this node m, which corresponds to filtering. Fur-
thermore, because the subgraph isomorphic calculation in
Algorithm 3 is shared between prefixes of multiple graphs in
G and q, it is possible to further reduce the total computation
time compared with applying the subgraph isomorphic test
between the prefixes of each graph in G and q. Conversely,
if Algorithm 4 returns a value of “true” at node m, graphs
whose IDs are ID(m) are subgraphs of q, which corresponds
to verification. Therefore, in the proposed algorithm, distin-
guishing between filtering and verification allows them to
be computed in the same algorithm rather than through in-
dividual, specific algorithms.

For example, we consider search(∅, q, n6, 〈v1, v2, v3〉)
to be called for a query q, shown in Fig. 5, at node n6 in
Fig. 4. As a subgraph of q induced by a set of vertices gen-
erated by adding either v4 or v5 to {v1, v2, v3} is connected, C
in Line 2 of Algorithm 3 is {(v4, a00), (v5, 00a)}. In addition,
as n7 has a child, C = {n7}. Thus, compare is called with the
arguments (n7, (v4, a00)) and {(n7, (v5, 00a)), and it returns
“true” when called with (n7, (v4, a00)).

The code tree does not store any mappings between
graphs in the database and patterns in the tree. In addi-
tion, Algorithm 3 does not create any mappings between the
query and the patterns. Instead, Algorithm 3 traverses the
code tree in a similar manner to the depth-first search. Dif-
ferent from the depth-first search, it may visit each node in
the code tree multiple times, because a graph represented by
a node may be isomorphic to subgraphs consisting of differ-
ent subsets of vertices in q. For example, when the query in
Fig. 5 is given for the code tree in Fig. 4, Algorithm 3 vis-
its node n6 six times, as the permutation of v1, v2, and v3

in q generates an isomorphic graph. When subgraphs of the
given query are automorphisms, the number of mappings in
the conventional methods and the frequency of visits in the
proposed method become huge. In Sect. 3.4.2, we discuss
an optimization method that reduces the frequency of visits
to some nodes in the code tree, making the proposed method
much more efficient.

Given a query q, if there is a graph g in DB which is a
subgraph of q, Algorithm 3 can find the graph g from code
tree, whose reasons are as follows.

(1) As mentioned after Proof 3, when g ∈ G is a subgraph
of the query q, there must be at least one code for q that
satisfies one of the Lemmas 1, 2 and 3 with respect to
the code for g.

Fig. 5 A query graph.

136
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

(2) One of all possible codes of each graph g ∈ G is con-
tained in the code tree.

(3) Algorithm 3 generates all possible codes of the query
q.

Until Sect. 3.3, we do not suggest that the proposed method
is faster than LW-index which stores all mappings between g
and q, which is equivalent with (3). However, since we avoid
generating all the codes of q by using the optimized algo-
rithm based on Algorithm 3, that is mentioned in Sect. 3.4,
our proposed method becomes faster than LW-index.

Next, we consider the case in which graphs are ex-
pressed in the DFS code. If f r(m) and c are the same as
in Line 5 of Algorithm 3, then Algorithm 3 is called recur-
sively. In the same way, using the DFS code has the effect of
pruning the search space and sharing the subgraph isomor-
phic calculation, as when using the AcGM code.

3.4 Optimizations

3.4.1 Using Canonical Code

In the code tree T1 in Fig. 4, s(n4) and s(n8) represent an
isomorphic graph. If the nodes become a single node, we
can reduce both the size of the code tree and the computa-
tion time of searching. To do so, we use canonical codes to
represent graphs in the database [9], [17].

Definition 7 (canonical code): There are multiple AcGM
codes representing an isomorphic graph g. We call the max-
imum among these codes the canonical code of g. In the
same way, there are multiple DFS codes representing an iso-
morphic graph g. Among these, the minimum is called the
canonical code of g.

The procedure for obtaining an arbitrary code of a
graph g on Line 5 of Algorithm 1 is replaced by the pro-
cedure for obtaining the canonical code of g. The com-
putational complexity of obtaining the canonical code for
a graph is the same as the complexity of solving the graph
isomorphic problem [6], and the computation time required
to find canonical codes for all graphs in the database will be
large. To reduce the computation time, a suboptimal canon-
ical code (subcanonical code) for each graph is obtained us-
ing the breadth-first search, and this search is restricted by a
certain beam width b.

Lemma 6: The time complexity for obtaining a subcanon-
ical code of a graph g is O(b|V(g)|3) for the AcGM code and
O(b|E(g)||V(g)|) for the DFS code.

Proof 6: Algorithm 6 shows the pseudocode for obtaining
a subcanonical code for the AcGM code for a given graph
g and a beam width b. Here, select(X, x) is the function for
selecting x codes from a set of codes X. In Algorithm 6,
Lines 3–10 are repeated |V(g)| times and Lines 5–6 are re-
peated at most b times. In Line 6, the number of candidate
vertices of u is at most |V(g)|. In addition, the time complex-
ity for appending a fragment to code(g, 〈v1, v2, · · · , vd−1〉) is

Algorithm 6: Obtaining a subcanonical code for
an AcGM code

Data: a graph g and a beam width b
Result: a subcanonical code c

1 P← {code(g, 〈〉)};
2 d ← 1;
3 for d ∈ [1, |V(g)|] do
4 P′ ← φ;
5 for code(g, 〈v1, v2, · · · , vd−1〉) ∈ P do
6 P′ ← P′ ∪ {code(g, 〈v1, v2, · · · , vd−1, u〉) | u ∈

V(g), u � 〈v1, v2, · · · , vd−1〉};
7 m← max P′;
8 P← {p ∈ P′ | p = m};
9 P← select(P, b);

10 d ← d + 1;

11 c← select(P, 1);
12 return c;

Fig. 6 Code trees.

O(|V(g)|). Therefore, the time complexity for obtaining a
subcanonical code of a graph g is O(b|V(g)|3) for the AcGM
code. The subcanonical DFS code for a graph g is obtained
in a similar manner to Algorithm 6. The differences be-
tween obtaining subcanonical codes for AcGM and DFS
codes are in Lines 3 and 6. For a DFS code, Lines 3–10
are repeated |E(g)| times, and the time complexity of Line
6 for appending a fragment to the code is O(1). Therefore,
the time complexity for obtaining a subcanonical code of
a graph g is O(b|E(g)||V(g)|) for the DFS code. From the
above, Lemma 6 has been proved.

Using canonical codes, we have three aspects that
accelerate the computation of our proposed method.
(1) Fig. 6 (a) shows the code tree T2 with canonical codes for
the same database shown in Fig. 4. Compared with code tree
T1 in Fig. 4, T2 has fewer nodes because there are fewer cor-
responding to each isomorphic graph in T1. In Algorithm 3,
the computation of whether graphs represented by s(n4) and
s(n8) are subgraphs of the query are conducted simultane-
ously for n′7 in T2, which makes our proposed method more
efficient. (2) Prefixes consisting of three vertices in g1 of
Fig. 4 are s(n4) in T1 and s(n′4) in T2. The graphs repre-
sented by s(n4) and s(n′4) have two and three edges, respec-
tively. Using canonical codes, dense subgraphs of graphs
in the database are arranged in the upper part of the code
tree (root side). Compared with sparse subgraphs, the dense
subgraphs are infrequent in G according to the definition
of the support value. When the proposed method checks

IMAI and INOKUCHI: EFFICIENT SUPERGRAPH SEARCH USING GRAPH CODING
137

whether the query contains g1, the use of dense subgraphs in
g1 is an effective filtering method. Therefore, our proposed
method uses infrequent subgraph patterns for filtering rather
than frequent subgraph patterns. (3) For the AcGM code,
we assign large values to the rare vertex labels and edge la-
bels†. For example, in the next section, we use graphs of
chemical compounds to evaluate the proposed method, and
atom types in these chemical compounds correspond to ver-
tex labels. Carbon and nitrogen are included in almost all
chemical compounds, whereas holmium, terbium, and so on
are rare. As the canonical code of a graph is the maximum
among codes representing the graph, vertex labels having
large values often appear in the early part (left-hand side)
of the canonical code. This means that prefixes consisting
of the early part of the canonical code represent infrequent
subgraphs in G. Similar to (2), the effect of filtering in the
proposed method is further accelerated.

Conversely, with conventional methods such as the
LW-index, some frequent subgraph patterns in G are used
for the index. The frequent subgraph patterns have a high
possibility of being included in the query q, and if a pattern
p in the index is included in q, graphs in G including p can-
not be pruned from the search space. The use of infrequent
subgraph patterns in the code tree is a different characteris-
tic from conventional methods, which typically use frequent
subgraph patterns.

3.4.2 Storing the Numbers of Candidate Solutions

As mentioned in Sect. 3.3, for the query q in Fig. 5, our pro-
posed method visits n6 in T1 six times. Similarly, many con-
ventional methods store six mappings between the pattern
represented by n6 and q, but visit the node only once. In
a graph search, these procedures are very time-consuming.
To avoid multiple visits when using the proposed method,
we extend the aforementioned code tree and Algorithm 3
as follows. Each node n in the code tree has a code frag-
ment, a set of graph IDs, and an integer num(n). The integer
stores the summation of cardinalities of graph IDs in a sub-
tree Ts(n) whose root is n. Figure 6 (b) shows the extended
code tree T3 for code tree T1 and Algorithm 7 is the exten-
sion of Algorithm 3. When Algorithm 7 first visits n′′7 in T3

after visiting n′′3 and n′′6 , it adds {1} to S and decrements num
values of nodes on the path from the root to n′′7 , in Lines 3–
5. When Algorithm 7 visits n′′3 again, n′′6 is removed from
N in Line 7, because the subtree whose root is n′′6 does not
have any solutions at this point in time. Pruning n′′6 from
T3 reduces the number of times that Algorithm 7 visits the
same nodes, which further accelerates the proposed method.
Finally, all num values in T3 are reset at the end of the search
for the given query in Lines 11–12.

4. Experimental Evaluation

We implemented the method proposed in this paper and the
†Conversely, for the DFS code, we assign small values to the

rare labels in accordance with the definition of the canonical code.

Algorithm 7: Search 2
Data: Arguments are the same as in Algorithm 3
Result: a set of graph IDs S

1 S ← S ∪ ID(n);
2 m← n;
3 while m � null do
4 num(m)← num(m) − |ID(n)|;
5 m← parent(m);

6 C ← {(w, c) | c1c2 · · · chc = code(q, 〈w1,w2, · · ·wh,w〉),
c1c2 · · · chc ⊆ s, s ∈ Ω(q)};

7 N ← {m | m ∈ children(n), num(m) � 0};
8 for (m, (w, c)) ∈ N ×C do
9 if compare(f r(m), c) then

10 S ← search(S , q, m, 〈w1,w2, · · ·wh,w〉);
11 if n is root then
12 reset all num values in this code tree;

13 return S ;

Table 2 Features of evaluation data Gaids.

No. of graphs 39,338
No. of vertex labels 59
No. of edge labels 3
Average no. of vertices 25.15
Average degree 2.16
Max no. of vertices 222
Max no. of edges 234

conventional LW-index method in Java, and performed an
experimental evaluation. A previous comparison [21] found
that the LW-index is faster than other methods [2], [23], [25]
for a supergraph search. The experiments reported in
this section were performed on a workstation with a Xeon
X5670 293 GHz CPU and 48 GB main memory. Further-
more, the dataset used in our experiments includes 39,338
chemical compounds [12], similar to that considered in [21],
and the atoms, bonds, atom types, and bond types in each
chemical compound were treated as vertices, edges, vertex
labels, and edge labels, respectively. We denote the set of
graphs as Gaids. Moreover, α graphs were chosen at random
from Gaids and set to Gα. Furthermore, we randomly ex-
tracted a set of frequency subgraph patterns F0.5 from Gaids

with a support threshold of 0.5%. Then, β graphs were ex-
tracted at random from F0.5 and set to G′β. Two types of
query sets, Q1 and Q2, were generated as subsets of Gaids.
Q1 was formed from the graphs within Gaids that have 25
edges, and Q2 was the set of graphs with 34–36 edges; |Q1|
= 1,835 and |Q2| = 2,223. Table 2 summarizes the data fea-
tures used in our experiments.

4.1 Using Canonical Codes

4.1.1 Indexing

Figures 7, 8, and 9 show the performance of the proposed
method when various beam widths are used to find sub-
canonical codes. In these experiments, the graph database
was Gaids and the queries were Q1 and Q2. Figure 7 shows

138
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Fig. 7 Computation time for constructing code trees with respect to
beam width.

Fig. 8 Computation time required to search for graphs in Q1.

Fig. 9 Computation time required to search for graphs in Q2.

the computation time required to create code trees (indexes)
when changing the beam width. The “random” marker
on the horizontal axis refers to results without using any
(sub)canonical codes. For AcGM-based codes, the calcula-
tion time increases with the beam width, because getCode in
Algorithm 1 calculates a subcanonical code for each graph
in Gaids. Conversely, for the DFS code, the computation
time is almost constant. This is because the graphs for the
chemical compounds are sparse. When a graph is traversed
depth-first to generate DFS codes for the graph, there are
limited vertices to be visited after a certain vertex, which
reduces the variation in the DFS codes of the graph and re-
stricts the time required to construct the index.

4.1.2 Searching

Figure 8 shows the average computation time required to
search for the graphs in Q1. When the beam width (the
parameter for constructing the code tree) is increased, the
computation time decreases for the AcGM, exAcGM, and
DFS codes. This confirms the positive effect of using

Fig. 10 Size of the code trees.

Table 3 Average computation time [msec] of Algorithms 3 and 7 for
queries Q1 and Q2.

Q1 Q2

Algo. 3 Algo. 7 Algo. 3 Algo. 7
AcGM 0.60 0.55 20.67 2.18
exAcGM 2.10 1.88 37.53 3.17
DFS 3.64 3.09 357.49 8.30

(sub)canonical codes. Figure 9 shows the average compu-
tation time required to search for the graphs in Q2. We ob-
tained a similar result as in Fig. 8.

The computation time using the AcGM code is shorter
than that using the DFS code. To explain this, the relation-
ship between the depths and the numbers of nodes in the
code trees is shown in Fig. 10. When seeking subcanoni-
cal codes of AcGM codes with a beam width b of 100, the
number of nodes in the code tree is low compared to one
for random AcGM codes This means that the prefixes of
AcGM codes representing graphs in Gaids are held on com-
mon branches in the code tree. As the prefixes are held on
common branches, whether q includes many graphs repre-
sented by these prefixes is calculated concurrently, and the
AcGM code enables us to search the graphs in less time. As
the above results confirm the positive effect of using sub-
canonical codes, subsequent experiments were conducted
with the beam width fixed at 100.

4.2 Storing the Numbers of Candidate Solutions

Table 3 presents the average computation time using Algo-
rithms 3 and 7, as explained in Sect. 3. For the DFS code
applied to Q2, the computation time of Algorithm 3 was re-
duced by approximately 97.5% using Algorithm 7. Table 4
lists the numbers of nodes in code trees visited by Algo-
rithms 3 and 7 for each query in Q1 and Q2. Algorithm 7
clearly visits fewer nodes than Algorithm 3. In our code
trees, the values num(n) store the numbers of candidate so-
lutions in the subtree for each node whose root is n. In Algo-
rithm 7, the value for each node changes dynamically as the
code tree is traversed. If num(n) = 0 at node n, the subtree
for n does not need to be traversed. For this reason, Algo-
rithm 7 visits fewer nodes than Algorithm 3, which results
in a lower computation time. The effect of storing the num-
bers of candidate solutions is profound for Q2 because this
set includes many automorphisms, such as the graph shown

IMAI and INOKUCHI: EFFICIENT SUPERGRAPH SEARCH USING GRAPH CODING
139

Table 4 Numbers of nodes that Algorithms 3 and 7 visit per query in Q1

and Q2.

Q1 Q2

Algo. 3 Algo. 7 Algo. 3 Algo. 7
AcGM 584.7 507.1 54,745.8 2,442.7
exAcGM 797.3 722.5 44,003.2 1,346.3
DFS 747.5 676.9 56,281.7 1,364.9

Fig. 11 A query in Q2 (numbers are edge labels).

in Fig. 11. Given such a graph as a query, Algorithm 7 does
not visit the nodes corresponding to the graphs in the query
multiple times, which reduces the computation time.

4.3 Comparison with LW-Index Method

4.3.1 Setting

We now compare the proposed method with the LW-index
method†. The experimental setting is the same as that de-
scribed in [21], the graph database is G′β, and the queries
are Q1 or Q2. To construct the LW-index, a complete set of
frequent subgraph patterns are enumerated with a minimum
support level of 1% from G′100000. A small subset of the
frequent subgraph patterns is chosen when constructing the
LW-index, and the chosen graphs are used for filtering dur-
ing the search. When constructing the LW-index, graphs in
Q1 or Q2 were used as queries. Generally, as the queries are
unknown when constructing the index in advance of search-
ing, Q1 or Q2 would not usually be used to construct the
index, but this experiment placed the LW-index method in a
clearly advantageous position to demonstrate the superiority
of the proposed method.

4.3.2 Results

Figure 12 shows the average computation time required to
search for graphs in Q1 when changing the number β of
graphs in the database. In the same way, Fig. 13 shows the
experimental results with Q2. As β increases, the compu-
tation time increases significantly, although that of the pro-
posed method is far lower than that of the LW-index method
for β above 10,000. The reason for this is as follows. We
consider the case in which one graph g′1 is newly inserted in
G′β and the canonical code of g′1 is the prefix of the canon-
ical code of another graph g′2 in G′β. In this case, the code
trees for G′β and G′β ∪ {g′1} are identical, and the nodes tra-
versed by Algorithm 7 do not change. As the database G′β

†Henceforth, we refer to the methodology of the LW-index and
the index itself as the “LW-index method” and “LW-index,” respec-
tively, to distinguish them.

Fig. 12 Comparison with LW-index (G′β,Q1).

Fig. 13 Comparison with LW-index (G′β,Q2).

used in this experiment is a subset of F0.5, as β increases,
the number of graphs that are newly inserted in the database
and whose codes are prefixes of codes for graphs already in
the database increases. Therefore, even when the number
of graphs in the database increases, the computation time
for the proposed method does not increase as quickly as
that of the LW-index method. Indeed, the LW-index method
solves the subgraph isomorphic problem (verifications) be-
tween the query and graphs that could not be excluded by
filtering. As the size of G′β increases, the number of verifi-
cations increases, so the calculation time for the LW-index
method increases with β.

4.4 Comparison with LW-Index Method with Large
Graphs

4.4.1 Setting

The graphs in G′β had an average of 13.67 vertices, which
is not very large. Therefore, we also compared the perfor-
mance of the proposed method with that of the LW-index
method for a dataset consisting of graphs with a large num-
ber of vertices. In this experiment, the graph database was
Gα and the queries were Q1 or Q2. To construct the LW-
index, frequent subgraph patterns were enumerated with a
minimum support threshold of 1% from Gaids. Furthermore,
Q1 and Q2 were used when constructing the LW-index.

4.4.2 Results

Figure 14 shows the average computation time required to

140
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Fig. 14 Comparison with LW-index (Gα,Q1).

Fig. 15 Comparison with LW-index (Gα,Q2).

search for graphs in Q1 with respect to the number α of
graphs in the database. In the same way, Fig. 15 shows the
experimental results for Q2

††. Compared with the experi-
ments described in Sect. 4.3, the graphs in Gaids are large and
relatively few graphs are subgraphs of others in the database.
For this type of database, the proposed method is much more
efficient than the LW-index method. Furthermore, as shown
in Fig. 7, the computation time required for constructing
a code tree when using the AcGM code is approximately
20 seconds. In addition, the code trees for Q1 and Q2 are
identical. Conversely, with the conventional method, it is
necessary to enumerate frequent subgraph patterns from G
to create the index; even using the most efficient frequent
subgraph pattern mining method, Gaston [15], this requires
approximately 400 seconds. If we chose filtering patterns
from the 105,418 frequent subgraph patterns, the compu-
tation time required to construct the index would be enor-
mous. With the LW-index method, the indices for Q1 and
Q2 are different, and it is necessary to reconstruct the index
every time the distribution of the search queries changes.
Therefore, the proposed method is superior for both index
construction and searching.

4.5 Parallel Computation on Two Different Indexes

In Fig. 16, each point (t, tex) gives the computation times t
and tex for each query in Q2 using the AcGM and exAcGM
codes, respectively. The gravity of all points in Fig. 16 is
marked by the red point. There are many points above the
††The result marked “Parallel” in Fig. 15 is explained in

Sect. 4.5.

Fig. 16 Detailed computation time for each query in Q2.

red line, which suggests that the computation time using the
AcGM code is shorter than when using the exAcGM code
for many graphs in Gaids. However, for a few graphs in Q2,
the proposed method using the AcGM code has a longer
computation time than when using the exAcGM code. Fig-
ure 11 shows one of the graphs, which is an automorphism.
To utilize the advantageous characteristics of the codes, we
implemented a method in which two threads search in par-
allel for graphs in the database. In this method, two code
trees are stored in memory, one in which the graphs are ex-
pressed in AcGM code and another in which the graphs are
expressed in exAcGM code. For a given query, one of the
threads traverses the former code tree and the other thread
traverses the latter. When either thread finishes searching for
the query, it forces the other thread to terminate the search.
The computation time using this method is denoted as “Par-
allel” in Fig. 15. The average computation time of Parallel
is shorter than that of the methods using the AcGM and ex-
AcGM codes.

5. Conclusion

In this paper, we proposed a graph search method in which
the search index does not require any knowledge of the
query set or the frequent subgraph patterns. In conven-
tional techniques, enumerating and selecting frequent sub-
graph patterns is computationally expensive, and the distri-
bution of the query set must be known in advance. Subse-
quent changes to the query set require the frequent patterns
to be selected again and the index to be reconstructed. The
proposed method overcame these difficulties through graph
coding, using a tree structured index that contains infrequent
subgraph patterns in the shallow part of the tree. By travers-
ing this code tree, the proposed method can rapidly deter-
mine whether multiple graphs in the database contain sub-
graphs that match the query, producing a powerful pruning
or filtering effect. Furthermore, the filtering and verifica-
tion steps of the graph search can be conducted concurrently,
rather than requiring separate algorithms. As the proposed
method does not require the frequent subgraph patterns and
the query set, it is significantly faster than previous tech-
niques; this independence from the query set also means
that there is no need to reconstruct the search index when
the query set changes. A series of experiments using a real-

IMAI and INOKUCHI: EFFICIENT SUPERGRAPH SEARCH USING GRAPH CODING
141

world dataset demonstrated the efficiency of the proposed
method, achieving a search speed several orders of magni-
tude faster than the previous best. In future work, we plan
to compare DGTree [13] which also does not require any
knowledge of the query set or the frequent subgraph pat-
terns to construct its index but stores all mappings between
graphs in the database and patterns in the index.

References

[1] M. Cannataro, P.H. Guzzi, and P. Veltri, “Protein-to-protein interac-
tions: Technologies, databases, and algorithms,” ACM Computing
Surveys, vol.43, no.1, Article 1, 2010.

[2] C. Chen, X. Yan, P.S. Yu, J. Han, D.-Q. Zhang, and X. Gu, “To-
wards graph containment search and indexing,” Proc. International
Conference on Very Large Data Bases (VLDB), pp.926–937, 2007.

[3] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: Towards ver-
ification-free query processing on graph databases,” Proc. ACM
SIGMOD International Conference on Management of Data,
pp.857–872, 2007.

[4] J. Cheng, Y. Ke, A.W.-C. Fu, and J.X. Yu, “Fast graph query pro-
cessing with a low-cost index,” The VLDB Journal, vol.20, no.4,
pp.521–539, 2011.

[5] S. Fortin, “The graph isomorphism problem,” Technical Report
TR96-20, Department of Computer Science, University of Alberta,
1996.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.

[7] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: Towards ultrafast and
robust subgraph isomorphism search in large graph databases,” Proc.
ACM SIGMOD International Conference on Management of Data,
pp.337–348, 2013.

[8] H. He and A.K. Singh, “Query language and access methods for
graph databases,” Managing and Mining Graph Data, Advances
in Database Systems, vol.40, pp.125–160, Springer, Boston, MA,
2010.

[9] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm
for mining frequent substructures from graph data,” Proc. European
Conference on Principles of Data Mining and Knowledge Discovery,
Lecture Notes in Computer Science, vol.1910, pp.13–23, Springer,
Berlin, Heidelberg, 2000.

[10] A. Inokuchi, T. Washio, Y. Nishimura, and H. Motoda, “A fast al-
gorithm for mining frequent connected subgraphs,” IBM Research,
Tokyo Research Laboratory, 2002.

[11] H. Jiang, H. Wang, P.S. Yu, and S. Zhou, “GString: A novel ap-
proach for efficient search in graph databases,” Proc. International
Conference on Data Engineering, pp.566–575, 2007.

[12] S. Kramer, L. De Raedt, and C. Helma, “Molecular feature mining in
HIV data,” Proc. International Conference on Knowledge Discovery
and Data Mining, pp.136–143, 2001.

[13] B. Lyu, L. Qin, X. Lin, L. Chang, and J.X. Yu, “Scalable supergraph
search in large graph databases,” Proc. IEEE International Confer-
ence on Data Engineering, pp.157–168, 2016.

[14] L. Ma, Z. Huang, and Y. Wang, “Automatic discovery of common
design structures in CAD models,” Computers & Graphics, vol.34,
no.5, pp.545–555, 2010.

[15] S. Nijssen and J.N. Kok, “A quickstart in frequent structure mining
can make a difference,” Proc. International Conference on Knowl-
edge Discovery and Data Mining, pp.647–652, 2004.

[16] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir, “Weighted
substructure mining for image analysis,” Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007.

[17] H. Shang, Y. Zhang, X. Lin, and J.X. Yu, “Taming verification
hardness: An efficient algorithm for testing subgraph isomorphism,”
Proc. VLDB Endowment, vol.1, no.1, pp.364–375, 2008.

[18] A. Trémeau and P. Colantoni, “Regions adjacency graph applied to
color image segmentation,” IEEE Trans. Image Process., vol.9, no.4,
pp.735–744, 2000.

[19] W.T. Wipke and D. Rogers, “Artificial intelligence in organic syn-
thesis. SST: Starting material selection strategies. An application of
superstructure search,” Journal of Chemical Information and Com-
puter Sciences, vol.24, no.2, pp.71–81, 1984.

[20] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” Proc. IEEE International Conference on Data Mining,
pp.721–724, 2002.

[21] D. Yuan, P. Mitra, and C.L. Giles, “Mining and indexing graphs
for supergraph search,” Proc. VLDB Endowment, vol.6, no.10,
pp.829–840, 2013.

[22] S. Zhang, M. Hu, and J. Yang, “TreePi: A novel graph index-
ing method,” Proc. International Conference on Data Engineering,
pp.966–975, 2007.

[23] S. Zhang, J. Li, H. Gao, and Z. Zou, “A novel approach for efficient
supergraph query processing on graph databases,” Proc. Interna-
tional Conference on Extending Database Technology, pp.204–215,
2009.

[24] P. Zhao, J.X. Yu, and P.S. Yu, “Graph Indexing: Tree + Delta >=
Graph,” Proc. International Conference on Very Large Data Bases
(VLDB), pp.938–949, 2007.

[25] G. Zhu, X. Lin, W. Zhang, W. Wang, and H. Shang, “PrefIndex:
An efficient supergraph containment search technique,” Proc. In-
ternational Conference Scientific and Statistical Database Manage-
ment, Lecture Notes in Computer Science, vol.6187, pp.360–378,
Springer, Berlin, Heidelberg, 2010.

[26] Q. Zhu, J. Yao, S. Yuan, F. Li, H, Chen, W. Cai, and Q. Liao,
“Superstructure searching algorithm for generic reaction retrieval,”
Journal of Chemical Information and Modeling, vol.45, no.5,
pp.1214–1222, 2005.

[27] X. Yan, P.S. Yu, and J. Han, “Graph indexing: A frequent structure-
based approach,” SIGMOD Conference, pp.335–3462, 2004.

Shun Imai received the B.S. degree in sci-
ence and technology from Kwansei Gakuin Uni-
versity, Japan, in 2018. He is a master course
student in School of Science and Technology,
Kwansei Gakuin University. He works on the
study of data mining and data engineering.
School of Science and Technology, Kwansei
Gakuin University, 2-1 Gakuen, Sanda, Hyogo,
669-1337 Japan.

Akihiro Inokuchi received the Ph.D. de-
gree in communication engineering from Osaka
University, Japan, in 2004. He is a professor
in School of Science and Technology, Kwan-
sei Gakuin University. He works on the study
of data mining, machine learning, artificial in-
telligence and data engineering. He received
the best paper award from the Journal Award of
Computer Aided Chemistry in 2002, and the in-
centive awards from Japanese Society for Arti-
ficial Intelligence in 2004 and 2008. School of

Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda,
Hyogo, 669-1337 Japan.

http://dx.doi.org/10.1145/1824795.1824796
http://dx.doi.org/10.1145/1247480.1247574
http://dx.doi.org/10.1007/s00778-010-0212-8
http://dx.doi.org/10.1145/2463676.2465300
http://dx.doi.org/10.1007/978-1-4419-6045-0_4
http://dx.doi.org/10.1007/3-540-45372-5_2
http://dx.doi.org/10.1109/icde.2007.367902
http://dx.doi.org/10.1145/502512.502533
http://dx.doi.org/10.1109/icde.2016.7498237
http://dx.doi.org/10.1016/j.cag.2010.06.002
http://dx.doi.org/10.1145/1014052.1014134
http://dx.doi.org/10.1109/cvpr.2007.383171
http://dx.doi.org/10.14778/1453856.1453899
http://dx.doi.org/10.1109/83.841950
http://dx.doi.org/10.1021/ci00042a005
http://dx.doi.org/10.1109/icdm.2002.1184038
http://dx.doi.org/10.14778/2536206.2536211
http://dx.doi.org/10.1109/icde.2007.368955
http://dx.doi.org/10.1145/1516360.1516385
http://dx.doi.org/10.1007/978-3-642-13818-8_26
http://dx.doi.org/10.1021/ci0496402
http://dx.doi.org/10.1145/1007568.1007607

