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GaN-Based Light-Emitting Diodes with Graphene Buffers for Their
Application to Large-Area Flexible Devices

Jitsuo OHTA†,††, Jeong Woo SHON†, Kohei UENO†, Atsushi KOBAYASHI†,
and Hiroshi FUJIOKA†,†††a), Nonmembers

SUMMARY Crystalline GaN films can be grown even on amorphous
substrates with the use of graphene buffer layers by pulsed sputtering depo-
sition (PSD). The graphene buffer layers allowed us to grow highly c-axis-
oriented GaN films at low substrate temperatures. Full-color GaN-based
LEDs can be fabricated on the GaN/graphene structures and they are oper-
ated successfully. This indicates that the present technique is promising for
future large-area light-emitting displays on amorphous substrates.
key words: GaN, graphene, glass, pulsed sputtering deposition

1. Introduction

Group III nitride semiconductors are regarded as promising
materials for optoelectronic devices, and nowadays, high-
efficiency GaN-based light emitting diodes (LEDs) are com-
mercially available [1], [2]. However, applications of GaN-
based LEDs are limited to small devices because their fabri-
cation process is associated with expensive epitaxial growth
by metalorganic vapor phase epitaxy (MOVPE) on single
crystalline substrates, such as sapphire. To address this is-
sue and expand the application field of GaN-based devices,
development of a low-cost epitaxial growth process, such as
sputtering on large-area substrates, is highly desired.

We have recently developed a new thin-film growth
technique called pulsed sputtering deposition (PSD) and
found that it allows us to obtain device-quality GaN
films [3]–[10]. PSD has already attracted considerable at-
tention from industry engineers because its productivity is
considerably higher than that of conventional MOVPE. In
PSD, surface migration of the film precursors is enhanced.
Therefore, the temperature for epitaxial growth is dramati-
cally reduced [6], [7]. It should be noted that the conven-
tional MOVPE growth of GaN films requires high temper-
atures (approximately 11000 ◦C), while we have reported
the successful fabrication of GaN-based LEDs by PSD at a
maximum process temperature of 480 ◦C [7]. The reduced
growth temperature enables us to utilize various large-area
and low-cost substrates, such as glass, which has so far not
been used for GaN growth owing to its thermal and chem-
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ical vulnerability. Glass is inexpensive and state-of-the-art
glass technology can offer roll-to-roll processing of flexi-
ble glass sheets [11]. Hence, fabrication of low-cost flexible
GaN devices on glass may be possible with PSD.

To achieve the crystal growth of GaN films on glass, a
highly oriented crystalline buffer layer should be introduced
between GaN and glass as glass is an amorphous material.
Graphene is one of the most promising materials for such
an application owing to its highly oriented structure and the
availability of large-area sheets [12]–[18]. Additionally, the
layered structure of graphene enables an easy transfer onto
a supporting substrate [19], [20].

In this paper, we review recent progress in PSD pro-
cess for the growth of GaN films on amorphous SiO2 and
fabrication of LEDs.

2. Growth and Characterization of GaN Films

The graphene layers were prepared on Ni sheets by chemi-
cal vapor deposition, followed by transfer onto fused silica
or thermally oxidized SiO2 on Si substrates. The substrates
were cleaned at 600 ◦C for 30 min in vacuum. Further, GaN,
InGaN, and AlN films were grown by PSD. The detailed
growth conditions are described elsewhere [3], [4]. The
grown films were characterized by X-ray diffraction (XRD)
using a Bruker D8 diffractometer and by electron backscat-
ter diffraction (EBSD) using an INCA Crystal EBSD system
(Oxford Instruments). The lattice polarities of the GaN films
were studied via wet chemical etching in a 1.8-M KOH solu-
tion. The optical properties of the GaN films were character-
ized by photoluminescence (PL) measurements using a He–
Cd laser (λ = 325 nm) as an excitation source. Figure 1 (a)
shows a scanning electron microscopy (SEM) image of the
GaN film directly grown on SiO2. The surface was rough
and comprised small grains having sizes of several hundred
nanometers. In contrast, the GaN film with the graphene
buffer layer has a smooth surface, as shown in Fig. 1 (b).
The crystal orientations of the GaN films were investigated
by EBSD measurements. Figure 2 shows the EBSD pole
figures of {0002}GaN and {101̄2}GaN for an 20 μm × 20 μm
area for the GaN films (a) without and (b) with a graphene
buffer layer. The GaN film without the graphene buffer layer
exhibited broad spots and broad ring-shaped patterns in the
{0001} and {101̄2} pole figures, which are attributed to the
formation of polycrystalline films. In contrast, the {0001}
spot for the GaN film with the graphene buffer layer was

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



162
IEICE TRANS. ELECTRON., VOL.E100–C, NO.2 FEBRUARY 2017

Fig. 1 Scanning electron microscopy (SEM) images of GaN films grown
on amorphous SiO2 substrates (a) without and (b) with a graphene buffer
layer [3].

Fig. 2 {0001} and {101̄2} electron backscatter diffraction pole figures for
GaN films on amorphous SiO2 (a) without and (b) with a graphene buffer
layer [3].

Fig. 3 Typical X-ray diffraction (XRD) plot for GaN films on
graphene/SiO2 [4].

sharp, and a clear six-fold rotational symmetry appeared in
the {101̄2} pole figure.

This indicates that the crystalline quality of the GaN
film was drastically improved by the introduction of the
graphene buffer layer, which can probably be attributed to
sufficient epitaxial growth of GaN on the highly oriented
graphene [21]. Figure 3 shows an XRD 2θ/ω plot of the
GaN film with a graphene buffer layer on fused silica. The

Fig. 4 (a) Proportion of Wurtzite phase in GaN films as a function of
growth temperature and (b) photoluminescence spectra of GaN films grown
on graphene with and without AlN interlayers [4].

diffraction peaks at around 26.5◦ and 34.5◦ originate from
the diffraction from graphene {0002} and GaN {0002}, re-
spectively.

The phase purity of GaN films on graphene was inves-
tigated using EBSD phase mapping. The results show that
both wurtzite and zincblende phases exist in the GaN film
grown on graphene at 750 ◦C; however, the proportion of the
wurtzite phase was as low as 55%. In Fig. 4 (a), the wurtzite
phase proportion in GaN films is plotted as a function of
growth temperature. Although the proportion of the wurtzite
phase increased by lowering the growth temperature from
950 ◦C to 650 ◦C, it remained below 65% at 650 ◦C. X-ray
photoelectron spectroscopy measurements detected carbon-
related signals from the GaN films, which indicate the for-
mation of an interfacial layer between GaN and graphene.
Since the inclusion of the zincblende phase in the films ap-
parently caused by interfacial reactions [22], it should be
possible to suppress it by inserting a reaction blocking layer
between GaN and graphene. In this study, we introduced
a 50-nm-thick AlN interlayer as a reaction-blocking layer
before GaN growth on graphene. EBSD phase mapping re-
vealed that with the interlayer, the zincblende phase in the
films was negligible and the proportion of wurtzite phase
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was nearly 100%.
The optical properties of the GaN films were investi-

gated via PL measurements at room temperature (RT). The
GaN films grown without AlN interlayers exhibited three
PL peaks at approximately 3.4, 3.2, and 2.2 eV as shown
in Fig. 4 (b). The luminescence feature at 3.4 eV corre-
sponds to the near-band-edge emission from the wurtzite
GaN phase. The peak at 3.2 eV can be assigned to emission
of zincblende GaN [23], [24]. The broad yellow lumines-
cence peak at 2.2 eV is probably related to Ga vacancies
or carbon impurity contamination [25]. Conversely, GaN
films with AlN interlayers showed a strong near-band-edge
emission from the wurtzite phase with negligible emissions
from the zincblende phase or deep levels. The X-ray rocking
curves of the GaN {0002} diffractions revealed that the AlN
interlayers reduced the XRD full width at half maximum
(FWHM) values from 144 to 37 arcmin. These structural
and optical characterization results indicate that interfacial
reactions can be suppressed and the crystalline quality of
GaN on graphene can be improved by introducing AlN in-
terlayers between the GaN and graphene.

Since the properties of c-plane GaN strongly depend
on crystal polarity, understanding and controlling the polar-
ity of the GaN films on graphene is an important issue. The
lattice polarity of these films was investigated by wet chem-
ical etching in a 1.8-M KOH solution [26]. The SEM im-
age of the chemically etched surface of the GaN film grown
on graphene with an AlN interlayer is shown in Fig. 5 (a).
Etching caused roughening of the GaN surface, indicating
that the GaN film was N-polar. For the fabrication of GaN-
based optoelectronic devices, such as LEDs and transistors,
developing a technique that inverts the polarity of the GaN
films from N- to Ga-polarity is required. Recently, it was
reported that Ga-polar GaN grows on N-polar GaN sub-
strates with the introduction of surface-oxidized AlN thin
films [27]. Mohn et al. have shown that formation of a rhom-
bohedral AlON layer may be able to convert an N-polar sur-
face to a metal-polar one [28]. In the present case of GaN
on AlN/graphene, surface-oxidized AlN layers were formed
before GaN growth by thermal oxidization in air at 200 ◦C.
As revealed by the SEM observations shown in Fig. 5 (b),
the surface morphology of GaN films grown on surface-
oxidized AlN interlayers remained smooth after wet chemi-
cal etching. Such chemical robustness to KOH etching is a
characteristic of Ga-polar GaN; therefore, we concluded that

Fig. 5 SEM images of GaN films on graphene after wet etching:
(a) without and (b) with surface oxidation of AlN interlayers [4].

the GaN polarity had changed from N- to Ga-polarity. The
selection of the polarity of the GaN films on graphene al-
lows us to design high-efficiency GaN-based optoelectronic
devices.

3. Fabrication of LEDs on Amorphous Substrates

To demonstrate the feasibility of fabricating GaN-based
LEDs on glass substrates, we manufactured LED structures
on the AlN/graphene/amorphous SiO2 structures (Fig. 6 (a)).
For the LEDs, 1-μm-thick n-type GaN layers were grown
on the AlN interlayers, followed by the formation of five
periods of [InGaN/GaN] multiple quantum wells (MQWs)
and Mg-doped p-type GaN layers. The thicknesses of the
MQW periodic structure and p-type GaN layer were 70 nm
and 600 nm, respectively. Figure 6 (b) shows the XRD
curves for the sample around the GaN {0002} diffraction
peak. The clear satellite peaks from the MQW structure
indicates the smoothness and abruptness of the heteroint-
erfaces in the MQWs. From the curve fitting of the experi-

Fig. 6 (a) Schematic illustration of the LED structure on glass. (b) XRD
2θ/ω curve and (b) RT-PL spectrum for the LED structure fabricated on
amorphous SiO2 with graphene buffer layer [3].
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Fig. 7 Electroluminescence spectra for green LED structure fabricated
on amorphous SiO2 with a graphene buffer layer for injection currents be-
tween 2.1 and 10.8 mA. (b) Photographs taken during operation of the
LEDs with various proportions of In in the InGaN MQWs [3].

mental XRD curves to the theoretical curves, it was revealed
that the thicknesses of InGaN wells and GaN barriers were
3.1 nm and 8.6 nm, respectively. Figure 6 (c) shows a typi-
cal PL spectrum measured at RT with a 405 nm violet laser
as an excitation source. A green PL emission feature can
be clearly observed with a peak wavelength of 520 nm. We
also performed PL measurements at 13 K. The ratio of the
integrated PL intensity at 13 K to that at 300 K was 7.4%,
which is comparable with the value for conventionally fab-
ricated green LEDs on sapphire substrates [29]. Since this
value is frequently considered to be a rough indicator of the
internal quantum efficiency [30], the PL results indicate that
the optical properties of the GaN films on the amorphous
substrates were not significantly degraded.

Electroluminescence (EL) measurements of the LEDs
were taken after the deposition of Pd/Au and In electrodes
as ohmic contacts on the p- and n-type GaN surfaces, re-
spectively. Figure 7 (a) shows the EL spectra with various
injection currents between 2.1 and 10.8 mA, and thus, nor-
mal operation with reasonable emission spectra. We also
fabricated the blue and red LEDs by altering the proportion
of In in the InGaN MQWs, as shown in Fig. 7 (b).

4. Conclusion

In summary, PSD process for the fabrication of full-color
GaN-based LEDs on amorphous substrates with graphene
buffer layers was reviewed in this paper. Since sputtering is
frequently used in industry, it is an established process that
can be adapted for the fabrication of LEDs on large-area
flexible glass substrates. We believe that the combination
of these techniques paves the way toward developing large-
area flexible GaN-based optoelectronic devices.
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Ahn, B.H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch
graphene films for transparent electrodes,” Nature Nanotech., vol.5,
no.8, pp.574–578, 2010.

[16] K. Chung, C.-H. Lee, and G.-C. Yi, “Transferable GaN layers grown
on ZnO-coated graphene layers for optoelectronic devices,” Science,
vol.330, no.6004, pp.655–657, 2010.

[17] N. Nepal, V.D. Wheeler, T.J. Anderson, F.J. Kub, M.A. Mastro, R.L.
Myers-Ward, S.B. Qadri, J.A. Freitas, S.C. Hernandez, L.O. Nyakiti,
S.G. Walton, K. Gaskill, and C.R. Eddy Jr., “Epitaxial growth of
III-nitride/graphene heterostructures for electronic devices,” Appl.
Phys. Express, vol.6, no.6, 061003, 2013.

http://dx.doi.org/10.1143/jjap.36.5393
http://dx.doi.org/10.1126/science.281.5379.956
http://dx.doi.org/10.1038/srep05325
http://dx.doi.org/10.7567/apex.7.085502
http://dx.doi.org/10.1063/1.2206883
http://dx.doi.org/10.1143/apex.2.011003
http://dx.doi.org/10.1063/1.4864283
http://dx.doi.org/10.1063/1.4876449
http://dx.doi.org/10.1038/srep03951
http://dx.doi.org/10.1063/1.4829478
http://dx.doi.org/10.1007/s00339-014-8468-2
http://dx.doi.org/10.1038/am.2012.45
http://dx.doi.org/10.1126/science.1171245
http://dx.doi.org/10.1038/nnano.2010.132
http://dx.doi.org/10.1126/science.1195403
http://dx.doi.org/10.7567/apex.6.061003


OHTA et al.: GAN-BASED LIGHT-EMITTING DIODES WITH GRAPHENE BUFFERS FOR THEIR APPLICATION TO LARGE-AREA FLEXIBLE DEVICES
165

[18] T. Araki, S. Uchimura, J. Sakaguchi, Y. Nanishi, T. Fujishima,
A. Hsu, K.K. Kim, T. Palacios, A. Pesquera, A. Centeno, and A.
Zurutuza, “Radio-frequency plasma-excited molecular beam epitaxy
growth of GaN on graphene/Si(100) substrates,” Appl. Phys. Ex-
press, vol.7, no.7, 071001, 2014.

[19] S. Nakagawa, T. Tabata, Y. Honda, M. Yamaguchi, and H. Amano,
“GaN nanowires grown on a graphite substrate by radio frequency
molecular beam epitaxy,” Jpn. J. Appl. Phys., vol.52, no.8S, 08JE07,
2013.

[20] P. Gupta, A.A. Rahman, N. Hatui, M.R. Gokhale, M.M. Deshmukh,
and A. Bhattacharya, “MOVPE growth of semipolar III-nitride
semiconductors on CVD graphene,” J. Cryst. Growth, vol.372,
pp.105–108, 2013.

[21] A. Ishii, T. Tatani, H. Asano, and K. Nakada, “Computational study
for growth of GaN on graphite as 3D growth on 2D material,” Phys.
Status Solidi C, vol.7, no.2, pp.347–350, 2010.

[22] F. Yuan, B. Liu, Z. Wang, B. Yang, Y. Yin, B. Dierre, T. Sekiguchi,
G. Zhang, and X. Jiang, “Synthesis, microstructure, and cathodo-
luminescence of [0001]-oriented GaN nanorods grown on con-
ductive graphite substrate,” Appl. Mater. Interfaces, vol.5, no.22,
pp.12066–12072, 2013.

[23] S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D.J. Smith, W.J.
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