IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Regular Section
Low-Temperature Polycrystalline-Silicon Thin-Film Transistors Fabricated by Continuous-Wave Laser Lateral Crystallization and Metal/Hafnium Oxide Gate Stack on Nonalkaline Glass Substrate
Tatsuya MEGUROAkito HARA
Author information
JOURNAL RESTRICTED ACCESS

2017 Volume E100.C Issue 1 Pages 94-100

Details
Abstract

Enhancing the performance of low-temperature (LT) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) requires high-quality poly-Si films. One of the authors (A.H.) has already demonstrated a continuous-wave (CW) laser lateral crystallization (CLC) method to improve the crystalline quality of thin poly-Si films, using a diode-pumped solid-state CW laser. Another candidate method to increase the on-current and decrease the subthreshold swing (s.s.) is the use of a high-k gate stack. In this paper, we discuss the performance of top-gate CLC LT poly-Si TFTs with sputtering metal/hafnium oxide (HfO2) gate stacks on nonalkaline glass substrates. A mobility of 180 cm2/Vs is obtained for n-ch TFTs, which is considerably higher than those of previously reported n-ch LT poly-Si TFTs with high-k gate stacks; it is, however, lower than the one obtained with a plasma enhanced chemical vapor deposited SiO2 gate stack. For p-ch TFTs, a mobility of 92 cm2/Vs and an s.s. of 98 mV/dec were obtained. This s.s. value is smaller than the ones of the previously reported p-ch LT poly-Si TFTs with high-k gate stacks. The evaluation of a fabricated complementary metal-oxide-semiconductor inverter showed a switching threshold voltage of 0.8 V and a gain of 38 at an input voltage of 2.0 V; moreover, full swing inverter operation was successfully confirmed at the low input voltage of 1.0 V. This shows the feasibility of CLC LT poly-Si TFTs with a sputtered HfO2 gate dielectric on nonalkaline glass substrates.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top