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Power Transfer Theory on Linear Passive Two-Port Systems

Takashi OHIRA†a), Fellow

SUMMARY This paper theoretically revisits linear passive two-port
systems from the viewpoint of power transfer. Instead of using the conven-
tional S21 magnitude, we propose generalizing the kQ product as a figure
of merit for two-port performance evaluation. We explore three examples
of power transfer schemes, i.e. inductive, capacitive, and resistive channels.
Starting from their voltage-current equations, the kQ formula is analytically
derived for each scheme. The resultant formulas look different in appear-
ance but are all physically consistent with ωM/R, which stems from the
original definition of kQ product in a primitive transformer. After compre-
hensively learning from the three examples, we finally extend the theory to
a black-box model that represents any kind of power transfer channel. In
terms of general two-port Z-parameters, useful mathematical expressions
are deduced for the optimum load, input impedance, and maximum power
transfer efficiency. We also supplement the theory with helpful graphics
that explain how the generalized kQ behaves as a function of the circuit
parameters.
key words: extended ESR, generalized kQ, maximum efficiency

1. Introduction

Power transfer is an indispensable technology for every kind
of electronic device since they cannot work without supply-
ing voltage and current. We have to deliver some energy
to them, which may be done by DC cable connection or RF
wireless coupling means. This paper focuses upon the chan-
nel (either cable or wireless) from the power source to where
the power is needed. The channel is usually composed of
an input port, an output port, and linear passive elements
such as capacitors, inductors, transformers, and transmis-
sion lines. As an option, the channel may incorporate non-
reciprocal components such as isolators and circulators. For
some wireless applications, even transmitting and receiving
antennas over a free space may be involved in the channel.
In any case, the key point we exploit in this paper is that the
channel can always be regarded as a linear passive two-port
system. The prime concern of power transfer engineers is
how much power we can deliver through the channel to the
destination or load. As we increase the input power level,
the channel heats up due to the power dissipation in the pas-
sive components. Subtracting the dissipated power, the rest
of the input power is delivered to the load. The delivered
power percentage out of the input power is called power
transfer efficiency.

In the development of power transfer systems, we eval-
uate the designed channel structures by their efficiency. If
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it does not meet the given specification or goal, we need
to reconsider the structure. This procedure should be re-
peated over and over again in order to pursue the max-
imum available performance under some provided con-
straints. The modern electromagnetic-field simulator run-
ning on a high-speed computer helps this repetitional work.
The engineer just programs the software to seek the possi-
ble structure while adjusting its physical shape and dimen-
sion that finally yields the expected channel performance.
The electromagnetic-field simulators usually evaluate two-
port systems in S-parameters. For example, S21 implies the
signal transfer function from port 1 to port 2 [1]. One may
thus think that the above optimization could be automati-
cally done on a simulator by maximizing the magnitude of
S21. Actually, RF amplifiers and filters are designed with
respect to S-parameters as objective functions for their cir-
cuit optimization [2]. However, we should be aware that S-
parameters are valid only when the load impedance is given,
e.g. 50 ohm in most cases. For any other load impedance,
the S-parameters can be translated by matrix manipula-
tion, but we still need to know at least what impedance
is to be used for the source and load before we trans-
late the S-parameters. Power transfer engineering, in con-
trast, often needs to create the channel before we know the
load impedance. In other words, we can adjust the load
impedance afterward in accordance with the system so as
to pursue as high performance as possible. Even if the load
impedance is specified before we start the design of the sys-
tem, we should be able to develop an impedance match-
ing circuit to be inserted between the system and the load.
Since we can adjust the matching impedance, this is equiv-
alent to the fact that the system can be loaded with any
impedance we specify. This is the essential reason why the
usual S-parameter analysis is insufficient for power transfer
engineering.

On this background, this paper theoretically character-
izes linear passive two-port systems focusing on their power
transfer performance. Instead of S-parameters, the herein
presented theory is based on Z-parameters, which are in-
variant to source and load impedances. We first explore
two fundamental examples implying inductive and capaci-
tive channels. Deduced results are well explained in words
of coupling coefficient k and quality factor Q. We next con-
sider a channel consisting of resistors. It does not store re-
active energy inside at all, and therefore Q no longer makes
sense in nature. Even so, the result finds that the product
of k and Q properly works for efficiency estimation. We
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finally visit a black-box model that totally covers the above
three examples. To make the formulas versatile while keep-
ing their analytic continuity, we propose two comprehensive
concepts i.e. extended ESR and generalized kQ. Importing
them into formulation, we reach quite an elegance of maxi-
mum power transfer efficiency expression applicable to any
type of linear passive two-port system.

2. Symmetrical Transformer

2.1 System Configuration

Consider a symmetrical structure composed of twin coils
magnetically coupled to each other. This structure is called
a 1 : 1 transformer and is also known as an inductive coupler
for wireless power transfer [3]. The 1 : 1 transformer may
be too primitive for use in practice but is good to begin our
study with. The system is described as the circuit scheme
shown in Fig. 1, where L and M stand for self and mutual
inductances of the coils. They have power losses due to
ohmic dissipation in their wires and possibly due to electro-
magnetic wave radiation from them to air. These losses are
altogether represented by R inserted in series to each coil,
which is usually called equivalent series resistance (ESR).
The transformer is excited at port #1 by a sinusoidal voltage
source with internal impedance zs operating at angular fre-
quency ω. Port #2 is terminated by a load having impedance
r + jx. Keep in mind that R > 0 and r > 0 for passiveness.

2.2 Power Transfer

Voltages [v1, v2] and currents [i1, i2] observed at the two
ports are linearly related as

v1 = (R + jωL)i1 − jωMi2 (1)

v2 = jωMi1 − (R + jωL)i2 (2)

where j stands for imaginary unit, and ω denotes angular
frequency of the power source. Be careful about the negative
polarity on i2 because of the outgoing current direction at
port #2. Ohm’s law on complex impedance leads to another
relation

v2 = (r + jx)i2 (3)

also at port #2. When i1 is given, the above three equations
are solved as

v1 =

{
R + jωL +

ω2M2

R + r + j(ωL + x)

}
i1 (4)

Fig. 1 Symmetric transformer circuit scheme

v2 =
jωM(r + jx)

R + r + j(ωL + x)
i1 (5)

i2 =
jωM

R + r + j(ωL + x)
i1 (6)

Putting these solutions into the definition of power transfer
efficiency, we get

η =
P2

P1
=
�{v2i∗2}
�{v1i∗1}

=
rω2M2

R(R + r)2 + R(ωL + x)2 + (R + r)ω2M2
(7)

where� designates the real part of a complex number. This
formula tells us that efficiency η depends not only on the
transformer parameters L, M, and R but also on the load
impedance r and x.

2.3 Optimum Load

Looking at Eq. (7), let us seek optimum r and x that maxi-
mize η while assuming that the transformer parameters are
given a priori. Assuming that variables r and x are indepen-
dent to each other, we sweep x first because it appears only
in the second term of the denominator. Remembering R > 0
and r > 0, the denominator is minimized when x is adjusted
to its optimum

xopt = −ωL (8)

so that the second term becomes zero. Reflecting it back
into the above denominator, we get

η =
rω2M2

(R + r)(R2 + ω2M2 + rR)
(9)

We then sweep the other variable r. This is a little bit of a
complicated problem because r appears not only in the de-
nominator but also in the numerator. An algebraic operation
rewrites Eq. (9) into

η =
ω2M2

R

(√
r −
√

R2 + ω2M2

√
r

)2
+

(
R +
√

R2 + ω2M2
)2

(10)

Remembering R > 0 and r > 0 again, all the three terms
are non-negative. The last variable r stays only in the first
term of denominator while other terms are all constant. The
variable term is minimized when r is adjusted to its optimum

ropt =
√

R2 + ω2M2 (11)

Reflecting it back into the above denominator again, η is
finally maximized as

ηmax =
ω2M2

(
R +
√

R2 + ω2M2
)2

(12)
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Fig. 2 Two similar right triangles to define ρ and 2θ

2.4 kQ Product

From a physical knowledge on transformers and lossy in-
ductors, we learn

k =
M
L
, Q =

ωL
R

∴ kQ =
ωM

R
(13)

where k and Q stand for coupling coefficient and quality fac-
tor. Substituting Eq. (13) into (12), we obtain

ηmax =
k2Q2

(
1 +

√
1 + k2Q2

)2
(14)

What is quite significant is that ηmax is expressed in terms
of only one parameter, namely kQ product. However, the
formula still looks complicated and not so straightforward
to see how it behaves as a function of kQ. To provide clarity
with this equation, we define

ρ =
√

1 + k2Q2 (15)

as a convenient substitute. Interpreting Eqs. (11) and (15) in
geometry, ρ and ropt imply the parallel hypotenuses of two
similar right triangles displayed in Fig. 2. The above defined
ρ enables us to rewrite Eq. (14) as

ηmax =
ρ − 1
ρ + 1

(16)

This is one of the most prominent outcomes of this work.
Also, for quick inverse verification, we append

ρ =
1 + ηmax

1 − ηmax
(17)

kQ =
√
ρ2 − 1 (18)

Even though we started from a transformer [3], it is worth
noting that Eqs. (14) through (18) are not limited to this
particular scheme but also valid for various kinds of power
transfer systems [4]–[6].

2.5 Angular Expression

As an alternative way for the mathematical expression, we
define 2θ as designated in Fig. 2. This graphic finds trigono-
metrical relations

kQ = tan 2θ (19)

ρ = sec 2θ (20)

Applying them to Eq. (6), the current ratio under the opti-
mum load condition specified by Eqs. (8) and (11) translates
into

i2
i1
=

jωM
R + ropt + j(ωL + xopt)

=
jωM

R +
√

R2 + ω2M2

=
jkQ

1 + ρ
=

j sin 2θ
1 + cos 2θ

= j tan θ (21)

The tangent does not exceed unity for θ ranging from 0 to
45 degrees. This is geometrically explained by the right tri-
angle staying in shape. Also note that the pure imaginary
number means the output current running 90 degrees faster
(or 270 degrees slower) than the input in phase. In a similar
manner, the maximum efficiency translates into

ηmax =
sec 2θ − 1
sec 2θ + 1

= tan2 θ (22)

from Eq. (16). It is physically persuasive to be exactly equal
to the modulus square of the current ratio.

2.6 Input Impedance

Lastly we concern ourselves with the input impedance of the
transformer. It can be derived as

zin =
v1

i1
= R + jωL +

ω2M2

R + r + j(ωL + x)
(23)

from Eq. (4). Especially when we employ the optimum load
given in Eqs. (8) and (11), the above impedance calculates

zin = R + jωL +
ω2M2

R +
√

R2 + ω2M2

=
√

R2 + ω2M2 + jωL (24)

Once zin is known, we can choose the power source
that matches this transformer. To exhaustively squeeze
the source up to its last piece of power, we should im-
pose the conjugate matching condition on the impedance.
From Eqs. (8), (11), and (24), we find the optimum source
impedance

zs = z∗in =
√

R2 + ω2M2 − jωL

= ropt + jxopt (25)

This result leads us to conclude that the source works best
when it is designed to have the same impedance as the opti-
mum load impedance [7], [8].

Note that actual transformers do not always have sym-
metrical structures. They also suffer from some parasitic
effects such as stray capacity between wire turns of the
coil [9]. It is therefore unrigorous to model them with only
primitive elements like L and M. In that case, the formu-
las derived in this chapter must be somewhat modified by
reflecting practical effects. To address these problems, we
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have to wait for the general two-port modeling and formu-
lation to appear in chapter 5.

3. π-Shape Capacitive Network

3.1 System Configuration

The second example we consider consists of three capacitors
as shown in Fig. 3. Conductance G physically implies the
presence of possible but usually undesired current leakage
between the electrodes at each port. The load is symbolized
by g and b in the admittance domain. Taking these param-
eters into account, the port voltages and currents behave so
as to satisfy three circuit equations

i1 = {G + jω(C1 +C2)}v1 − jωC2v2 (26)

i2 = jωC2v1 − {G + jω(C1 +C2)}v2 (27)

i2 = (g + jb)v2 (28)

We find that they have exactly the same fashions as Eqs. (1)
to (3) except for voltage-current replacement at each port,
i.e. v1 ⇔ i1 and v2 ⇔ i2.

3.2 Duality Theorem

Thanks to the duality of circuit impedance and admittance,
we do not have to repeat the formulation done in the previ-
ous chapter. All we need is just to replace the parameters
as

L⇒ C1 +C2, M ⇒ C2, R⇒ G

r ⇒ g, x⇒ b (29)

in the formulas that we assumed and deduced for the sym-
metrical transformer. For example, we describe G > 0 and
g > 0 instead of R > 0 and r > 0.

3.3 Optimum Load

Applying Eq. (29) to Eqs. (8) and (11), we find

bopt = −ω(C1 +C2)

gopt =

√
G2 + ω2C2

2 (30)

for the optimum load susceptance and conductance.

3.4 Maximum Efficiency

When the above optimum load is employed, the voltage

Fig. 3 π-shape capacitive network

transfer ratio and kQ product result in

v2

v1
= j tan θ (31)

k =
C2

C1 +C2
, Q =

ω(C1 +C2)
G

∴ kQ =
ωC2

G
= tan 2θ (32)

We consequently reach the triangle hypotenuse length,
maximum power transfer efficiency, and optimum source
impedance, respectively as

ρ =
√

1 + k2Q2 = sec 2θ (33)

ηmax =
ω2C2

2(
G +

√
G2 + ω2C2

2

)2

=
ρ − 1
ρ + 1

= tan2 θ (34)

zs = z∗in =
1

gopt + jbopt
(35)

4. T-Shape Resistive Network

4.1 System Configuration

The third example we consider consists of three resistors
as shown in Fig. 4. Unlike inductors and capacitors, resis-
tors are free of reactive energy [10]. We thus characterize
the system by employing real-number voltages and currents.
A dc battery is assumed for the power source. The load
impedance does not need reactance either. This simple con-
figuration gives us the essential sense of power transfer.

4.2 Power Transfer

From the circuit diagram given in Fig. 4, Kirchhoff’s voltage
law leads to three equations

v1 = (R1 + R2)i1 − R2i2 (36)

v2 = R2i1 − (R2 + R3)i2 (37)

v2 = ri2 (38)

Solving them for the voltages and currents, and then putting
the results into the dc power transfer efficiency, we obtain

η =
P2

P1
=

v2i2
v1i1
=

(AC − B)r
(Ar + B)(r +C)

(39)

where A, B, and C are locally defined polynomials

Fig. 4 T-shape resistive network
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A = R1 + R2 (40)

B = R1R2 + R1R3 + R2R3 (41)

C = R2 + R3 (42)

for appearance neatness.

4.3 Optimum Load

To find the optimum load that maximizes the efficiency, we
rewrite Eq. (39) as

η =
AC − B

Ar +
BC
r
+ AC + B

=
AC − B(√

Ar −
√

BC
r

)2
+

(√
AC +

√
B

)2
(43)

The variable r appears only in the first term of the denom-
inator, while all other terms are constant. The first term is
minimized by tuning r in

ropt =

√
BC
A

(44)

Putting it back into Eq. (43), the efficiency reaches its peak

ηmax =
AC − B(√

AC +
√

B
)2
=

√
AC − √B√
AC +

√
B

(45)

Subsequently, the input resistance becomes

rin =

√
AB
C

(46)

when we employ the optimum load.

4.4 Equivalent kQ Product

Recalling the physical meaning of Q, it does not basically
work for resistive systems. This is because resistors have
neither reactive stored energy nor any frequency slope at
all [4], [5]. Even if it is the case, we can metaphysically
exploit the kQ formula derived in chapter 2. This is actually
done by redefining

ρ =

√
AC
B

(47)

kQ =
R2√

R1R2 + R1R3 + R2R3
(48)

so that Eq. (45) becomes consistent with Eqs. (14) to (18).
Comparing this kQ with its original definition introduced in
Eq. (13), we find out the replacement

ωM ⇒ R2 (49)

R⇒ √
R1R2 + R1R3 + R2R3 (50)

These two quantities could therefore be called mutual resis-
tance and extended ESR, respectively.

5. General Black Box

5.1 System Configuration

For the sake of establishing a unified theory that covers the
three examples discussed in previous chapters, consider a
black-box model shown in Fig. 5. The box may contain
any kind of linear passive circuit component, which may
be lumped- or distributed-constant elements, planar circuits,
waveguides, or even aerial structures [11]. The internal
topology of the box does not matter, but we just need its
two-port parameters to construct the theory.

5.2 Circuit Equations

Even without knowing the box’s internal information, we
can just observe its Z-parameters

Z11 = R11 + jX11, Z12 = R12 + jX12

Z21 = R21 + jX21, Z22 = R22 + jX22 (51)

by looking into the box from its two ports. Once we have
these parameters, the voltage-current relations are formu-
lated as

v1 = Z11i1 − Z12i2 (52)

v2 = Z21i1 − Z22i2 (53)

along with the loading condition

v2 = zi2 = (r + jx)i2 (54)

at port #2.

5.3 Power Transfer

Solving the above three equations for the voltages and cur-
rents, and substituting them into the power transfer effi-
ciency, we obtain

η =
P2

P1
=
�{v2i∗2}
�{v1i∗1}

=

r

∣∣∣∣∣∣
Z21

z + Z22

∣∣∣∣∣∣
2

�
{

Z11 − Z12Z21

z + Z22

}

=
|Z21|2

R11r +
A
r
+ Σ + Δ

(55)

Fig. 5 Two-port black box for general formulation
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where the local polynomials

Σ = R11R22 + X12X21 (56)

Δ = R11R22 − R12R21 (57)

A = R11x2 + Bx +C (58)

B = 2R11X22 − R12X21 − R21X12 (59)

C = (R11R22 − R12R21 + X12X21)R22

+ (R11X22 − R12X21 − R21X12)X22 (60)

are defined for arithmetic convenience. Note that, for any
passive system, none of the four terms in the denominator
of Eq. (55) can be negative. Particularly for the second term,
we assume that A ≥ 0 for any x. This is proved by contra-
diction as follows. If A were negative for some x, the de-
nominator could be nullified for that x with some positive r,
and thus the efficiency would exceed unity, which can never
be true in practice.

5.4 Optimum Load

In the same way as we have done in Sect. 2.3, let us seek
optimum r and x that maximize η while assuming that the
box’s Z-parameters are given a priori. Also assuming that
variables r and x are independent to each other, we sweep x
first because it appears only in the term of A. Recalling that
r > 0, the right-hand side of Eq. (55) is maximized when we
adjust x so as to minimize A. Since Eq. (58) can be rewritten
as

A = R11

(
x +

B
2R11

)2
− B2

4R11
+C (61)

the optimum x is found as

xopt = − B
2R11

=
R12X21 + R21X12

2R11
− X22 (62)

Putting it back into Eq. (61), A reaches its minimum

Amin = − B2

4R11
+C =

ΣΔ − Θ2

R11
(63)

where

Θ =
1
2

(R12X21 − R21X12) (64)

is called impedance exchange term in this paper. When A is
minimized, Eq. (55) becomes

η =
|Z21|2

R11r +
Amin

r
+ Σ + Δ

(65)

Being finished with x now, we next sweep r to further min-
imize the denominator. It is transformed into a complete
square for r as

η =
|Z21|2(√

R11r −
√

Amin

r

)2
+ 2

√
R11Amin + Σ + Δ

(66)

From the first term of the denominator, the optimum solu-
tion for r is found as

ropt =

√
Amin

R11
=

√
ΣΔ − Θ2

R11
(67)

Putting it back into Eq. (66) and with help of Eq. (63), we
obtain the maximum efficiency

ηmax =
|Z21|2

Σ + Δ + 2
√
ΣΔ − Θ2

(68)

Putting Eqs. (62) and (67) into Eqs. (52) to (54), and then
solving them for v1/i1, we find the input impedance

zin = rin + jxin⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
rin =

√
ΣΔ − Θ2

R22

xin = X11 − R12X21 + R21X12

2R22

(69)

under the optimum load condition.

5.5 Reciprocity

The black box being considered in this chapter consists of
linear passive elements. In addition to this assumption, prac-
tical power transfer systems usually exhibit reciprocity be-
tween the two ports as well. This is because most of the
linear passive elements have this property except for special-
purpose components such as isolators and circulators [12].

In words of Z-parameters given by Eq. (51), reciprocity
is defined as⎧⎪⎪⎪⎪⎩ R12 = R21

X12 = X21
(70)

This brings efficacious simplicity to every equation derived
in the previous section. Saliently, Eq. (64) goes to zero by
reciprocity. Accordingly, the impedance exchange term Θ
vanishes from all equations after that. Among them, we pick
out some significant formulas below.

The optimum load impedance to maximize the power
transfer efficiency results in

zopt = ropt + jxopt⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ropt =

√
ΣΔ

R11

xopt =
R12X21

R11
− X22

(71)

Under this optimum loading condition, the black box ex-
hibits its input impedance

zin = rin + jxin⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
rin =

√
ΣΔ

R22

xin = X11 − R12X21

R22

(72)

and achieves its maximum efficiency
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Fig. 6 Graphical visualization of Eqs. (74) and (76)

ηmax =

√
Σ − √Δ√
Σ +
√
Δ

(73)

This formula is so elegant that everyone can keep it in mind
with ease. All we need to do is just recall Σ and Δ from
Eqs. (56) and (57).

To comprehend Eq. (73) from the viewpoint of physics,
we exploit the kQ concept again that appeared for the trans-
former scheme in chapter 2. For this purpose, we metaphys-
ically redefine

kQ =
|Z21|√
Δ

(74)

Employing this definition, Eq. (73) is consistently repre-
sented by

ηmax =
ρ − 1
ρ + 1

(75)

where

ρ =
√

1 + (kQ)2 (76)

They are exactly identical to Eqs. (15) and (16). Namely,
Eq. (74) should be called generalized kQ.

To provide a helpful supplement to our comprehension,
Eqs. (74) and (76) are visualized into graphics as shown in
Fig. 6. The two similar right triangles notify us of trigono-
metrical relations

kQ = tan 2θ = ρ sin 2θ (77)

ρ = sec 2θ =

√
Σ

Δ
(78)

We find that they are consistent extensions from Eqs. (19)
and (20) to the general black box under the reciprocity as-
sumption. One more instructive visualization is shown in
Fig. 7 from Eqs. (75) and (77). The two right triangles coop-
eratively enable us to see how ηmax goes up as kQ increases.

Note that the generalized kQ is a new concept, not
just the product of conventional k and Q. In other words,
Eq. (74) covers not only Eqs. (13) and (32) but also is useful
for the complicated schemes where it cannot be factorized
into k and Q. We thus should respect the generalized kQ as
a unified figure of merit for power transfer engineering [5].

To get even more familiar with the generalized kQ, we
compare Eq. (74) with the original kQ product introduced

Fig. 7 Graphical visualization of Eqs. (75) and (77)

for the transformer in Eq. (13). Looking at the two formulas
with a focus on each numerator and denominator separately,
we notice the replacement

ωM ⇒
√

R2
21 + X2

21 (79)

R⇒ √
R11R22 − R12R21 (80)

in the same way as taken for Eqs. (49) and (50). We hereby
find out that the mutual inductance is just an instance of
trans-impedance magnitude. The equivalent series resis-
tance (ESR) of a coil is just a dimensional reduction from
a two-port resistance matrix. Conversely, the above square
root should be called extended ESR.

6. Conclusion

Linear passive two-port systems were theoretically revisited
from the aspect of power transfer. As a main concern in
power engineering, the maximum power transfer efficiency
was formulated in terms of two-port Z-parameters. On the
journey to this formulation, we presented the concepts of
extended ESR and generalized kQ. Featuring these new
concepts, the established theory covers transformers, induc-
tive, capacitive, and resistive networks, and any other linear
passive two-port system. Being invariant to loading con-
ditions, the generalized kQ works as a versatile figure of
merit for use in the design and evaluation of power trans-
fer systems. This also enables us to impartially compare
the designed system with its alternatives even before know-
ing their loading conditions. Once a high-kQ system is
obtained, we can choose the optimum power source and
load, or design the optimum impedance matching circuits
to connect the system with specified source and load. For
this purpose, we also theoretically deduced the optimum
load and input impedance formulas. Since the formulas
created in this paper are mathematically explicit and thus
ready to use in computer-aided design and structure opti-
mization, they will significantly contribute to sophisticated
power transfer engineering and future system developments
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involving distributed-constant elements such as transmis-
sion lines, spatial propagation modes between antennas, and
networks with multiple sources and loads [5], [6], [11].
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