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SUMMARY Integrated InP polarization converters based on half-ridge
structure are studied numerically. We demonstrate that the fabrication tol-
erance of the half-ridge structure can be extended significantly by intro-
ducing a slope at the ridge side and optimizing the thickness of the residual
InGaAsP layer. High polarization conversion over 90% is achieved with
the broad range of the waveguide width from 705 to 915 nm, correspond-
ing to a factor-of-two or larger improvement in the fabrication tolerance
compared with that of the conventional polarization converters. Finally we
present a simple fabrication procedure of this newly proposed structure,
where the thickness of the residual InGaAsP layer is controlled precisely
by using a thin etch-stop layer.
key words: Polarization converters, fabrication tolerances, monolithic in-
tegration, polarization-multiplexing, photonic integrated circuits

1. Introduction

The number of optical components and the complexity in
the optical communication systems have been increasing
for adapting to the expansion of the channel capacity in
the wavelength division multiplexing (WDM) and more ad-
vanced coherent modulation formats. Polarization division
multiplexing (PDM) has been recently applied in the opti-
cal transmission links as a powerful technique to double the
spectral efficiency. Meanwhile, photonic integrated circuits
(PICs) have been demonstrated to reduce the cost and size
of such highly complicated optical transceivers. There has
been a growing interest in realizing compact and low-cost
PDM optical transceivers by using the PICs [1]–[4]. In or-
der to manipulate the dual polarization states inside the PICs
and realize fully integrated PDM-PICs, integrated polariza-
tion converters (PCs) are essential.

Various types of PCs have been demonstrated to date;
those based on periodic loaded waveguides [5], micro-
bended waveguides [6], adiabatic waveguides [7]–[10], and
asymmetric waveguides [11]–[19]. The asymmetric PCs are
suitable for monolithic integration with InP photonic de-
vices as well as their short operating length and relatively
small sensitivity against the deviation of the wavelength and
the temperature. However, integration of the InP PCs with
laser diodes (LDs) and other active components has been
challenging. First, most asymmetric PCs are fabricated on
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rib waveguide, while other components in InP-PICs usually
have ridge structures. Such structural mismatch often leads
to large coupling losses and requires relatively complicated
fabrication procedures which may not suit the generic fab-
rication technologies [20]. Another important issue is the
strict fabrication tolerances of these types of PCs, where
both the waveguide width and lithographic alignment have
to be controlled within typically 100-nm accuracy. In this
respect, a simple PC with a ridge-like waveguide structure
having large fabrication tolerances is highly desired.

We have recently proposed and experimentally demon-
strated a half-ridge InP/InGaAsP PC, which particularly
suits the integration with LDs because of its ridge-like struc-
ture and a simple self-aligned fabrication process [21], [22].
More than 96% polarization conversion has been experi-
mentally obtained with the PC length of 150 µm and the
wide wavelength range covering the entire C-band.

In this paper, we numerically study the efficiency and
the fabrication tolerances of this InP half-ridge PC. We
demonstrate that a residual InGaAsP layer with a slope at
the ridge side plays a crucial role in extending the tolerance
against the deviation of the waveguide width. A factor-of-
two improvement in fabrication tolerance is obtained with
the optimized design. In addition, we propose a novel design
of the layerstack with a thin etch-stop layer for controlling
the thickness of the residual InGaAsP layer precisely. We
then propose a simple fabrication procedure for the newly
proposed half-ridge PC with an improved design.

2. Device structure and numerical model

Figure 1 shows the structure of the InP half-ridge PC, hav-
ing an asymmetric cross section: One side of the waveguide
has a shallow ridge structure with a residual InGaAsP core
layer and the other has a deeply-etched high-mesa structure.

Fig. 1 (a) Schematic of the integrated half-ridge PC, (b) Cross-section
image of the fabricated PC [22].
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Fig. 2 Polarization conversion inside asymmetric waveguides.

By optimizing the waveguide width w and the residual core
thickness d (see Fig. 2), this asymmetric waveguide oper-
ates as a birefringent medium with the principal axis ro-
tated by ±45◦. In such a case, as shown in Fig. 2, a hori-
zontally polarized, transverse electric (TE) mode input light
excites the two eigenmodes in the PC with an equal mag-
nitude, which would recombine into a vertically polarized,
transverse magnetic (TM) mode after propagating the half-
beat length [Lπ = π/ (β1 − β2), where βm is the propagation
constant of mode m in the half-ridge PC].

The eigenmodes in a given cross-sectional structure of
the PC are calculated by using a full-vector finite difference
method [23]. As a measure of the angle of equivalent princi-
pal axes of the eigenmodes, we define the rotation parameter
R by

R ≡
"
|Hx|2 dxdy

/" ∣∣∣Hy∣∣∣2 dxdy (1)

where Hx and Hy are the x- and y-components of the mag-
netic fields of the eigenmode, respectively. This parameter
approximately expresses a rotation angle θ of the principal
axes of the eigenmodes in waveguides as

R ≈ |Hx|2∣∣∣Hy∣∣∣2 = 1/ tan2 θ. (2)

The maximum conversion ratio Cmax is approximately ex-
pressed by R as

Cmax = sin2 2θ ≈ 4R

(1 + R)2
. (3)

A net TE-to-TM conversion ratio C is expressed by using
Cmax and Lπ as

C = Cmax ·
1
2

{
1 − cos

(
π

Lπ
LPC

)}
(4)

where LPC is the length of the PC section. The TE-to-TM
conversion ratio follows Eq. 4, a sinusoidal function of LPC

as shown in Fig. 2.
In our previous demonstration [22], the fabricated de-

vice had a residual slope at the ridge side of the InGaAsP
core as shown in Fig. 1(b), which was due to a slight
anisotropic etching during the Cl2/Ar dry-etching process.
In order to allow direct comparison with the actual devices,

Fig. 3 Cross-section structure of the half-ridge PC: (a) Type 1 has a rect-
angular ridge side. (b) Type 2 has a 54.7◦ residual slope on the InGaAsP
core which reflects the structure of the actual device shown in Fig. 1.

we assume two types of half-ridge PCs in our calculation.
They have different cross-sectional structures as shown in
Fig. 3. Type 1 has a rectangular etching profile at the ridge
side as designed initially [21]. On the other hand, Type 2
has a 54.7◦ slope corresponding to (111) crystal plane of the
InGaAsP, which reflects the actual fabricated device [22].
The eigenmodes in each structure are calculated for various
values of the width of the PC w and the residual InGaAsP
thickness d at the ridge side. The thicknesses of the InP top
cladding, the InGaAsP entire core, and the overetched depth
of the InP bottom cladding are fixed to be 1.0 µm, 0.50 µm,
and 0.50 µm, respectively. The refractive indices of InP, In-
GaAsP, and background (SiO2) are set to 3.17, 3.40, and
1.45, respectively. The wavelength is set to 1.55 µm during
the simulation.

3. Numerical results

Figures 4 and 5 show the calculated Cmax and Lπ as a func-
tion of w and d for Type 1 and Type 2, respectively. In both
types, a conversion ratio of more than 99% is obtained by
selecting w and d appropriately. We see from the figures
that both Cmax and Lπ become less sensitive to w as we in-
crease d from 0 to 0.30 µm. This implies that the residual In-
GaAsP layer at the ridge side has a crucial role of extending
the tolerance against the fabrication error in w. We also see
that the fabrication tolerances in both w and d are larger for
Type 2 compared with Type 1; the residual slope at the ridge
side contributes to the increase in the tolerances. In the case
of asymmetric PCs, triangular shape is the most ideal cross
sectional structure to obtain efficient TE-to-TM conversion
with short length [24]. The residual slope on the InGaAsP
makes the light-confinement structure closer to the triangu-
lar shape, and therefore the tolerances in Type 2 is enlarged
compared with Type 1.

The fabrication tolerance of an actual PC with a fixed
length LPC can be calculated by inserting the results plotted
in Fig. 4 or 5 into Eq. 4. First, we select w and d at which
Cmax approaches 100%, and set LPC = Lπ. Under this fixed
length of LPC , the allowed range of w and d can be obtained
from Eq. 4 and Fig. 4 or 5.

Figure 6 shows the calculated net conversion C for
Type 1 and Type 2 as a function of w at d = 0.30 µm. LPC is
fixed to 200 µm for Type 1 and 100 µm for Type 2, which are
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Fig. 4 Calculation result for Type 1 structure: (a) Maximum conversion
ratio Cmax, (b) Half-beat length Lπ as a function of w and d.

Fig. 5 Calculation result for Type 2 structure: (a) Maximum conversion
ratio Cmax, (b) Half-beat length Lπ as a function of w and d.

the optimized length to maximize the fabrication tolerance
of w. From Fig. 6, we see that a higher net conversion than
90% is obtained with w = 810 ± 105 nm for Type 2, while
w = 1000 ± 50 nm for Type 1. We thus achieve factor-of-
two improvement in the fabrication tolerance by using Type
2 over Type 1. Moreover, the half-beat length of Type 2 is
also reduced to half than that of Type 1. We should note that
this value of fabrication tolerance is larger than other types
of asymmetric InP PCs [12], [15], and is readily achieved
by the current fabrication technology.

4. Proposal of a width-tolerant PC using a novel layer-
stack

Figure 7 shows the proposed procedure to fabricate Type 2
PC. As we have demonstrated in the previous section, the
precise control of the thickness of the residual InGaAsP
layer d is crucial in achieving a high fabrication tolerance
in w. To this end, we propose to introduce a few-nm-thick
InP etch-stop layer at the middle of the InGaAsP core. Af-
ter forming a ridge waveguide along [011̄] direction by dry
etching (a), we selectively wet-etch InGaAsP layer until the
InP etch-stop layer, so that a precisely defined slope corre-
sponding to the (111) plane is formed. Similar to the half-
ridge fabrication procedure [22], SiO2 is deposited from an
angle, covering only one side of the ridge waveguide (c). Fi-
nally, the Type 2 structure is obtained after the second dry-
etching (d).

The etching depth of the InGaAsP can be precisely
controlled with a nanometer-scale precision by using the

Fig. 6 Calculated net conversion ratio C as a function of converter width
w, using Type 1 PC, LPC = 200 µm (dashed line), and Type 2 PC, LPC =

100 µm (solid line).

Fig. 7 Fabrication procedure of Type 2 PC using an InP etch-stop layer
at the middle of the InGaAsP core.

InP etch-stop layer, owing to the excellent selectivity of the
chemical etching process such as H2SO4+H2O2+H2O sys-
tem [25]. Consequently, we can precisely tune the value of
d in Type 2 PC. Although there would be a slight undercut
during the InGaAsP wet etching, this effect should be negli-
gible or easily calibrated because the total etching depth in
this case is 0.20 µm and the etching rate of (111) plane is
much slower than (100) plane.

5. Conclusion

We have presented numerical analyses on the integrated
InP/InGaAsP PCs based on the half-ridge structure. From
the analyses of both the original design (Type 1) and the ac-
tual fabricated structure (Type 2), we have revealed that the
residual InGaAsP layer, as well as the slope at the ridge side
plays an important role in extending the tolerances against
fabrication errors. As an example case, we have demon-
strated a high polarization conversion over 90% with a broad
range of the waveguide width from 705 to 915 nm. Fi-
nally, we proposed a simple fabrication procedure of this
new type of PC, where a thin etch-stop layer was introduced
to control the thickness of the residual InGaAsP layer pre-
cisely. With the inherent compatibility with other active InP
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components and simple self-aligned fabrication process, the
demonstrated half-ridge PCs should pave the way to realize
large-scale fully integrated PDM-PICs.
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