IEICE TRANS. ELECTRON., VOL.E99-C, NO.7 JULY 2016

735

| INVITED PAPER Special Section on Recent Advances in Simulation Techniques and Their Applications for Electronics

Hybrid MIC/CPU Parallel Implementation of MoM on MIC
Cluster for Electromagnetic Problems

Yan CHEN', Yu ZHANG'®, Guanghui ZHANG', Xunwang ZHAO', ShaoHua WU'",
Qing ZHANG'", Nonmembers, and XiaoPeng YANG ", Member

SUMMARY In this paper, a Many Integrated Core Architecture (MIC)
accelerated parallel method of moment (MoM) algorithm is proposed
to solve electromagnetic problems in practical applications, where MIC
means a kind of coprocessor or accelerator in computer systems which is
used to accelerate the computation performed by Central Processing Unit
(CPU). Three critical points are introduced in this paper in detail. The
first one is the design of the parallel framework, which ensures that the
algorithm can run on distributed memory platform with multiple nodes.
The hybrid Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) programming model is designed to achieve the purposes. The
second one is the out-of-core algorithm, which greatly breaks the restric-
tion of MIC memory. The third one is the pipeline algorithm which over-
laps the data movement with MIC computation. The pipeline algorithm
successfully hides the communication and thus greatly enhances the per-
formance of hybrid MIC/CPU MoM. Numerical result indicates that the
proposed algorithm has good parallel efficiency and scalability, and twice
faster performance when compared with the corresponding CPU algorithm.
key words: MIC accelerating MoM, MPI and OpenMP parallel program-
ming mode, multiple nodes, out-of-core, pipeline

1. Introduction

In the field of computational electromagnetics (CEM), the
method of moments (MoM) is widely used for solving elec-
tromagnetic radiation and scattering problems [1]-[3]. It is
well known that the lower/upper (LU) decomposition solver
and the iterative solver are the most common ways to solve
the matrix equations of MoM. To avoid slow convergence
or divergence issue of the iterative solver, the LU decompo-
sition is utilized as the matrix equation solver here. How-
ever, with the electrical size of problems increasing, the so-
lution time of LU solver increases rapidly due to the compu-
tational complexity of O(N 3), where N is the number of un-
knowns [4]. With the rapid development in computer hard-
ware capabilities, parallel computing technique has become
an efficient approach to solve extremely complicated engi-
neering problems. In the field of scientific computing, the
most frequently used parallel programing model is the Mes-
sage Passing Interface (MPI) [5], [6].

Heterogeneous computing is another important direc-
tion of scientific computing. The heterogeneous comput-
ing refers to computing platforms that use more than one

Manuscript received October 20, 2015.
Manuscript revised January 9, 2016.
"The authors are with Xidian University, Xi’an, China.
"'The authors are with Inspur, Beijing, China.
TTThe author is with Beijing Institute of Technology, China.
a) E-mail: yuzhang @mail.xidian.edu.cn
DOI: 10.1587/transele. E99.C.735

kind of processor, for example, a system equipped with Cen-
tral Processing Unit (CPU) and Graphics Processing Unit
(GPU) [7]. Generally, the CPU is referred to as the main
processor or host, while other kinds of processors are re-
ferred to as the coprocessor or device. The GPU accelerated
CEM algorithm has received rapid development [8], [9].

Significantly, another coprocessor named Intel Many
Integrated Core architecture (MIC) [10] has also become a
prevalent commodity recently in parallel computing due to
its powerful computational capability. It has similar func-
tion to GPU. Intel MIC is targeted for highly parallel, High
Performance Computing (HPC). The MIC will contribute
more performance in future super computer platform. For
example the Milkyway-2 super computer which has been
claiming the lead in Top 500 list for 5 times and is still the
fastest super computer now all over the world. The MIC
coprocessors provide more than 70 percent of the total per-
formance of the Milkyway-2 [11]. So the MIC must be the
course for the future in CEM.

When the MIC coprocessor is taken into account, sev-
eral problems greatly restrict the application of the hybrid
MIC/CPU MoM [12]. Firstly, the heterogeneous cooper-
ative computing technique must be combined with large
scale parallel technique. Secondly, the memory of MIC
coprocessor is usually much less than the main memory,
which greatly restricts the scale of the problems that hybrid
MIC/CPU MoM can solve. Thirdly, the data MIC coproces-
sor handles must be transferred to the MIC memory before
computing starts.

In this paper, a hybrid MIC/CPU parallel LU decom-
position algorithm, which can run on a distributed memory
system, is implemented to solve the matrix equations gen-
erated from MoM. The implementation is complete in the
sense that: 1) A hybrid MPI and Open Multi-Processing
(OpenMP) [13] parallel framework is designed to ensure
that the program can run on multiple nodes. 2) Under the
framework, an out-of-core algorithm is utilized to break the
limitation of MIC memory. 3) A pipeline technique is pro-
posed to overlap the data movement with the MIC compu-
tation.

The remaining part of this paper is organized as fol-
lows. In Sect.2, we outline the basic principle of LU
decomposition and the hybrid MIC/CPU platform. In
Sect. 3, the Implementation of Parallel Framework for Hy-
brid MIC/CPU is presented. The numerical results in Sect. 4
are followed by the conclusion.

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

736

2. Preliminaries

The basic principle of LU decomposition is briefly reviewed
firstly in this section, the readers are referred to [3], [4] for
an in-depth discussion.

2.1 The Basic Principle of LU Decomposition

By following the MoM procedure to solve an integral equa-
tion, a matrix equation can be obtained as

Al=V 6]

where A is a N X N dense complex matrix in which N un-
knowns are used to represent the continuous electric and/or
the magnetic current over the surface of interest. I'is an Nx1
coefficient vector of the unknown current coefficients to be
solved for, and V is an N X 1 excitation vector.

The numerical solution of Eq. (1) generally proceeds
by factoring the impedance matrix A into a lower and an
upper triangular matrix, which is called LU factorization
or decomposition. The right-looking blocked parallel LU
factorization algorithm is utilized to decompose the matrix
A in this paper. The basic process of the right-looking
blocked parallel LU factorization algorithm is indicated in
Fig. 1. It computes one panel column (the yellow subma-
trix in Fig. 1 (a)) and one panel row (the blue submatrix in
Fig. 1 (¢)) at each time and then use them to update the trail-
ing matrix (the green submatrix in Fig. 1 (d)). The shaded
parts in Fig. 1 indicate the portions of matrix L. and matrix
U, which has been finished in previous computation. The
three steps are implemented repeatedly until the matrix is
factorized. Generally, of all the steps, the update opera-
tions contribute more than 80% of the computation time for
a large scale dense complex matrix.

2.2 Hybrid MIC/CPU Platform

The MIC coprocessor is physically connected to the CPU
through a PCI Express (PCI-E) bus. Multiple MIC copro-
cessors can be installed in a single host node and many
nodes can be connected through a network such as Infini-
Band or Ethernet, as shown in Fig. 2.

It must be pointed out that the number of MIC copro-
cessors is usually less than the number of CPU cores in one
node and the memory of MIC is far less than the system
memory, or RAM as we referred to.

The MIC coprocessor features more than 50 scalar pro-
cessing cores with vector processing units, and each core has
four-way hyper-threading support to help hide memory and
multi-cycle instruction latency. So there are up to 200 hyper
threads in a MIC coprocessor.

The most common way to use MIC coprocessor is to
regard it as an acceleration device of the host, which is sim-
ilar to GPU.

IEICE TRANS. ELECTRON., VOL.E99-C, NO.7 JULY 2016

up to 200 hyper threads in a MIC coprocessor.

S\ K (k+Dn: Finished part of U N Finished part of U
N g \ =
Uy S N i 7 1 s
E L = ¥
= e = 3 z
3 ¢ 3 £ El
3
§“ L(k) A(k) ;5- L”" A ::r
3| N 3 ® |z
it Ay Ly 2
= B =Bl U, =
& Ly |~ 4o - [O A
v v
the kzh panel column the &/ panel column
(@ (b)
AN row_beast (L) AN Finished part of U

moi jaued 7y o)
mou [aued 47y ayy

LY * _ by
AP =A, -LPU

row| beast [(59)
e —

Finished part of L
Finished part of L
=
2

the /f//*pmﬁl column
© (C)

Fig.1 The parallel LU decomposition. (a) panel factorization. (b) row
exchange. (c) broadcast Ly and panel row update. (d) broadcast L® and
U® and trailing update. Note that the subscript (k) changing to the super-
script (k) indicates that the current operation is complete.

the kth panel column

Fig.2 Hardware architecture of one node in hybrid MIC/CPU platform.

3. Implementation of Parallel Hybrid MIC/CPU MoM
3.1 Parallel Framework of Hybrid MIC/CPU MoM

We are more concerned with load balance in this subsection.
Load balance involves allocating data and tasks to MPI pro-
cessors so as to ensure the most efficient use of resource,
which means that all the MPI processors could finish the
computation simultaneously.

Generally, two aspects are closely tied to the load bal-
ance. One is the amount of data and tasks allocated on these
processors. The other is the ability of each MPI process to
handle the data, or computer power as we call. To illus-
trate the effect of load balance, consider P MPI processor
represented by P; (i = 1, 2, ..., P), and the corresponding
computer power of the processor is recorded as F;. Suppose
there are 7; unit of task assigned to processor P;. Clearly,
for a good load balance strategy, the equation followed must

CHEN et al.: HYBRID MIC/CPU PARALLEL IMPLEMENTATION OF MOM ON MIC CLUSTER FOR ELECTROMAGNETIC PROBLEMS

TH{ 1217 [18(13 |14 [19|15 |16
2122(27(28(23 |24 {2925 |26

61| 62(67|68|63 (64 [69 65|66

91| 92(97 (9893194 [99 95|96

31) 32137 (383334393536

3 35
67 6
6 77, 78 79,
; Ass 41| 42(47| 48| 43|44 |49 | 45|46
86 87 88 89 1
71| 72| 77| 78| 73 | 74 | 79 | 75| 76

97 98 wA
Ass 55 81| 82|87|8883|84|89 (85|86

(@) (b)

Fig.3 Block-cyclic distribution of a matrix: (@) a matrix consisting of
5 % 5 blocks; (b) rank and coordinates of each process owning the corre-
sponding blocks in (a).

be satisfied
T, T, Ty
F, F, Fp

Specifically, a block-cyclic matrix distribution is used
in blocked parallel LU factorization algorithm. As an ex-
ample, consider matrix A shown in Fig. 3 (a), which is dis-
tributed to 6 processes in the 2 x 3 process grid.

Figure 3 (b) shows the result of the data distribution us-
ing the block-cyclic distribution methodology. In Fig. 3 (a),
the outermost numbers denote the row and column indices
of the MPI process coordinates. By varying the dimensions
of the blocks of A and the process grid, different mappings
can be obtained.

From the block-cyclic distribution methodology, one
can see that the data and corresponding computation are as-
signed on different MPI processors roughly and uniformly.
In other words,

2)

T]szz"'zTP (3)
In order to achieve a good load balance, there must be
FI%Fzz"'%FP (4)

It means that all MPI processors must provide almost
appropriate storage and computer power. For example, each
MPI processor is binding to one CPU core and allocated by
1 GB ~ 2GB memory. However, the number of coproces-
sors is usually less than CPU cores internal one node. So if
one assign one CPU core and one MIC coprocessor to each
MPI process, it would lead to an unmatched situation be-
tween MPI process and MIC coprocessor and cannot satisfy
the load balance condition of Eq.(4). A straight-forward
method to solve the problem is to reduce the number of MPI
processes so that it equals to the number of MIC coproces-
sors. In order to make full use of all CPU cores, the multi-
threads technique must be used in each MPI process.

However the number of MPI processes is determined
by the number of MIC coprocessors, which is too inflexible
in many practical applications. Furthermore, if the number
of CPU cores cannot be divided by the number of MPI pro-
cesses, this scheme will fail to work. The relationship be-
tween CPU cores and MPI processes can be changed com-
paratively and discretionarily, while one MIC coprocessor

737

is always allocated to one MPI process. Consider assigning
one MIC coprocessor to several MPI processes. It is equiv-
alent to partition one MIC into several virtual MICs. This
will greatly increase the flexibility of the hybrid MIC/CPU
program without causing load unbalance.

Unfortunately, when many MPI processes are access-
ing to one MIC coprocessor at the same time, the program
will inevitably lead the resource contention of MIC copro-
cessors. In order to make full use of MIC cores and avoid
resource contention, one must segment the MIC cores for
different MPI process. As we all known, there is a micro
Linux Operating System (OS) in MIC coprocessor, and the
concept of Environment Variable (ENV) is available on the
OS of MIC. So one can separate the resource of MIC by
setting different ENV’s for different MPI processes. The
pseudo-code used to set MIC ENV’s is given as follows.

Algorithm: void mic_work init ()

{
1 mic_env_pre(mic_id, nthreads, mic_affinity_env)
2 #pragma omp parallel num_threads(num_omp)
3
4 int omp id =omp_get thread num()
5 if(lomp_id == 0)
6 Transfer (nthreads, mic_affinity _ev) to device
7 {
8 omp_set num_threads(nthreads);
9 kmp_set_defaults(mic_affinity env);
10 }
11 }
12 return;
3

The function omp_set_num_threads sets the number of
threads of MIC used by the MPI process that perform
this function. The function kmp_set_defaults [10] binds
threads MIC to MPI process. The function mic_env_pre()
returns the information used by omp_set_num_threads and
kmp _set_defaults.

After this, each MPI process will complete its own cal-
culation task using CPU cores and MIC coprocessors as-
signed to it.

3.2 Out-of-Core Algorithm

It is clear that the most efficient scheme to accelerate the
parallel MoM using hybrid MIC/CPU platform is to ac-
celerate the hotspot of traditional parallel MoM primarily.
Hotspot means the function or subroutines that executes for
the longest time. Lots of applications indicate that a care-
fully designed matrix filling subroutine takes only 2 percent
of total time of MoM, or less. So for the scope of this article,
we will focus on the acceleration of LU factorization using
MIC/CPU collaborative calculation.

The Intel VTune Amplifier XE [14] is used here to test
the parallel LU factorization automatically. One can see
from testing result Fig. 4 that the trailing update or subrou-
tine ZGEMM [15] as we call, occupies about 81 percent of
the total time of the LU decomposition.

Actually, subroutine ZGEMM performs the update op-
eration A® = Ay — LOU® as shown in Fig. 1 (d). In order

738

. Tatal
=y _libe_start_main

= pagetr!_
L prgemn_

i PE_CpgemmAR | 84.2% [

......... e TV T
b PE_Cinv 26%0
by prlaswp 0%

[y prgetf2 0% Il

Fig.4 Hotspot testing in one MPI processor.

>~
=]
=
Y

A C

«<——S —>
»>
a

C=C—ABI:>(C:‘i(C:':

@ (b)

Fig.5 Basic implementation of hybrid MIC/CPU MoM. (a) The data and
computation assigned to one MPI process. (b) Basic implementation of
hybrid MIC/CPU MoM

C=C-AB AB,

AB,

to simplify the description, the ZGEMM is rewritten as
C=C-AB ®)

where the sizes of matrices A, B, and C are labeled in
Fig.5(a). Note that two ‘C’s on the left and right hand
side of Eq. (5) are different in value, while they are stored
in identical memory space of the computer. In other words
they are stored in same array of FORTRAN, C or other pro-
gramming languages with different values at different time.
The right one that implies Ay, possesses the old values
and the left one that implies A% possesses the new values.
Equations (6)—(8) below have the same meaning. The ba-
sic hybrid MIC/CPU MoM algorithm can be implemented
straightly, that partition the ZGEMM into two parts

[Ci,Cy] =[Cy,Co] - A[By,Bs] (6)

as shown in Fig. 5 (b). The green part of data must be trans-
ferred to the memory of MIC and the corresponding calcu-
lation must be performed by MIC cores. Likewise, the blue
ones stay on main memory and handled by CPU. It is worth
noting that the ratio of the segmentation must be determined
by the performance of CPU and MIC.

Once the required storage of matrices A, B,, C; ex-
pands the MIC memory available, the scheme above will fail
to work. In order to break the restriction of MIC memory,
the matrices are split up into many small tiles, as shown in
Fig. 6. So the second expression in Eq. (6) can be rewritten
as

Cij:Cij_AiBj’ le[l,y] andje [1, x] (7

where x and y are the numbers of columns and rows of the
tiles. The size of each tile is labeled as M, N, and K.

And then the tiles are loaded to MIC memory, calcu-
lated, and uploaded to main memory one by one. The tile
is so small that it is completely enough for MIC to store

IEICE TRANS. ELECTRON., VOL.E99-C, NO.7 JULY 2016

K i% n—>
: CERED
N
T
A (M C,|C, C,
L
m
A, C,|C,,| C,

Fig.6 The out-of-core algorithm

b o W B o -

‘ Pipeline2 llq Ciz l Compute . Psl Cis l Compute l

‘ Pipeline3 H Cis l Compute .P;l Ciz ‘

‘ Pipeline4 ’B Cus l Compute . ‘
>

[Data movement from CPU to MIC [ll Data movement from MIC to CPU time

Fig.7 The pipeline design

it. This algorithm is referred as the out-of-core algorithm,
where the “core” means the MIC memory.

3.3 Pipeline Algorithm

The out-of-core algorithm greatly expands the scale of
problems that hybrid MIC/CPU MoM can solve. How-
ever, one can see that the data movement is completely
synchronously. Considering the huge storage required by
MoM, the time consumed on data movement is a consider-
able expense. So the data movement must be optimized to
enhance the efficiency of the hybrid MIC/CPU MoM pro-
gram.

The data movement is integrant that it cannot be
avoided, but one can overlap it with the calculation per-
formed by MIC. In this section, a pipeline method is
achieved. Asynchronous data movement is involved in the
pipeline design besides asynchronous kernel computation.
Figure 7 shows the pipeline design when n = 4. The red
panes indicate the data movement from main memory to
MIC memory and the black ones mean the opposite direc-
tion, of which the relatively tiny red panes represent the
transformation of matrices B; and the big red and black
panes represent the transformation of matrices C;;. The data
movement of matrices A; is neglected because each matrix
A; will stay in memory for a very long time until all B; and
C;; tiles in the same row finish.

3.4 Optimization of Parameters in Hybrid Parallel
MIC/CPU MoM

When designing the pipeline for overlapping the data move-
ment with computation, it was pointed out that the size of
tile or the values of M, N and K in Fig. 6. The correspond-
ing computation performed is

Cij=Cij-AB; (®)

Assuming the communication rate between host and

CHEN et al.: HYBRID MIC/CPU PARALLEL IMPLEMENTATION OF MOM ON MIC CLUSTER FOR ELECTROMAGNETIC PROBLEMS

device through PCI-E is vpcy.g, the performance of MIC
iS Veomp-m, and the performance of CPU is v yp-c. In ac-
tual, the matrix A; is firstly transferred to the device be-
fore the computation starts. The time it takes for the data
movement of matrices B; and C;; through PCI-E is 16 X
(2MN+KN)/vpci-g, where the factor 16 is the bytes that one
complex double precision value occupies and 2 in front of
MN is due to the fact that the matrix C;; needs to be up-
loaded and downloaded. The calculation time of Eq.(8)
by MIC coprocessor is 8MNK/V¢omp-c. To completely hide
the communications, the calculation time should be greater
than the communications time. So in order to overlap the
data movement with the computation, one can get that M >
2Vcomp—M/VPCI—E and K > 4Vcomp—M/(VPC1—E - 2Vcomp—M/M)-
For example, assuming vpcr.g = 6.0GB/s and Veomp-u =
1.0 Tflops, which is actually the real parameters of our com-
puting platform, substitute these values into both the equa-
tions above, and one can get M > 310 and K > 628. Note
that M has little influence on K when M is large enough and
N is never restricted.

If M and K do not satisfy the overlapping condition, or
in other words, the time it takes for data movement is longer
than the time for computation, the speedup will be figured
out by the expression as follows

8MNK 32MN + 16MK + 16KN

Vcomp-c
_ _VpCI-E K

tcomp—C

Leomm-M VPCI-E

4chmp—C (9)
where t.,m- Means the time that it takes to transfer data
between CPU and MIC. It can be seen that K plays a crit-
ical role in Eq.(9). Assuming that v.y,,.c = 422 Gflops,
the peak performance of 2 Intel Xeon CPUs we used in this
paper, the speedup will be 0.003817 K.

Now consider a testing of ZGEMM to validate the the-
oretic presented above and to indicate the efficiency of the
out-of-core and pipeline algorithm. Because the size of tile
is entirely unrelated to the number of nodes, only one node
of XDHPC-MIC is used. The size of matrix C is set as
m = 20,000 and n = 13,000, and a set of K’s, ranging
from 128 to 1024, are tested in this case. The ZGEMM is
performed twice, one is by the CPU alone and the other is
by the MIC with the out-of-core and the pipeline algorithms.
The bandwidth of PCI-E and the real performance of CPU
and MIC are also measured in the testing, which can be used
to determine the best K and the theoretical speedup of MIC
to CPU.

Figure 8 gives the testing result for different K, in
which the real speedup is directly figured out by the practical
testing times, and the theoretical speedup is determined by
the measured vpcy-g, Veomp-m and Veomp-c. It is also known
through calculation that the overlapping condition is satis-
fied when the value of K is equal to or greater than 576. And
the same tendency of real speedup as theoretical speedup
with only tiny difference indicates that the out-of-core and
pipeline algorithm implemented in this paper operates effi-
ciently.

739

sol | T real speedup
—e— ideal speedu o —o—

/0\0-513;5:8:8:5
15 F

speedup

L L L L L L L L
0 128 256 384 512 640 768 896 1024
K

Fig.8 The curves of real and ideal speedup with different K

270

260 e
250 | '
240} e

2301

220 7'\

2op N, o
200} \-/'/

.
060 064 068 072 076 080 084 088
data percentage of MIC

Matrix equation sloving time (s)

Fig.9 The time of ZGEMM on one node using different percentage.

3.5 Distribution Ratio between MIC and CPU

Most of the time the ZGEMM will not be performed only
by MIC alone, the CPU and MIC are all employed to do
the work synergistically. The distribution ratio of data and
calculation between CPU and MIC will greatly affect the
efficiency of the hybrid parallel MIC/CPU implementation.
Only when the CPU and MIC finish their own computa-
tion tasks at the same time, the best performance will be
obtained. It was pointed out in Sect.3.2 that the ratio of
the segmentation must be determined according to the com-
parison of CPU to MIC in computing power. Consider-
ing Veomp-u = 1.0Tflops and veopp-c = 422 Gflops which
has been mentioned above, the ratio should be calculated as
1,000/(1,000+422) = 0.70. However, the real performance
of MIC and CPU is generally not equal to the peak perfor-
mance. So the actual ratio must be determined by testing go
further.

Consider a ZGEMM operation with m = 40,000, n =
40,000 and k = 640, the percentage ranging from 0.6 to 0.9
is tested to select the best value. In this testing, four MPI
processes are launched on each node and thus each process
controls six cores through using OpenMP threads technique.
The time it takes for calculating the ZGEMM at different
percentage is plotted in Fig. 9.

From comparison, the percentage value of 0.66, which
is close to the theoretical one 0.70, performs the better than
other values, and it can save 2% to 20% of the matrix solving
time. Throughout the rest of this paper, the percentage value
is set to be 0.66.

740

Table1 Comparison of computation parameters.

CPU OpenMP Percen- Pipe- Buffer

Algorithm K Nodes . .
cores threads tage lines size

Intel MKL

LU 128 4 96 96

Hybrid

MIC/CPU 576 4 9 16 6 0.66 4 128

:+ CPU implementation (MKL LU)
[—=— hybrid MIC/CPU implementation

L

S— 1 1 1
0 20000 40000 60000 80000 100000 120000
Number of unkowns/Size of matrix

—— &

Fig.10 Testing times for different sizes of matrices

4. Numerical Results

The platform in our work is composed of 6 MIC/CPU hy-
brid architecture nodes or XDHPC_MIC as we call. Each
node is equipped with 2 12-core Xeon E5-2692 v2 CPUs
and 1 Xeon Phi 7110P MIC coprocessor. There are 61 cores
and thus 244 hyper threads in the MIC coprocessor. And
the sizes of main memory and MIC memory are 64 GB and
8 GB, respectively.

The parallel code is developed based on MPI and
OpenMP hybrid programming model. Two basis functions,
RWG [16] basis function and high order [3], [4] basis func-
tion, are used to construct the impedance matrix. We com-
pare the proposed hybrid MIC/CPU parallel MoM imple-
mentation with the CPU implementation in performance.
The LU decomposition of Intel MKL, which is the fastest
parallel mathematics library on Intel platform, is utilized as
the CPU implementation. So the comparison is truly a sig-
nificant work for evaluating the performance of the hybrid
MIC/CPU implementation.

4.1 LU Decomposition of Different Size of Matrices

In this section, the proposed algorithm is used to decompose
stochastic non-singular matrices. Specifically speaking, 4
nodes of XDHPC-MIC are used. In hybrid MIC/CPU par-
allel LU algorithm, 4 MPI run on each node, which implies
one MIC coprocessor is partitioned to 4 parts and assigned
to 4 MPI processes. In order to make full use of all CPU
cores, 6 OpenMP threads are dispatched, and one is used to
control MIC. In parallel CPU implementation 96 MPI pro-
cesses are launched and no OpenMP is used. The param-
eters are listed in Table 1 in detail. Figure 10 shows the
benchmarking results for the matrices ranging from 20,000
% 20,000 to 110,000 x 110,000 elements in size.

IEICE TRANS. ELECTRON., VOL.E99-C, NO.7 JULY 2016

Fig.11 The model of an airplane

Bistatic RCS (dBsm)

T S S S T SO S S R
-180 -150 -120 -90 -60 -30 O 30 60 90 120 150 180
Theta(degree)

Fig.12 2D RCS of the airplane: xoz plane

The results show that the MIC accelerated LU decom-
position scheme presented in this paper can save at least
50% of computation time than the Intel MKL, so long as
the size of matrix exceeds 60,000.

It was pointed out that if K is selected as 576, the real
speedup of MIC alone ZGEMM to CPU alone ZGEMM is
1.88 (Fig. 8), so the hybrid MIC/CPU synergistic implemen-
tation should have the speedup of 2.88. Considering that
16 CPU cores are consumed to control MIC rather without
computation, the theoretical speedup should be 2.7, which
is obtained by 1.88 + (96 — 16)/96. Assuming the hotspot
ZGEMM holds 80% time of the LU, the ultimate speedup
of LU is theoretically 2.16, figured out by 2.7 X 80%. The
performance loss in real speedup 2.00 is contributed by the
inefficiency of load unbalance when K is equal to 576.

4.2 RWG Basis Function

Here are the scattering results of an airplane presented to
demonstrate the performance of the hybrid MIC/CPU par-
allel MoM implementation introduced above. The airplane
is illustrated in Fig. 11 with the dimensions 11.6m X 7.0 m
X 2.93m. MoM with RWB basis functions is used to gen-
erate the impedance matrix. The bistatic radar cross sec-
tion (RCS) of the airplane is simulated at the frequency of
500 MHz. The total number of unknowns is 34,824. The
two-dimensional (2D) RCS results are given for comparison
in Fig. 12.

Two nodes in platform XDHPC-MIC are used. The
computation parameters and the matrix equation solving
time are listed in Table 2. Compared with the fastest par-
allel CPU implementation, the speedup of the hybrid MIC/
CPU parallel implementation is about 2 times.

4.3 Higher-Order Basis Function

In this section, we present the radiation patterns and per-

CHEN et al.: HYBRID MIC/CPU PARALLEL IMPLEMENTATION OF MOM ON MIC CLUSTER FOR ELECTROMAGNETIC PROBLEMS

Table2 Comparison of computation parameters and time.
Memory . CPU OpenMPLU time
(unit:GB) Algorithm K cores threads (unit:s) Speedup
ImengKL 128 48 48 - 217381 -
18.07 -
Hyorid “o06 4 8 6 108377 2.00
MIC/CPU))

(@)

Feed

>(‘ —Patch
~,

|~

Substrate<" " 83.3 mm=—

(b)

Fig.13 Model of the microstrip patch array antenna. (a) Full array. (b)
Array element.

301 cPU [——cPU
2 ---micceof | L\ [MIC/CPY

Gain (dB)

40 b

P T S S S 40 P S S R R
-180 -150 120 -90 -60 -30 0 30 60 90 120 150 ISC 0 30 60 90 120 150 180 210 240 270 300 330 361
Theta (deg) Phi (deg)

(@) (b)

Fig.14 2D gain patterns of the microstrip patch array antenna: (a) yoz
plane and (b) xoy plane. Note that 6 coordinate is measured from xoy plane
to z axis and ¢ coordinate is measured from +x axis to y axis in this paper.

formance the hybrid MIC/CPU parallel Higher-Order MoM
algorithm for an airborne phased array. Consider a rectan-
gular microstrip patch array antenna with 37 x 9 elements,
as shown in Fig. 13.

The dimensions of the full array are 10m X 2.5m X
0.018 m and the sizes of each patch are 57.9 mm X 83.3 mm.
Each element of the array is fed by a short pin. The oper-
ation frequency of the array is 440 MHz and the number of
unknowns is 83,996. We use 4 nodes (96 CPU cores) to
solve this problem. The two-dimensional (2D) gain patterns
are given in Fig. 14.

The running parameters and detail information are
listed in Table 3. One can see from Table 3 that the speedup
is also up to 1.99, which has only little difference compared
to the theoretical one.

Another example is also presented to demonstrate the
scalability and performance of the hybrid MIC/CPU parallel
Higher-Order MoM algorithm. In this case, the RCS of the
airplane model which is shown in Fig. 15 with the dimension
of 18.92m X 14.56 m x 5.05 m is simulated. The operating
frequency is 1.0 GHz. The excitation is a z-axis polarized
plane wave propagating along the negative x-axis direction.

741
Table3 Comparison of computation parameters and time.
Memory . CPU OMP LU time
(unit:GB) Algorithm K cores threads (unit:s) Speedup
el MKL 18 96 96 - 101120 -
LU
105.13 -
Horid “oo0 96 16 6 50824 199
MIC/CPU) i
V4
!
\y
Fig.15 The model of an airplane
Table4 Comparison of computation parameters and time.
Memory . CPU OpenMP LU time
(unit:GB) Algorithm K cores threads (unit:s) Speedup
el MKL 108 144 144 - 306379 -
LU
281.05 -
Hyorid “506 144 24 6 153135 200
MIC/CPU T)

The number of unknowns generated by this problem
is 137,335, which requires about 281.05 GB in storage. In
total, 6 nodes or 144 CPU are used to solve the full dense
complex matrix equation. The running parameters and sim-
ulating time are listed in Table 4.

It is concluded that a desired speedup can also be ob-
tained even when the number of nodes increases to 6. This
indicates that the algorithm proposed in this paper has the
same scalability as the Intel MKL LU decomposition algo-
rithm.

5. Conclusion

In this paper, the hybrid MIC/CPU parallel LU decomposi-
tion algorithm is used to solve the matrix equation generated
by the RWG or Higher-Order MoM. Three critical points
are introduced in this paper in detail. Based on these three
points, we successfully add the MIC support to the paral-
lel MoM algorithm and obtain a good speedup. The nu-
merical results indicate the accelerated algorithm proposed
always works at a high efficiency, that is, the speedup of
2.0 compared with the commercial Intel MKL library. The
hybrid MIC/CPU parallel LU decomposition also shows a
good scalability when the number of CPU cores increases
from 48 to 144, or the number of nodes increases from 2 to
6.

Acknowledgments
This work is supported by the National High Technology

Research and Development Program of China (863 Pro-
gram) (2012AA01A308), the NSFC (61301069, 61072019),

742

the Program for New Century Excellent Talents in Univer-
sity of China (NCET-13-0949) and the project with contract
No.2013KJXX-67.

References

(1

(2]

(3]

(4]

[3]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.F. Harrington, Field Computation by Moment Methods, in IEEE
Series on Electromagnetic Waves, New York: IEEE, 1993.

Y. Yan, Y. Zhang, C.-H. Liang, H. Zhao, and D. Gracia-Dofioro,
“RCS computation by parallel MoM using higher-order basis func-
tions,” Int. J. Antennas Propag., vol.2012, pp.1-8, 2012.

Y. Zhang and T.K. Sarkar, Parallel Solution of Integral Equation
Based EM Problems in the Frequency Domain, John Wiley, Hobo-
ken, NJ, 2009.

Y. Zhang, Z. Lin, X. Zhao, and T.K. Sarkar, “Performance of a Mas-
sively Parallel Higher-Order Method of Moments Code Using Thou-
sands of CPUs and Its Applications,” IEEE Trans. Antennas Propag.,
vol.62, no.12, pp.6317-6324, 2014.

S. Jiang, Y. Zhang, Z. Lin, and X. Zhao, “An Optimized Parallel
FDTD Topology for Challenging Electromagnetic Simulations on
Supercomputers,” International Journal of Antennas and Propaga-
tion, vol.2015, pp.1-10, 2015.

J. Mo, L. Shen, B. Wei, W. Fang, and Y. Yan, “RCS computation of
engine by parallel higher-order MoM with out-of-core technique,”
IET International Radar Conference, Xi’an, The China, pp.1-3,
April 2013.

R. Farber, CUDA Application Design and Development, Elsevier,
Singapore, 2013.

X. Mu, H.-X. Zhou, K. Chen, and W. Hong, “Higher Order
Method of Moments With a Parallel Out-of-Core LU Solver on
GPU/CPU Platform,” IEEE Trans. Antennas Propag., vol.62, no.11,
pp-5634-5646, 2014.

C. Jia, L. Guo, and P. Yang, “EM Scattering From a Target Above
a 1-D Randomly Rough Sea Surface Using GPU-Based Parallel
FDTD,” IEEE Antennas Wireless Propag. Lett., vol.14, pp.217-220,
2015.

Jim Jeffers and James Reinders, Intel Xeon Phi Coprocessor High
Performance Programming, Morgan Kaufmann Press, San Fran-
cisco, Feb. 2013.

Copyright 1993-2015 TOP500.org, “Tianhe-2 (MilkyWay-2),”
Top500, http://www.top500.org/system/177999, accessed Sept. 19.
2015.

G. Zhang, Y. Chen, Y. Zhang, S. Jiang, and X. Zhao, “MIC Ac-
celerated LU Decomposition for Method of Moments,” AP-S/URSI
2015, Vancouver, BC, Canada, pp.756-757, 2015.

B. Chapman, G. Jost, R. van der Pas, and D.J. Kuck, Using OpenMP:
Portable Shared Memory Parallel Programming, The MIT Press,
Cambridge, MA, 2007.

Intel Copyright, “Intel VTune Amplifier 2016,” Intel Corpora-
tion, https://software.intel.com/en-us/intel-vtune-amplifier-xe/, ac-
cessed Sept. 19. 2015.

J.J. Dongarra, L.S. Duff, D.C. Sorensen, and H.A. van der Vorst, Nu-
merical Linear Algebra on High-Performance (photocopy edition),
Beijing: Tsinghua University Press, Feb. 2011.

S.M. Rao, D.R. Wilton, and A.W. Glisson, “Electromagnetic scatter-
ing by surfaces of arbitrary shape,” IEEE Trans. Antennas & Propa-
gat., vol.30, no.3, pp.409-418, May 1982.

IEICE TRANS. ELECTRON., VOL.E99-C, NO.7 JULY 2016

Yan Chen received the B.S. degree from
ShanDong Normal University, JiNan, China,
in 2012, and is currently working toward the
Ph.D. degree at Xidian University. His current
research interests is computational electromag-
netic.

Yu Zhang received the B.S., M.S., and
Ph.D. degrees from Xidian University, Xi’an,
China, in 1999, 2002, and 2004, respectively.
He joined Xidian University as a faculty mem-
ber in 2004. He was a visiting scholar and
Adjunct Professor at Syracuse University from
2006 to 2009. As principal investigator, he is
doing or has completed some projects including
project of NSFC.

Guanghui Zhang received the B.S. de-
gree from Hunan University, ChangSha, China,
in 2012, and is currently working toward the
M.S. degree at Xidian University. His current
research interests is computational electromag-
netic.

Xunwang Zhao received the B.S., and
Ph.D. degrees from Xidian University, Xi’an,
China, in 2004, and 2008, respectively. He
joined Xidian University as a faculty member in
2008. As principal investigator, he is doing or
has completed some projects including project
of NSFC.

ShaoHua Wu received the Ph.D. de-
gree from Tsinghua University, Beijing, China,
in 2013. He has joined the Inspur (Beijing)
Electronic Information Industry Co., Ltd. since
2013. His current work focuses on the high per-
formance computing.

http://dx.doi.org/10.1109/9780470544631
http://dx.doi.org/10.1155/2012/745893
http://dx.doi.org/10.1002/9780470495094
http://dx.doi.org/10.1109/tap.2014.2361135
http://dx.doi.org/10.1155/2015/690510
http://dx.doi.org/10.1049/cp.2013.0457
http://dx.doi.org/10.1016/b978-0-12-388426-8.00020-3
http://dx.doi.org/10.1109/tap.2014.2350536
http://dx.doi.org/10.1109/lawp.2014.2360415
http://dx.doi.org/10.1016/b978-0-12-410414-3.00014-1
http://dx.doi.org/10.1109/aps.2015.7304765
http://dx.doi.org/10.1137/1.9780898719611
http://dx.doi.org/10.1109/tap.1982.1142818

CHEN et al.: HYBRID MIC/CPU PARALLEL IMPLEMENTATION OF MOM ON MIC CLUSTER FOR ELECTROMAGNETIC PROBLEMS
743

Qing Zhang received the M.S. degree from
Huazhong University of Science and Technol-
ogy, WuHan, China, in 2009. He joined Inspur
as a faculty member in 2009. He is currently
the HPC Application R&D Manager at Inspur
Group. He is also Inspur-Intel China Parallel
Computing Joint Lab and Inspur-Nvidia GPU
Joint Lab Chief Architect.

XiaoPeng Yang received the B.E. and M.E.
degrees from Xidian University, Xi’an, China,
in 1999 and 2002, and the Ph.D degree from
Tohoku University, Sendai, Japan, in 2007, re-
spectively. He joined School of Information
and Electronics, Beijing Institute of Technology,
Beijing, China.

