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On the Complexity of the LWR-Solving BKW Algorithm∗
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SUMMARY The Blum-Kalai-Wasserman algorithm (BKW) is an
algorithm for solving the learning parity with noise problem, which was
then adapted for solving the learning with errors problem (LWE) by
Albrecht et al. Duc et al. applied BKW also to the learning with
rounding problem (LWR). The number of blocks is a parameter of BKW.
By optimizing the number of blocks, we can minimize the time complexity
of BKW. However, Duc et al. did not derive the optimal number of
blocks theoretically, but they searched for it numerically. Duc et al. also
showed that the required number of samples for BKW for solving LWE
can be dramatically decreased using Lyubashevsky’s idea. However, it
is not shown that his idea is also applicable to LWR. In this paper, we
theoretically derive the asymptotically optimal number of blocks, and then
analyze the minimum asymptotic time complexity of the algorithm. We
also show that Lyubashevsky’s idea can be applied to LWR-solving BKW,
under a heuristic assumption that is regularly used in the analysis of LPN-
solving BKW. Furthermore, we derive an equation that relates the Gaussian
parameter σ of LWE and the modulus p of LWR. When σ and p satisfy the
equation, the asymptotic time complexity of BKW to solve LWE and LWR
are the same.
key words: lattice, learning with errors, learning with rounding, Blum-
Kalai-Wasserman algorithm

1. Introduction

Background.
The National Institute of Standards and Technology

(NIST) initiated post-quantum cryptography (PQC) stan-
dardization [2] in December 2016. In the list of first-round
candidates, there are several learning with errors problem
(LWE) based schemes such as [3]–[7], and learning with
rounding problem (LWR) based schemes such as [8]–[11].
Subsequently, NIST announced 26 second-round candidates
selected from the 69 first-round candidates in January 2019.
LWE-based [3]–[5] and LWR-based [10], [12] schemes still
remain on the second-round candidate list. Therefore,
studies on the algorithms for solving LWE and LWR are
important for design and security analysis of post-quantum
cryptosystems.

LWE, which is an extension of the learning parity with
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noise problem (LPN), is introduced by Regev [13]. An
adversary of LWE receives samples (a j, 〈a j, s〉 + e j) ∈ Zn

q ×

Zq ( j = 1, 2, . . . ) from the oracle of LWE, where a j is a
uniformly random vector in Zn

q, s is a fixed secret vector
in Zn

q, and e j ∈ Zq is a noise (usually, a discrete Gaussian
noise). The goal of the adversary is to recover secret vector
s. LPN has a fixed modulus q = 2 and the noise follows the
Bernoulli distribution. Regev [13] presents a reduction from
worst-case lattice problems to the average-case LWE.

We can classify algorithms for solving LWE into two
families. The first family uses lattice reduction techniques,
which have been extensively studied [14]–[16]. The
expected complexity of these algorithms is often considered
when parameters for LWE-based schemes are discussed,
such as in [17]. The second family is tailor-made for
LPN and LWE without lattice reduction, which includes
the main subject of this paper: the Blum-Kalai-Wasserman
algorithm (BKW) [18]. BKW can be described as a “block-
wise” and addition-only variant of the standard Gaussian
elimination. First, we separate the vector a j ∈ Zn

q into
a blocks: We can write a j = (a j,1||a j,2|| . . . ||a j,a), where
a j,1, . . . , a j,a ∈ Z

n
a
q , and then, by adding the samples together

like the Gaussian elimination, we obtain “reduced” samples
a′j = (a′j,1||0|| . . . ||0). As reported in [19], improved variants
of BKW such as [20], [21] are some of the asymptotically
fastest algorithms. Although some algorithms [22] based on
lattice reduction outperform these BKW-like algorithms for
some parameter-sets (q, σ), it allows a heuristic [19].

LWR is proposed by Banerjee et al. [23] with
its reduction from LWE. We can consider LWR as a
deterministic variant of LWE in which the noise additions
are replaced with deterministic rounding operations. An
adversary of LWR receives samples (a j, d

p
q 〈a j, s〉c) ∈ Zn

q ×

Zp ( j = 1, 2, . . . ) from the LWR oracle, where p is a
rounding modulus such that p < q. Compared with LWE-
based cryptographic schemes, LWR-based schemes can be
simply implemented because they replace the rich Gaussian
error sampling process of the LWE-based schemes with
the rounding operations (which can be simply implemented
by rounding off the lower-order bits). LWR was initially
applied to low-depth pseudorandom functions [23], [24],
and there have been a number of applications, e.g., lossy
trapdoor functions [25], public-key cryptosystems [10], [12]
and key exchange protocol [9].

However, few studies have examined the complexity of
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LWR, while the complexity of LWE has been extensively
studied. The complexity of LWR is often estimated by
adopting the LWE-solving algorithms to LWR. Albrecht
et al. [17] estimate the cost of running primal and
dual lattice attacks, which is based on lattice reduction
techniques, against lattice-based schemes including LWE-
based and LWR-based schemes in the list of the first-round
submissions for the NIST PQC. They consider that the cost
of lattice attacks for LWE and LWR are the same when the
equation σ =

q
2
√

3p
holds, as considered in [8], [10]. This

equation is simply derived by comparing the variance of the
Gaussian noise of LWE and the “rounding error” of LWR.
Note that the equation, which relates the hardness of LWR
and LWE, is limited to attacks based on lattice reduction
techniques, and it is not shown that the conversion equation
can be applied for BKW.
Previous Works. BKW initially targeted LPN, and its
time complexity is sub-exponential in 2O(n/ log n). Albrecht
et al. [26] expanded it to solve LWE whose time complexity
is qO(n/ log n). Duc et al. [27] improved Albrecht et al.’s BKW
and also introduced its variant for LWR, which was the first
algorithmic analysis of LWR. They showed that the time
complexity of the LWR-solving algorithm is qO(n/ log n) when
the number of blocks is a = O(log n). However, they did
not show that this choice of a is optimal; thus the minimum
time complexity of the algorithm is not shown.

Furthermore, Duc et al. applied Lyubashevsky’s idea
[28] to LWE and showed that the minimum required number
of samples using his method is n1+(log q+1)/ log n, at the
expense of increasing the size of the noise. However, they
did not show that Lyubashevsky’s idea can also be applied
to LWR.

After BKW proposed by Albrecht et al., new variants
of BKW [20], [21], [29], [30] for solving the small-secret
LWE, whose secret vector s is extremely small (e.g. s ∈
{0, 1}n), have been proposed. These algorithms can be
applied to the general LWE, whose secret vector s is uniform
in Zn

q, by transforming the general LWE to small-secret LWE
problem with a technique called secret-error switching, and
it is shown that some of these algorithms [20], [21] solve the
general LWE problem faster. However, it is not shown that
these new types of BKW can be applied to LWR. In order to
apply the secret-error switching technique to LWR, we need
to convert LWR samples into LWE samples with uniform
error by substituting the LWR samples (a j, d

p
q 〈a j, s〉c) with

(a j,
q
p d

p
q 〈a j, s〉c), and solving this converted LWR with their

algorithm is out of reach, as mentioned in [21]. On the
other hand, Duc et al.’s LWR-solving BKW does not need
to convert LWR samples into LWE samples; the algorithm is
tailor-made for solving LWR.
Our Contribution. Our work mainly targets the asymptotic
complexity for solving the LWR problem, rather than for
specific LWR instances with the parameters used in NIST
PQC candidates.

In Sect. 3, we first review Duc et al.’s LWR-solving
BKW, and then derive the time complexity in a simpler

form. Subsequently, we theoretically derive the optimal
choice of the number of blocks a that asymptotically
minimize the time complexity, while Duc et al. searched
numerically for the optimal a in [27]]. Thus, an entirely
theoretical analysis of the time complexity of the algorithm
is shown in this paper: We show that the minimum time
complexity of BKW is t = qO(n/ log n) and the required
number of samples is m = qO(n/ log n). We also confirm that
the derived parameter is accurately optimal by showing the
results of some concrete instances of LWR, and that they fit
the results given by Duc et al.

In Sect. 3.4, we derive a conversion equation between
the Gaussian parameterσ in LWE and the rounding modulus
p in LWR, by comparing the time complexity of BKW for
LWE and LWR: We show that the time complexity of BKW
to solve LWE and that to solve LWR are the same when σ
and p satisfy equation σ =

q
2
√

3p
. This equation coincides

with the equation derived from the complexity analysis of
the attacks based on lattice reduction techniques. Thus,
our result means that the equation is applicable also for
complexity analysis based on BKW.

In Sect. 4, we apply Lyubashevsky’s idea (hereinafter
called sample amplification) to the LWR problem, and show
that the minimum required number of samples for LWR-
solving BKW with sample amplification is m = O(n log q),
while it is shown that the LWR-solving BKW requires
m = qO(n/ log n) samples in Sect. 3. This result means
that the LWR-solving BKW algorithm is also applicable
in a practical situation where we can obtain only a
polynomial-size number of LWR samples, using the sample
amplification technique.

2. Preliminaries

Notations.
We denote the logarithm of base 2 and the natural

logarithm as log(·) and ln(·), respectively. We denote the
imaginary unit as i, and a real part of x ∈ C as Re(x). We
let d·c : R → Z be the rounding function that rounds to the
closest integer (in the case of equality, we take the floor).
We define θq := e

2πi
q and also θp := e

2πi
p . We write vectors in

bold. By a j we denote the j-th vector of the list of vectors.
We denote a partial vector of a vector a = (a1, a2, . . . , an) by
a(k,l) := (ak, ak+1, . . . , al), where 1 ≤ k ≤ l ≤ n. By (a||b) we
denote the concatenation of two vectors a and b. We denote
the Hamming weight of the vector x by Hw(x). We denote
by 〈·, ·〉 the usual dot product of two vectors, and we define
〈·, ·〉q := 〈·, ·〉 (mod q). We denote the empty set by ∅. We

write s
U
←− S to denote the process of sampling s uniformly

at random over S, and we write e← χ to denote the process
of sampling e according to a probability distribution χ.

2.1 LWE and LWR

LWE oracle and LWE are defined as follows.

Definition 1 (LWE oracle). Let n, q be positive integers.
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Learning with Error (LWE) oracle LWEs,χ for a fixed vector
s ∈ Zn

q and probability distribution χ over Zq is an oracle

returning
{
(a, c)

∣∣∣∣∣ c = 〈a, s〉 + e mod q, a
U
←− Zn

q, e← χ
}
.

For the distribution of noise χ, variants of the Gaussian
distribution that is discretized into Zq are used. In this
paper, we consider two types of Gaussian distributions that
are considered in [27]; the rounded Gaussian distribution
Ψ̄σ,q and the discrete Gaussian distribution Dσ,q. The
probability mass function of Ψ̄σ,q for integer x in the interval

] − q
2 ,

q
2 ], is given by Pr[x ← Ψ̄σ,q] =

∫ x+ 1
2

x− 1
2
g(θ; q, σ)dθ,

where g(θ; q, σ) :=
∑∞

l=−∞
1

σ
√

2π
e
−(θ+lq)2

2σ2 , for θ ∈
]
−

q
2 ,

q
2

]
.

The probability mass function of Dσ,q is, for x an integer

in ] − q
2 ,

q
2 ], Pr[x← Dσ,q] = e−

x2

2σ2 /
∑
y∈]− q

2 ,
q
2 ] e−

y2

2σ2 .

Definition 2 (LWE problem). LWE is the problem of
recovering the hidden secret s given m samples (a j, c j) ∈
Zn

q × Zq ( j = 1, 2, . . . ,m) received from LWEs,χ.

LWE oracle and LWE, which are the main focus of this
paper, are defined as follows.

Definition 3 (LWR oracle). Let n, q be natural numbers.
Learning with Rounding (LWR) oracle LWRs,p for a hidden
vector s ∈ Zn

q and rounding modulus p is an oracle returning{
(a, c)

∣∣∣∣∣ c =
⌈

p
q 〈a, s〉q

⌋
, a

U
←− Zn

q

}
.

Definition 4 (LWR problem). LWR is the problem of
recovering the hidden secret s given m samples (a j, c j) ∈
Zk

q × Zq ( j = 1, 2, . . . ,m) received from LWRs,p.

The rounding calculation in the LWR sample generates
a “rounding error,” which is similar to the Gaussian noise
added in the LWE sample. Duc et al. proved that “rounding
error” follows a uniform distribution, in Lemma 19 in [27].

Lemma 5 (Lemma 19. in [27]). Let n and p ≥ 2 be positive
integers, q > p be prime. Let (a, c) be a random sample
from an LWR oracle LWRs,p. Then, the “rounding error,”
given by

ξ =
p
q
〈a, s〉q − c, (1)

follows the uniform distribution in a discrete subset of
[− 1

2 ,
1
2 ] with mean zero. Furthermore, the characteristic

function of ξ, for t ∈ R,0, is

φξ(t) := E[e±itξ] =
sin( t

2 )

q sin( t
2q )

. (2)

Banerjee et al., showed a reduction from LWE to
LWR, in the paper [23] in which they first introduced LWR.
Alwen et al. [25] also showed a reduction without the super-
polynomial parameters, but it limits the number of samples
that the LWR oracle allows the adversary to receive.

2.2 Duc et al.’s BKW for LWR

We recall Duc et al.’s BKW to solve LWR. BKW consists
of three stages: 1) Sample reduction, 2) Hypothesis testing,
and 3) Back substitution. For simplicity, we consider only
the case that the number of blocks a and the block length b
satisfy ab = n.
Stage 1: Sample reduction. We receive m samples
{(a j, c j)}mj=1 from LWR oracle LWRs,p, and represent the set
of samples as S := {(a j, c j)}mj=1. We separate the vector
a j ∈ Zn

q into a blocks whose length are b: We can write
a j = (a j(1,b)||a j(b+1,2b)|| . . . ||a j((a−1)b+1,ab)). In Stage 1, our
goal is to produce samples whose elements are all zero
except for the first block, with the addition or subtraction
of pairs of samples. For l = 0, we extract a sample
(a, c) from S, and search another sample (a′, c′) such that
(a±a′)((a−1)b+1,ab) = 0, then we store the sample (a±a′, c±c′)
in the temporary set S′. If a sample (a, c) already holds
a((a−1)b+1,ab) = 0, we directly store it in S′. If we cannot
find the sample (a′, c′) such that (a ± a′)((a−1)b+1,ab) = 0,
we store the sample (a, c) in T0. After we finish extracting
samples and empty the set S, we renew S ← S′ and move
on to the next step for l = 1. In this manner, we recursively
generate the sets Tl for 0 ≤ l ≤ a − 2, and then we set
Ta−1 ← S in the end. Note that the samples (a, c) in Tl
hold a((a−l)b+1,ab) = 0 (except for l = 0). In particular, the
samples (a, c) in Ta−1 hold a(b+1,ab) = 0. We may think
of the reduced samples in Ta−1 as the set of samples of the
b-dimensional LWR, although the variance of their noise is
larger than those of the original samples. Hereinafter, the
samples in Tl are termed “reduced samples,” and represent
Tl = {(al

j, c
l
j)}

ml
j=1, where ml := #Tl. Note that the maximum

number of samples whose (a − l)-th block cannot vanish is
qb−1

2 , and the minimum (worst) number of reduced samples
in Ta−1 (i.e. minimum value of ma−1) is

m′ = m − (a − 1)
qb − 1

2
. (3)

Stage 2: Hypothesis testing. For simplicity, we explain
Stage 2 and Stage 3 only for l = a − 1†. For simplicity of
notation, we define a b-dimensional vector a j := (aa−1

j )
(1,b)

,

and denote c j := ca−1
j . The goal of this stage is to estimate

the first b elements of s, denoted as s(1,b). We define the
function f (y) :=

∑m′
j=1 1{a j=y}θ

c j
p , where y ∈ Zb

q, θp := e
2πi
p ,

and 1{a j=y} is 1 when a j = y is true and 0 otherwise. The
discrete Fourier transform of f is

f̂ (z) :=
∑
y∈Zb

q

f (y)θ−〈y,z〉q =

m′∑
j=1

θ
−( p

q 〈a j,z〉−c j)
p . (4)

Then, we search the max Re( f̂ (z)), and output s(1,b) =

†In Sect. 3.1, we consider only the time complexity to recover
s(1,b) because the whole time complexity of the algorithm is at most
a positive constant multiple of it.
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argmaxz Re( f̂ (z)). We explain how the output estimates the
secret vector. We define the “rounding error” of the reduced
samples {(a j, c j)}m

′

j=1 by ξ j := p
q 〈a j, s(1,b)〉 − c j, as like (1).

Recall that the a j is produced by a − 1 times of the “tree-
like” addition of the original samples in the process of Stage
1, i.e. a j is the sum of the 2a−1 original samples, thus we can
write a j = (a j,1±a j,2±· · ·±a j,2a−1 )(1,b), where a j,1, . . . , a j,2a−1

are the original samples. Similarly, we can write c j = c j,1 ±

c j,2±· · ·±c j,2a−1 , and obtain ξ j =
p
q 〈a j,1±a j,2±· · ·±a j,2a−1 , s〉−

(c j,1 ± c j,2 ± · · · ± c j,2a−1 ) =
∑2a−1

k=1
p
q 〈a j,k, s〉 − c j,k =

∑2a−1

k=1 ξ j,k,

where the ξ j,k are independent rounding errors from original
samples. From the above equation and (4), when z = s(1,b),

we obtain f̂ (s(1,b)) =
∑m′

j=1 θ
−(

∑2a−1
k=1 ξ j,k)

p . On the other hand,
when z , s(1,b),

p
q 〈a j, z〉 − c j distribute uniformly in ]0, p].

Thus, when we select an appropriate value of parameter
a such that the sum of the rounding errors

∑2a−1

k=1 ξ j,k does not
grow too large, Re( f̂ (s)) is so much larger than Re( f̂ (z)) that
the hypothesis test succeeds with high probability.
Stage 3: Back substitution. Using the obtained s(1,b),
update the sets Tl by zeroing-out b elements in each sample:
Replace all (a, c) ∈ Tl′ for 0 ≤ l′ < a− 1 with (a′, c′), where
a′ = (0||a(b+1,n)) ∈ Zn

q, c′ = c − p
q 〈a(1,b), s(1,b)〉q ∈ Zp. Then

back to Stage 2 to obtain s(b+1,2b).
Repeating a rounds of Stages 2 to 3, we esti-

mate s(1,b), s(b+1,2b), . . . , s(a(b−1)+1,ab), and obtain s =

(s(1,b)||s(b+1,2b)|| . . . ||s((a−1)b+1,ab)).

3. Our Analysis of BKW

We derive the minimum time complexity and the minimum
number of required samples, by optimizing the number of
blocks a which is a parameter of BKW. As with Duc et al.,
we consider only the case that the block length b satisfy
n = ab, for simplicity. Therefore, the block length b is
determined by the number of blocks a, as b = n

a . Note
that the complexity of BKW for the general case, where
n = (a − 1) · b + n′ and n′ < b, is asymptotically the same
with that for the case where ab = n. We always consider q
to be a prime, and q > p > 4 because we need the condition
to prove Lemma 7.

In Sect. 3.1, we analyze the time complexity of BKW
for solving LWR, using a as a parameter. Then, we derive
the optimal value of a that asymptotically minimizes the
asymptotic time complexity in Sect. 3.2. We confirm that
the optimal value of a minimizes the time complexity
of the algorithm in Sect. 3.3, by calculating the concrete
time complexity of BKW for several LWR instances.
Furthermore, in Sect. 3.4, we derive an equation that relates
σ of LWE and p of LWR. Whenσ and p satisfy the equation,
the asymptotic time complexity of BKW to solve LWE and
LWR are the same.

3.1 Complexity

We analyze the time complexity and the required number

of samples to solve LWR. We asymptotically analyze the
time complexity and make it in a simple form so that we
can theoretically derive the optimal number of blocks a in
Sect. 3.2. We first refer to Lemma 6 (Theorem 23. in [27]),
which is the analysis of the minimum number of samples
needed to solve LWR.

Lemma 6 (Theorem 23. in [27]). We define the probability
that the algorithm cannot recover the correct answer ε :=
Pr

[
argmaxzRe

(
f̂ (z)

)
, s(1,b)

]
. Then, the number of samples

required to solve LWR with oracle LWRs,p is

mLWR =
8n
a

ln
(q
ε

) (
(Rq,p)2a−1

− (3/p)2a−1)−2

+ (a − 1)
q

n
a − 1
2

, (5)

where Rq,p :=
sin

(
π
p

)
q sin

(
π
pq

) .
Note that Rq,p is derived based on the characteristic

function of the “rounding error” given in (2): Rq,p = φξ( 2π
p )

holds. As discussed later, this mLWR in (5) is the main term
of the time complexity of the algorithm.

In the following Lemma 7, we analyze the asymptotic
behavior of the complicated part of the mLWR. We describe
it in a simpler form in order to enable the analysis of the
minimum time complexity, which is given later in Sect. 3.2.
Note that we use the error rate of the LWR sample αlwr :=
1
p

√
π
6 [8] to describe the time complexity for simplicity of

notation.

Lemma 7. Let αlwr := 1
p

√
π
6 . When q > p > 4, we have

(
(Rq,p)2a−1

− (3/p)2a−1)−2
= eπα

2
lwr2

a
+ O

(
1

p2q2

)
. (6)

Proof. When q > p > 4, we obtain Rq,p =
p
π sin

(
π
p

)
pq
π sin

(
π
pq

) ≥
p
π

sin
(
π
p

)
. Since p

π
sin

(
π
p

)
is monotonically increasing when

p > 4, we obtain Rq,p > 4
π

sin
(
π
4

)
' 0.9003, and

Rq,p > 3/p. Let x = (Rq,p)2a−1
and y = (3/p)2a−1

,
then we have y

x < 1. Using Taylor expansion, we
obtain (x − y)−2 = 1

x2

(
1 + O( yx )

)
. Therefore, we obtain(

(Rq,p)2a−1
− (3/p)2a−1)−2

= (Rq,p)−2a
+ O

(
1

p2a−1

)
. Using

Taylor expansion, we obtain Rq,p = 1 − π2

6p2 + O
(

1
p2q2

)
= 1 −

πα2
lwr +O

(
1

p2q2

)
, and Rq,p−e−πα

2
lwr = O

(
1

p2q2

)
. Consequently,

from this equation, we obtain
(
Rq,p

)−2a

= eπα
2
lwr2

a
+ O

(
1

p2q2

)
.

Thus, we have (6).

We can now derive the number of required samples and
the time complexity of the algorithm.

Theorem 8. Let n and p > 4 be positive integers, q > p
be a prime, and a be a natural number. Fix ε ∈ (0, 1).
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When at least mLWR = poly(eπα
2
lwr2

a
, q

n
a ) samples are given

by LWR oracle LWRs,p, the time complexity of BKW to
recover secret s with a probability of at least 1 − ε is

tLWR = poly(eπα
2
lwr2

a
, q

n
a ), where αlwr = 1

p

√
π
6 .

Proof. From Lemma 6 and Lemma 7, the number of
required samples to solve LWR is

mLWR =
8n
a

ln
(q
ε

) (
eπα

2
lwr2

a
+ O

(
1

p2q2

))
+ (a − 1)

q
n
a − 1
2

. (7)

Recall that the number of the “reduced” samples we
obtain after Stage 1 is m′ = mLWR − (a − 1) q

n
a −1
2 =

8n
a ln

(
q
ε

) (
eπα

2
lwr2

a
+ O

(
1

p2q2

))
, which is defined in (3).

In Stage 1, since we apply the addition for O(mLWR)
samples in Zn

q for a − 1 times, the time complexity is
t1 = O(anmLWR). In Stage 2, we first calculate f (y) :=∑m′

j=1 1{a j=y}θ
c j
p , for all y ∈ Zb

q. Since we need only to
calculate f (y) for y ∈ {a j}

m′
j=1, the time complexity for

calculating f (y) is O(m′) = O(eπα
2
lwr2

a
( n

a ) ln q). After that,
we compute the DFT of f , the complexity of which is
O(q

n
a ( n

a ) ln q). Finally, we search max f̂ (z) defined in (4) for

all z ∈ Z
n
a
q , the time complexity of which is O(q

n
a n

a ). Thus,
the time complexity of Stage 2 is t2 = O(eπα

2
lwr2

a
( n

a ) ln q) +

O(q
n
a ( n

a ) ln q). In Stage 3, since we update all samples stored
in Tl′ (the total number of these samples is mLWR −m′) with
inner product calculation of the vectors in Z

n
a
q , and the time

complexity is t3 = O((mLWR − m′) n
a ) = O(q

n
a n

a ). Therefore,
the time complexity of BKW is tLWR = t1 + t2 + t3 =

O(eπα
2
lwr2

a
( n

a ) ln q) + O(q
n
a ( n

a ) ln q) = poly(eπα
2
lwr2

a
, q

n
a ).

3.2 Optimization

We analyze the optimal choice for input parameter a to
asymptotically minimize the asymptotic time complexity of
BKW to solve LWR. Furthermore, we analyze the minimum
time complexity.

Theorem 9 (Optimal choice of a). The optimal parameter
a that asymptotically minimizes the asymptotic time
complexity of the algorithm to solve LWR is

a =

 1
ln 2

W
n ln q ln 2

πα2
lwr

 (8)

where W is Lambert W function [31].

Proof. From Theorem 8, we obtain the time complexity
t = O(eπα

2
lwr2

a
( n

a ) ln q) + O(q
n
a ( n

a ) ln q). Note that eπα
2
lwr2

a

monotonically increases and q
n
a monotonically decreases,

as a increases. Therefore, the time complexity is

asymptotically minimized† when a satisfies

eπα
2
lwr2

a
= q

n
a . (9)

From (9), by simple arithmetic, we obtain (ln 2)ae(ln 2)a =
n ln q ln 2
πα2

lwr
. To solve this equation in terms of a, we use the

Lambert W function, which satisfies W(zez) = z. We obtain
W((ln 2)ae(ln 2)a) = (ln 2)a, and (8).

Since the Lambert function W(x) has an asymptotic
form as W(x) = ln(x) − ln(ln(x)) + o(1), we can evaluate
a = 1

ln 2

(
ln

(
n ln q ln 2
πα2

lwr

)
− ln ln

(
n ln q ln 2
πα2

lwr

))
+ o(1). Furthermore,

when we consider q to be at most exponential of n (this
range of q includes most of q used in LWE cryptosystems),
we obtain log q = O(n), and a = O(log n). Using this value,
(9), and Theorem 8, we obtain the corollary below.

Corollary 10 (Minimum time complexity). Let n and q >

p > 4 be prime numbers. Let a =

⌊
1

ln 2 W
(

n ln q ln 2
πα2

lwr

)⌋
, where

αlwr = 1
p

√
π
6 . Fix ε ∈ (0, 1). When at least qO(n/ log n) samples

are given by LWR oracle LWRs,p, the time complexity of
BKW to recover secret s with a probability of at least 1 − ε
is qO(n/ log n).

3.3 Concrete Analysis

Table 1 shows the concrete time complexity of BKW. We
denote the time complexity of the LWR-solving BKW by
CLWR. Then, similar to Theorem 17 in [27], we obtain

CLWR =
1
4

(a − 2)(a − 1)
(

2n
a

+ 1
)

(q
n
a − 1)

+nq
n
a log(q)

+

a−1∑
j=0

m′LWR
j,ε

(
a − 1 − j

2
(n + 2) + 2

)
, (10)

where m′LWR
j,ε := 8n

a ln
(

q
ε

) (
R2a−1− j

q,p − (3/p)2a−1− j)−2
. We use

the same parameters n, q and p as in Table 2 in [27]: For
type (a), q = nextprime(d(2σn)3e), p = nextprime(d 3

√
qe)

and for type (b), p = 13, q = nextprime(d2σnpe), where
σ = n2

√
2πn(log(n))2 . These parameters are selected based on

Corollary 4.2 in [25]. Type (a) parameters maximize the
efficiency, and type (b) parameters minimize the modulus to
error ratio (q/σ). Note that we also ignored the constraint
on the number of samples m as Duc et al. did. We set

a =

⌊
1

ln 2 W
(

n ln q ln 2
πα2

lwr

)⌋
and calculate mLWR and CLWR in (5)

and (10), respectively. We also set ε = 0.01 in Table 1,

†Let ã satisfies eπα
2
lwr2

ã
= qn/ã, and Let tã be the time complexity

with a = ã, namely tã = O(eπα
2
lwr2

ã
( n

a ) ln q). If we set a > ã, then we
obtain ta = O(eπα

2
lwr2

a
( n

a ) ln q), and ta > tã since eπα
2
lwr2

a
> eπα

2
lwr2

ã
.

If we set a < ã, then we obtain t = O(q
n
a ( n

a ) ln q), and ta > tã since
q

n
a > qn/ã. Therefore, ã is asymptotically optimal.
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Table 1 Time and sample complexity for the LWR-solving BKW.

LWR instance: type (a) LWR instance: type (b)
n q p a log(CLWR) log(mLWR) q p a log(CLWR) log(mLWR)

32 6318667 191 19∗ 51.00 42.70 2411 13 11∗ 44.53 37.00
40 23166277 293 20∗ 60.66 52.18 3709 13 11∗ 53.24 45.44
64 383056211 733 24† (23) 92.70† (92.10) 83.08† (82.80) 9461 13 12∗ 81.48 72.92
80 1492443083 1151 25∗ 110.82 101.11 14867 13 12∗ 103.76 94.86
96 4587061889 1663 26∗ 132.17 122.15 21611 13 12∗ 126.83 117.66

112 11942217841 2287 28∗ 148.00 137.68 29717 13 13∗ 140.08 130.63
128 27498355153 3023 29∗ 167.44 156.88 39241 13 13∗ 162.50 152.84
∗ : optimal value. † : not optimal value. The optimal values are shown in parenthesis.

in accordance with the setting given in Table 2 of [27]. In
Table 1, we can observe that our choice of the number of
blocks a asymptotically (but almost exactly) minimizes the
time complexity of the algorithm.

3.4 Relation between LWE and LWR

We compare the time complexity of BKW to solve LWE
and LWR, and then derive a relation between p in LWR
and σ in LWE. We showed that the time complexity of
BKW to solve LWR is poly(eπα

2
lwr2

a
, q

n
a ) in Theorem 8. On

the other hand, based on Theorem 16 in [27], Kaminakaya
et al. [32] analyzed the time complexity of BKW to solve
LWE, and showed that the complexity is poly(eπα

2
lwe2a

, q
n
a ),

where αlwe :=
√

2πσ
q . We describe the result later in

Lemma 12 and refer to the proof given in [32]. As a
preparation, we refer to Theorem 16 in [27], which shows
the number of samples required to solve LWE:

Lemma 11 (Theorem 16. in [27]). Let ε := Pr
[
argmaxz

Re
(

f̂ (z)
)
, s(1,b)

]
be the probability that the algorithm does

not recover the correct answer. Then, the number of samples
required to solve LWE with oracle LWEs,χ is mLWE =

8n
a ln

(
q
ε

)
(Rq,σ,χ)−2a

+ (a − 1) q
n
a −1
2 , where

Rq,σ,χ =

 q
π

sin
(
π
q

)
e−2π2σ2/q2

when χ = Ψ̄q,σ,

1 − 2π2σ2

q2 when χ = Dq,σ.

We can show the time complexity of BKW for LWE
based on this Lemma:

Lemma 12 ([32]). Let a and b be natural numbers such that
ab = n. There is an algorithm to solve LWE whose oracle is
LWEs,χ, with the number of samples m = poly(eπα

2
lwe2a

, q
n
a ),

and the time complexity t = poly(eπα
2
lwe2a

, q
n
a ), where αlwe :=

√
2πσ
q , both when χ = Dσ,q and χ = Ψ̄σ,q.

Proof. Here, we refer the proof given in [32]. Similar to the
proof of Theorem 8, using Lemma 11, we can prove that
there is an algorithm to solve LWE whose oracle is LWEs,χ,

with number of samples m = poly(
(
Rq,σ,χ

)−2a

, q
n
a ), and time

complexity t = poly(
(
Rq,σ,χ

)−2a

, q
n
a ). Thus, we need only

prove that Rq,σ,χ = O(e−πα
2
lwe ) holds, both when χ = Ψ̄σ,q

and when χ = Dσ,q. When χ = Ψ̄σ,q, since sin
(
π
q

)
< π

q , we

obtain Rq,σ,χ < e−2π2σ2/q2
= e−πα

2
lwe , which means Rq,σ,χ =

O(e−πα
2
lwe ). When χ = Dσ,q, using Taylor expansion, we

obtain Rq,σ,χ−e−πα
2
lwe = 1−πα2

lwe−e−πα
2
lwe = −

α4
lwe
2 +O(α6

lwe),
thus we obtain Rq,σ,χ = e−πα

2
lwe + O(α4

lwe).

We can now derive the relation between the parameters
of LWE and LWR.

Corollary 13. The time complexity of BKW to solve LWE
over Zn

q with Gaussian parameter σ and that to solve LWR
over Zn

q with rounding modulus p are asymptotically the
same, when q, p and σ satisfy

σ =
q

2
√

3p
. (11)

Proof. The time complexity of BKW to solve LWE and
LWR are given in Theorem 8 and Lemma 12, respectively.
Solving the equation παlwe = παlwr for σ, we obtain
(11).

3.5 Application to Variants of LWR

Most of LWE-based [3], [5] or LWR-based [10], [12]
schemes are based on the ring variants of LWE or
LWR, which are Ring-LWE (RLWE) [33], Module-LWE
(MLWE) [34], Ring-LWR (RLWR) [23] and Module-LWR
(MLWR) [10], [12]. In RLWE, polynomials s, ai, and ei
are sampled from a ring Rq := Zq/φ for some polynomial
φ of degree n, e.g. φ = Xn + 1. Given a list of RLWE
samples (ai, ai · s + ei)m

i=1, Search-RLWE is to recover s
and Decision-RLWE is to distinguish the list of samples
from a list uniformly sampled from Rq × Rq. MLWE is a
problem which generalizes RLWE. In MLWE, polynomial
vectors ai, s, and polynomials ei are drawn from Rk

q and Rq
respectively. Search-MLWE is to recover s from a list of
MLWE samples (ai, < 〈ai, s〉 + ei)m

i=1. Decision-MLWE is to
distinguish the list of samples from a list uniformly sampled
from Rk

q × Rq. In Search-RLWR and Decision-RLWR, a
list of RLWR samples (ai, d

p
q ai · sc + ei)

m

i=1
∈ Rq × Rp is

given, where d·c is the function that rounds the coefficients
of an input polynomial to the nearest integer. In Search-
MLWR and Decision-MLWR, a list of MLWR samples
(ai, d

p
q 〈ai · s〉c + ei)

m

i=1
∈ Rk

q × Rp,
The complexity of RLWE, MLWE, RLWR and MLWR
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are evaluated by interpreting those ring elements as integer
vectors, in [17]: They convert those variants to LWE or
LWR. Specifically, let us consider the case when we are
given RLWE sample (a, b = a · s + e) ∈ Rq × Rq with
φ = Xn + 1, as an example. Let us denote a :=

∑n−1
i=0 aiXi,

b :=
∑n−1

i=0 biXi, s :=
∑n−1

i=0 siX−i, e :=
∑n−1

i=0 eiXi, a =

(a0, . . . , an−1), and s = (s0, . . . , sn−1). Then, we notice that
b0 = 〈a, s〉 + e0, and (a, b0) ∈ Zn

q × Zq is an LWE sample.
Using this simple conversion, the bit security of all the LWE,
LWR and NTRU based schemes is estimated. In the same
way as this, using the conversion, the BKW algorithm is also
simply applicable to the ring variants. Thus, our analysis
of the BKW algorithm can also be applied to RLWR and
MLWR if we can obtain sufficiently many samples.

4. Using Fewer Samples

We apply the sample amplification idea introduced by
Lyubashevsky [28] to the LWR-solving BKW, and we show
that the required number of samples of BKW can be
decreased to polynomial size, increasing the size of the
rounding error in LWR samples,

4.1 Sample Amplification Technique

We show how to apply the sample amplification idea
to LWR-solving BKW. We define a variant LWR oracle
LWR′s,p,χ, which regards the rounding error as a stochastic
variable. And then, we obtain Corollary 15.

Definition 14. Let n, q be natural numbers. LWR oracle
LWR′s,p,χ for a fixed vector s ∈ Zn

q is an oracle returning{
(a, c) =

(
a, p

q 〈a j, s〉q + ξ
) ∣∣∣∣∣ a

U
←− Zn

q, ξ ← χ
}
, where χ is

defined by its characteristic function

φχ(t) = E
[
eitξ

]
=

sin
(

t
2

)
q sin

(
t

2q

) . (12)

Corollary 15. An algorithm that can solve LWR with
the oracle LWR′s,p,χ, can also solve LWR with the oracle
LWRs,p.

Proof. Suppose we received samples (a, c) =
(
a,

⌈
p
q 〈a j, s〉q

⌋)
from LWRs,p. Let us define ξ =

⌈
p
q 〈a, s〉q

⌋
−

p
q 〈a, s〉q, and

denote the distribution of ξ by χ. From Lemma 19 in [27],
we can show that the characteristic function of χ is the same
as (12).

In the rest of this section, we consider the algorithm for
solving a variant of LWR with LWR′s,p,χ.

Theorem 16 (Sample amplification). Let w ∈ N, and
β ∈ R (β > 1). When we obtain m = wqβn/w samples
from LWR′s,p,χ, we can generate an arbitrary number of
samples of LWR′s,p,χw , where χw is the distribution whose

characteristic function is φχw (t) = E
[
eitξ

]
=

(
sin( t

2 )
q sin

(
t

2q

) )w .

Proof. We show that the amplified samples obtained
with sample amplification and the original samples are
statistically indistinguishable, in a way similar to Lemma
17 in [32]. For m samples (a j, c j) obtained from LWRs,p, we
definehA(x) =

∑
j∈{ j|x j=1} a j (mod q)

hc(x) =
∑

j∈{ j|x j=1} c j (mod p).
(13)

For j = 1, . . . ,M, we sample x j
U
←− {x ∈

{0, 1}m | Hw(x) = w}, and generate an amplified sample
(â j, ĉ j) = (hA(x j), hc(x j)). We define the set of m original
samples as S := {(a j, c j)}mj=1, and the set of M amplified

samples as Ŝ := {(â j, ĉ j)}Mj=1. Let us define predicate
g, which outputs 1 when BKW solves LWR correctly
with a given set of samples and outputs 0 otherwise.
Then, in a way similar to Lemma 17 in [32], we obtain∣∣∣Pr[g(Ŝ) = 1] − Pr[g(S) = 1]

∣∣∣ ≤ Mq−
(β−1)n

2 . Thus, when we

define the value of β such that limn→∞ Mq−
(β−1)n

2 = 0 (at least
β > 1), we obtain limn→∞

∣∣∣Pr[g(Ŝ) = 1] − Pr[g(S) = 1]
∣∣∣ =

0.
Next, we derive the characteristic function of χw. From

(13), we obtain ĉ j =
∑

j∈{ j|x j=1}

(
p
q 〈a j, s〉q + ξ j

)
=

p
q 〈â j, s〉q +∑

j∈{ j|x j=1} ξ j (mod p). We define ξ̂ j :=
∑

j∈{ j|x j=1} ξ j.
Because ξ j and ξ j′ ( j , j′) are i.i.d, from (12), we obtain

φχw (t) := E
[
eitξ̂

]
=

∏
j∈{ j|x j=1} E

[
eitξ j

]
=

(
sin( t

2 )
q sin

(
t

2q

) )w .
Independence Heuristic. In order to use the amplified
samples as input of LWR-solving BKW, we assume a
heuristic, which is often used in the analysis of BKW-
type algorithms for solving LPN [35]–[37]. While BKW
needs original samples to be statistically independent of
each other, sums of samples (e.g. amplified samples) are
obviously stochastically dependent of each other. However,
in [38], it has been shown that the dependence between sums
of 2 LPN samples, which are the counterpart of simplified
samples with w = 2, merely affect the asymptotic time
complexity of the LPN solving algorithm. Moreover, the
authors of [39] proposed a variant of LPN-solving BKW
with improved memory complexity under the heuristic
that sums of w(> 2) LPN samples also merely affects
the asymptotic time complexity of the LPN-solving BKW
algorithm. They has also presented precise experimental
results that verify the heuristic in the paper. Similar to their
heuristic, we assume that the dependency of the amplified
LWR samples for w ≥ 2 merely affects the asymptotic time
complexity of the LWR-solving BKW.

4.2 Complexity

We analyze the time complexity and the required number
of original samples for solving LWR with the sample
amplification, in a way similar to Theorem 8.

Theorem 17. Let a and b be natural numbers such that
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Table 2 Time and sample complexity for the LWR-solving BKW with sample amplification.

without sample amplification (from Table 1) with sample amplification
n q p a log(CLWR) log(mLWR) a log(CLWR−amp) log(mLWR−amp)

32 6318667 191 19∗ 51.00 42.70 10∗ 83.60 7.91
40 23166277 293 20∗ 60.66 52.18 11∗ 99.51 8.21
64 383056211 733 24† (23) 92.70† (92.10) 83.08† (82.80) 13∗ 151.94 8.84
80 1492443083 1151 25∗ 110.82 101.11 14∗ 186.20 9.13
96 4587061889 1663 26∗ 132.17 122.15 15∗ 217.88 9.36

112 11942217841 2287 28∗ 148.00 137.68 16∗ 247.16 9.56
128 27498355153 3023 29∗ 167.44 156.88 17∗ 274.27 9.72
∗ : optimal value. † : not optimal value. The optimal values are shown in parentheses.

ab = n. Let w ∈ N, and β(> 1) ∈ R. Fix ε ∈ (0, 1).
Then, under the Independence Heuristic, when at least
m = wqβn/w samples are given by LWR oracle LWRs,p,
the time complexity of BKW with sample amplification to
recover secret s with a probability of at least 1 − ε is

t = poly(q
n
a , exp(α2

lwrw2a)) where αlwr = 1
p

√
π
6 .

Proof. We derive the required number of amplified samples
which we denote by M̂ for solving LWR with sample
amplification, under the Independence Heuristic. This can
be derived by replacing Rq,p in (5) with Rq,p,w := φχw

(
2π
p

)
.

Thus, we obtain M̂ = 8n
a ln

(
q
ε

) (
(Rq,p,w)2a−1

− (3/p)2a−1)−2
+

(a − 1) q
n
a −1
2 , Similarly to Lemma 7, we can show that

M̂ = 8n
a ln

(
q
ε

) (
eπwα

2
lwr2

a
+ O

(
1

p2q2

))
+ (a−1) q

n
a −1
2 . The rest of

the proof follows that of Theorem 8, by replacing mLWR in
(7) with this M̂, and we can show that the time complexity of
BKW with sample amplification is t = O(eπwα

2
lwr2

a
( n

a ) ln q) +

O(q
n
a ( n

a ) ln q) = poly(eπwα
2
lwr2

a
, q

n
a ).

4.3 Optimization

As in Sect. 3.2, we derive the optimal value of the parameter
a that minimizes the asymptotic time complexity of the
BKW algorithm with sample amplification. In a similar
way to derive (8), we can show that the optimal value of
a to minimize the time complexity of BKW with sample
amplification is

a =

 1
ln 2

W
n ln q ln 2
πwα2

lwr

 . (14)

Next, we minimize the required number of samples,
regarding w as a parameter. Since m = wqβn/w, and ∂m

∂w
=

qβn/w(w−βn log q)
w

, when choose w = w̃ := βn ln q, we obtain
m = m̃ := eβn ln q, which is the minimum. Inserting w = w̃

into (14), we obtain ã =

⌊
1

ln 2 W
(

ln 2
πβα2

lwr

)⌋
. When α2

lwr is small
enough, we can evaluate

ã′ '

 1
ln 2

ln  ln 2
βα2

lwr

 − ln ln
 ln 2
βα2

lwr

 . (15)

To summarize, we obtain the following corollary:

Corollary 18. Let a and b be natural numbers such that

ab = n. Fix ε ∈ (0, 1), and β ≥ 2. Then, under
the Independence Heuristic, when at least m = m̃ =

eβn ln q samples are given by LWR oracle LWRs,p, the time
complexity of BKW with sample amplification to recover
secret s with a probability of at least 1 − ε is t = qO(n/ã),

where αlwr = 1
p

√
π
6 , and ã′ is defined as in (15).

4.4 Concrete Analysis

Table 2 shows the concrete time complexity of the LWR-
solving BKW algorithm with our sample amplification
technique, in the case where we use a minimum number
m̃ = eβn ln q of the LWR samples. We set β = 2 for
this table. We denote the time and the sample complexity
of the LWR-solving BKW by CLWR−amp and mLWR−amp,
respectively. Similar to Sect. 3.3, we can obtain

CLWR−amp =
1
4

(a − 2)(a − 1)
(

2n
a

+ 1
)

(q
n
a − 1)

+nq
n
a log(q)

+

a−1∑
j=0

m′LWR−amp
j,ε

(
a − 1 − j

2
(n + 2) + 2

)
,

(16)

where m′LWR−amp
j,ε := 8n

a ln
(

q
ε

) (
R2a−1− j

q,p,w − (3/p)2a−1− j)−2
. This

can be derived by replacing the Rq,p in m′LWR
j,ε =

8n
a ln

(
q
ε

) (
R2a−1− j

q,p − (3/p)2a−1− j)−2
with Rq,p,w. We use the type

(a) parameters which are also used in Table 1. We also set
ε = 0.01, in accordance with the setting given in the table.
In Table 2 we reproduce the optimal parameter a, the time
and sample complexity of the LWR solving BKW without
sample amplification from Table 1, for readability purposes.
From Table 2 we can observe that our choice of the number
of blocks a for BKW with sample amplification, which
is derived in (14), minimizes the time complexity of the
algorithm. We can observe that, at the expense of increasing
the time complexity, the sample amplification technique
significantly reduces sample complexity to polynomial size
(m̃ = 2en ln q).

5. Conclusion

We analyzed the time complexity of BKW for LWR
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and theoretically derived the optimal number of blocks a
that asymptotically (but almost completely) minimizes the
time complexity of the algorithm, while Duc et al. [27]
numerically searched for the optimal value of a. We
derived the relation between the parameters of LWE and
LWR with the same time complexity of BKW, which is
σ =

q
2
√

3p
. This equation coincides with the equation

derived by the complexity analysis of the lattice attacks:
We showed that the conversion equation also holds on the
complexity analysis of BKW. We also showed that the
sample amplification method is applicable to LWR-solving
BKW under the Independence Heuristic, and analyzed that
the minimum required number of samples for LWR-solving
BKW with sample amplification is O(n log q).
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[34] A. Langlois and D. Stehlé, “Worst-case to average-case reductions
for module lattices,” Des. Codes Cryptogr., vol.75, no.3, pp.565–
599, June 2015.

[35] S. Bogos, F. Tramér, and S. Vaudenay, “On solving LPN using BKW
and variants,” Cryptogr. Commun., vol.8, no.3, pp.331–369, 2016.

[36] S. Bogos and S. Vaudenay, “Optimization of LPN solving
algorithms,” ASIACRYPT 2016, pp.703–728, 2016.

[37] B. Zhang, L. Jiao, and M. Wang, “Faster algorithms for solving
LPN,” EUROCRYPT 2016, pp.168–195, 2016.

[38] S. Devadas, L. Ren, and H. Xiao, “On iterative collision search for
LPN and subset sum,” Theory of Cryptography, pp.729–746, 2017.
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