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On Dimensionally Orthogonal Diagonal Hypercubes

Xiao-Nan LU†∗a), Member and Tomoko ADACHI††b), Nonmember

SUMMARY In this paper, we propose a notion for high-dimensional
generalizations of mutually orthogonal Latin squares (MOLS) and mutu-
ally orthogonal diagonal Latin squares (MODLS), called mutually dimen-
sionally orthogonal d-cubes (MOC) and mutually dimensionally orthog-
onal diagonal d-cubes (MODC). Systematic constructions for MOC and
MODC by using polynomials over finite fields are investigated. In particu-
lar, for 3-dimensional cubes, the results for the maximum possible number
of MODC are improved by adopting the proposed construction.
key words: Latin square, Latin cube, dimensional orthogonality, transver-
sal, finite field, permutation polynomial, irreducible polynomial

1. Introduction

A Latin square of order n is an n × n array containing n
distinct symbols with the property that in each row and each
column, each symbol occurs exactly once. Moreover, if each
symbol occurs exactly once in each diagonal, then it is said
to be a diagonal Latin square.

Two Latin squares of order n are orthogonal if when
superimposed, each of the n2 ordered pairs of symbols ap-
pears exactly once. Moreover, a collection of Latin squares
is said to be mutually orthogonal if the members are pair-
wise orthogonal.

Latin squares have been extensively studied in discrete
mathematics, computer sciences, and statistical designs of
experiments. (See the monographs [1]–[3] for details.)

Example 1.1: Let L1 and L2 be two diagonal Latin
squares as follows:

L1 =


0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

 , L2 =


0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

 .
By superimposing L1 and L2, we obtain a square
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L =


00 11 22 33
23 32 01 10
31 20 13 02
12 03 30 21


containing all the elements in {0, 1, 2, 3}2. Hence,L1 andL2
are orthogonal.

The problems of determining the maximum possible
number of mutually orthogonal Latin squares (MOLS) and
mutually orthogonal diagonal Latin squares (MODLS) have
attracted much attention in the past century. The interested
reader is referred to [1], [2] and references therein for more
details.

However, high-dimensional generalizations of MOLS
and MODLS are less studied and the related results are pre-
sented in several different notation. In this paper, we aim to
give a unified notion and propose some systematic construc-
tions by using polynomials over finite fields.

The remaining of this paper is organized as follows: In
Sect. 2, we will introduce the d-dimensional generalizations
of MOLS and MODLS, called mutually dimensionally or-
thogonal d-cubes of type d − 1 (simply, (d, d − 1)-MOC(n))
and mutually dimensionally orthogonal diagonal d-cubes of
type d − 1 (simply, (d, d − 1)-MODC(n)), respectively. In
Sect. 3, we will summarize the known results on (d, d − 1)-
MOC(n) and (d, d − 1)-MODC(n). In Sect. 4, we will re-
view the fundamental constructions of (d, d − 1)-MOC(n)
via finite fields, and then propose the finite field construc-
tion for (d, d − 1)-MODC(n). In Sect. 5, we will concen-
trate on the 3-dimensional cubes and show the improvement
for (3, 2)-MODC(n). Lastly, concluding remarks and further
work will be given in Sect. 6.

2. Definitions and Notation

2.1 Hypercubes and Their Orthogonality

Let d and n be positive integers. Let t be an integer with
0 ≤ t ≤ d − 1. A d-dimensional hypercube (simply, d-cube)
of order n and type t is an n× n× · · · × n (d times) array on n
distinct symbols with the property that each symbol occurs
exactly nd−t−1 times in every (d − t)-dimensional subarray
obtained by fixing t indices of the array. In particular, when
d = 2 and t = 1, the above definition of hypercubes reduces
to Latin squares. For d = 2 and d = 3, we simply say
squares and cubes, respectively.

Remark 2.1: The term “Latin d-cube” is usually used
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to refer to a d-cube of type 1 in literature (see [4, Re-
mark 22.33] and [5]). Whereas, sometimes “Latin d-cube”
is used to refer to a d-cube of type d − 1 (see, for example,
[6]–[8]). To avoid ambiguity, in this paper, we use “type
d − 1” rather than “Latin” for d ≥ 3.

Two d-cubes of order n are orthogonal if when super-
imposed, each of the n2 ordered pairs of symbols appears ex-
actly nd−2 times. Moreover, a collection of d (d ≥ 2) d-cubes
of order n is dimensionally orthogonal, or d-orthogonal, if
when superimposed, each of the nd ordered d-tuples appears
exactly once. Furthermore, a set of j ( j ≥ d) d-cubes is mu-
tually d-orthogonal if any choice of d of them preserves the
d-orthogonal property (see [5]). When d = 2 and t = 1,
the above definitions reduce to the orthogonality of Latin
squares.

For convenience, we use the following notation
throughout this paper.

• A collection of mutually d-orthogonal d-cubes of type
t and order n is abbreviated as (d, t)-MOC(n).

• The maximum possible number of d-cubes in a (d, d −
1)-MOC(n) is denoted by N(d)(n).

2.2 Diagonal Hypercubes

A d-cube H can be represented by the indices i1, i2, . . . , id
and the corresponding entry xi1,i2,...,id as

H = {(i1, i2, . . . , id; xi1,i2,...,id ) |
1 ≤ ik ≤ n, 1 ≤ k ≤ d}.

Definition 2.2: Let

T =

{
(i( j)

1 , i( j)
2 , . . . , i( j)

d ; xi( j)
1 ,i( j)

2 ,...,i( j)
d

) | 1 ≤ j ≤ n
}

be a subset of H with |T | = n. If (i(1)
k , i(2)

k , . . . , i(n)
k ) forms

a permutation of (1, 2, . . . , n) for each 1 ≤ k ≤ d, and
(xi( j)

1 ,i( j)
2 ,...,i( j)

d
)1≤ j≤n also forms a permutation of all the sym-

bols, then T is called a transversal.

The diagonals of a square (main diagonal and back di-
agonal) can be intuitively realized. For d-cubes, diagonals
can be defined as follows:

Definition 2.3: Let τ be a function defined by τ(i) = n −
i + 1 for 1 ≤ i ≤ n. Let τ0(i) and τ1(i) denote the identity
mapping and τ(i), respectively. For each binary vector s =

(s1, s2, . . . , sd−1) ∈ {0, 1}d−1, the subset

Ds =
{
(i, τs1 (i), τs2 (i), . . . , τsd−1 (i);
xi,τs1 (i),τs2 (i),...,τsd−1 (i)) | 1 ≤ i ≤ n

}
⊆ H

is called a diagonal ofH . Then,H has 2d−1 diagonals.

For example, for squares (d = 2), the main diagonal
and the back diagonal can be written, respectively, as fol-
lows:

D0 = {(i, i; xi,i) | 1 ≤ i ≤ n} and

D1 = {(i, n − i + 1; xi,n−i+1) | 1 ≤ i ≤ n}.

Definition 2.4: A d-cube is diagonal if all of its diagonals
are transversals.

For convenience, we use the following notation
throughout this paper.

• A collection of mutually d-orthogonal diagonal d-
cubes of type t and order n is abbreviated as (d, t)-
MODC(n).

• The maximum possible number of d-cubes in a (d, d −
1)-MODC(n) is denoted by D(d)(n).

Clearly, D(d)(n) ≤ N(d)(n) for given n and d.

3. Known Results and Constructions

3.1 Known Constructions on (d, d − 1)-MOC(n)

Ethier et al. [5, Theorem 2.7] showed that for d ≥ 2, the
number N(d)(n) of d-cubes in a (d, d − 1)-MODC(n) cannot
exceed n+d−1. Constructions have been proposed in several
different notation. A recursive construction for (d, d − 1)-
MOC(n) of size d was proposed early in 1974 by Arkin and
Straus [7] by using a (d − 1, d − 2)-MOC(n) of size d −
1. While, Trenkler used the same idea and independently
introduced equivalent constructions in [9] (for d = 3) and
[8] (for general d).

Theorem 3.1: If there exist two orthogonal Latin squares
of order n, then there exist a (3, 2)-MOC(n) of size 4 (see [7,
§2]), and (d, d−1)-MOC(n) of size d for each d ≥ 4 (see [7,
§2] and [8]).

Consequently, a lower bound of N(d)(n) can be obtained
from Theorem 3.1 combining with the existence of mutually
orthogonal Latin squares. We summarize the known results
as follows:

Corollary 3.2: For any n ≥ 2 and d ≥ 2, the following
hold:

(i) [5, Theorem 2.7] N(d)(n) ≤ n + d − 1;

(ii) For any n ≥ 2 with n , 6, it holds that N(d)(n) ≥ d.
Moreover, N(3)(n) ≥ 4.

3.2 Known Constructions on (d, d − 1)-MODC(n)

When d = 2, the study of (d, d − 1)-MODC(n) reduces
to MODLS, which has been intensively studied. (See
[10], [11], [1, §10.2], and their references.)

Theorem 3.3 (see [10]): For any positive integer n with
n < {2, 3, 6}, there exists a pair of orthogonal diagonal Latin
squares, i.e., D(2)(n) ≥ 2.

Theorem 3.4 ([11, Theorem 2]): If n is even, then D(2)(n) ≤
n − 2, whereas if n is odd, then D(2)(n) ≤ n − 3. Moreover,
if n is a prime power, the equality holds (see also [6, Theo-
rems 2.1 and 2.2] ).
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For d ≥ 3, using finite fields, Arkin et al. [6] proposed a
construction for (d, d−1)-MODC(n) (see also Theorem 3.5).
In Sect. 4, we will concentrate on the finite field construc-
tions in a more detailed way.

Theorem 3.5 (see [6]): Let q be a prime power with q ≥
d > 2. The following holds.

(i) [6, Theorem 3.1] If q is odd, then there exists a (d, d−
1)-MOC(q) of size q+1, in which at least q−(d−1)2d−1

are diagonal.

(ii) [6, Theorem 3.3] If q is a power of 2, then there exists
a (d, d − 1)-MOC(q) of size q + 1, in which at least
q + 2 − d are diagonal.

(iii) [6, Theorem 3.2] If q ≥ 4 is a power of 2, then there
exists a (3, 2)-MOC(q) of size q + 2, in which at least
q are diagonal.

Example 3.6: A (3, 2)-MODC(4) consisting of H1, H2,
H3, H∞ is shown as follows, where each 4 × 4 subarray
denotes a layer of the corresponding cube.

H1 =


0 2 3 1
2 0 1 3
3 1 0 2
1 3 2 0

∣∣∣∣∣∣∣∣∣∣∣
1 3 2 0
3 1 0 2
2 0 1 3
0 2 3 1

∣∣∣∣∣∣∣∣∣∣∣
2 0 1 3
0 2 3 1
1 3 2 0
3 1 0 2

∣∣∣∣∣∣∣∣∣∣∣
3 1 0 2
1 3 2 0
0 2 3 1
2 0 1 3

 ,

H2 =


0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

∣∣∣∣∣∣∣∣∣∣∣
1 0 3 2
2 3 0 1
0 1 2 3
3 2 1 0

∣∣∣∣∣∣∣∣∣∣∣
2 3 0 1
1 0 3 2
3 2 1 0
0 1 2 3

∣∣∣∣∣∣∣∣∣∣∣
3 2 1 0
0 1 2 3
2 3 0 1
1 0 3 2

 ,

H3 =


0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3

∣∣∣∣∣∣∣∣∣∣∣
3 1 0 2
0 2 3 1
2 0 1 3
1 3 2 0

∣∣∣∣∣∣∣∣∣∣∣
1 3 2 0
2 0 1 3
0 2 3 1
3 1 0 2

∣∣∣∣∣∣∣∣∣∣∣
2 0 1 3
1 3 2 0
3 1 0 2
0 2 3 1

 ,

H∞ =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

∣∣∣∣∣∣∣∣∣∣∣
1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

∣∣∣∣∣∣∣∣∣∣∣
2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

∣∣∣∣∣∣∣∣∣∣∣
3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

 .
See also Example 5.2 for the construction of the above
cubes.

Next, we restate Trenkler’s construction [12] in Theo-
rem 3.7 which can be adopted to odd n which is not a prime
power (see also [8]). Then, we show the diagonal property
in Theorem 3.8 when d is odd and n > d.

Theorem 3.7 ([12, Theorem 1]): Let n be an odd positive
integer. Let

Ht = {(i1, i2, . . . , id; x(t)
i1,i2,...,id

) |

1 ≤ ik ≤ n, 1 ≤ k ≤ d} (1)

with

x(t)
i1,i2,...,id

=

t∑
`=1

(−1)`−1i` + (−1)t
d∑

`=t+1

i` + Ct (2)

for each 0 ≤ t ≤ d − 1, where Ct = −1 if d is odd, and
Ct = (−1)t+1 n+1

2 − 1 if d is even. The arithmetic in Eq. (2)
is considered modulo n as in Zn = Z/nZ = {0, 1, . . . , n − 1}.
Then,H0,H1, . . .,Hd−1 form a (d, d − 1)-MOC(n).

Theorem 3.8: If d is odd and n > d is odd, the d-cubes
H0,H1, . . . ,Hd−1 generated by Eq. (1) are diagonal. Ac-
cordingly, D(d)(n) ≥ d for any odd d and odd n > d.

Proof. With the notation in Definition 2.3, we can express
any diagonal element of Ht as a sum of d terms of ±i and
Ct, for any 1 ≤ i ≤ n. Hence, Ht is diagonal if and only
if the coefficient of i, that is, the difference between the
numbers of +i’s and −i’s, is not zero (as in Zn). Since d
is odd, it is impossible to have an equal number of +i’s and
−i’s. Moverover, since d < n, even when all the terms are
equal to +i (or −i), the sum is still non-zero. Therefore,
H0,H1, . . . ,Hd−1 are diagonal. �

4. Constructions for (d, d − 1)-MODC(n)

4.1 Constructions via Finite Fields

Let Fq and F∗q denote the finite field of order q and its multi-
plicative group, respectively. A polynomial f (x1, x2, . . . , xd)
is called a permutation polynomial (in d variables over Fq)
if the equation f (x1, x2, . . . , xd) = a has qd−1 solutions in Fq
for each a ∈ Fq. Thus, it is natural to utilize a permutation
polynomial f (x1, x2, . . . , xd) for constructing a d-cube. In
fact, {

(x1, x2, . . . , xd; f (x1, x2, . . . , xd)) | x1, x2, . . . , xd ∈ Fq

}
forms a d-cube.

Now we restrict on linear polynomials and summarize
some essential lemmas as follows. For detailed proofs, see,
for example, [1, §3.3] and [5, §4].

Lemma 4.1 ([5, Lemma 4.2]): Let f (x1, x2, . . . , xd) = a0x1+

a1x2 + · · · + ad−1xd be a polynomial over Fq. If
(a0, a1, . . . , ad−1) , (0, 0, . . . , 0), then f (x1, x2, . . . , xd) gives
a d-cube of order q. Moreover, if ai , 0 for any 0 ≤ i ≤ d−1,
then the d-cube is of type d − 1.

Lemma 4.2 ([5, Theorem 4.4]): Let t ≥ d be an integer.
Let

fi(x1, x2, . . . , xd) = ai,0x1 + ai,1x2 + · · · + ai,d−1xd, (3)

for 1 ≤ i ≤ t, be linear polynomials over Fq. Then, the d-
cubes generated by f1, f2, . . ., ft form a (d, d − 1)-MOC(q)
if and only if every d rows of the matrix M = (ai, j)t×d are
linearly independent.

Note that, in Definition 2.3, the index ik of the kth
dimension in a d-cube is assumed to be natural numbers
{1, 2, . . . , n}. In the case when the indices are the elements
of finite field Fq, for convenience of dealing with the diago-
nals, we arrange the indices of each dimension of the above
d-cube in such a way that the sum of the (q − i + 1)th index
and the ith index is a constant ` ∈ Fq for each 1 ≤ i ≤ q.
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In particular, when q is an odd prime, it is convenient to use
the ordering of integers from 0 to q − 1, and then ` = q − 1.

For example, when q = 5, the indices in any dimension
are naturally (0, 1, 2, 3, 4).

When q = 8, the indices are the elements of F8 =

{0, 1, α, α2, 1+α, 1+α2, α+α2, 1+α+α2}. One can arrange
them as

(0, 1, α, 1 + α, α2, 1 + α2, α + α2, 1 + α + α2)

so that 0 + (1 + α + α2) = 1 + (α + α2) = α + (1 + α2) =

(1 + α) + α2 = `. The arrangement is not unique. One can
choose in another way as follows:

(0, α, α2, α + α2, 1 + α + α2, 1 + α2, 1 + α, 1)

and then ` = 1.

Lemma 4.3: Let f (x1, . . . , xd) = a0x1 + a1x2 + · · · +

ad−1xd be a polynomial over Fq. The d-cube generated by
f (x1, . . . , xd) is diagonal if and only if f (1, σ2, σ3, . . . , σd) ,
0 for any (σ2, σ3, . . . , σd) ∈ {1,−1}d−1.

Proof. Let τ be a permutation over Fq defined by τ(α) =

` − α. The diagonals of the d-cube generated by f can be
represented by

Ds =
{(

i0, τs1 (i0), τs2 (i0), . . . , τsd−1 (i0);

f (i0, τs1 (i0), . . . , τsd−1 (i0))
)
| i0 ∈ Fq

}
for each s = (s1, s2, . . . , sd−1) ∈ {0, 1}d−1.

For 1 ≤ i ≤ d − 1, let σi = 1 if si = 1, and σi = −1 if
si = 0. By the linearity of f , we have

f (i0, τs1 (i0), . . . , τsd−1 (i0)) = i0 f (1, σ2, . . . , σd)+`
d−1∑
i=1

si.

Hence, Ds forms a transversal if and only if f (i0, τs1 (i0), . . .,
τsd−1 (i0)) is distinct from each other for every i0 ∈ Fq, which
is equivalent to saying f (1, σ2, σ3, . . . , σd) , 0. �

Theorem 4.4: Suppose d ≤ q − 1. Let α1, α2, . . ., αq−1
denote the distinct non-zero elements of Fq. Let

fi(x1, x2, . . . , xd) = x1 + αix2 + α2
i x3 + · · · + αd−1

i xd (4)

for 1 ≤ i ≤ q−1. The set of d-cubes generated by f1, f2, . . .,
fq−1 is a (d, d − 1)-MOC(q).

Moreover, the set of d-cubes generated by all the
polynomials fi (1 ≤ i ≤ q − 1) with the property that
fi(1, σ2, σ3, . . . , σd) , 0 for every (σ2, σ3, . . . , σd) ∈
{1,−1}d−1 forms a (d, d − 1)-MODC(q).

Proof. Note that all the coefficients of f1, f2, . . ., fq−1 are
non-zero, and they form a Vandermonde matrix of rank d. It
follows from Lemmas 4.1 and 4.2 that all these d-cubes are
of type d − 1 and mutually d-orthogonal. The latter half is
straightforward by Lemma 4.3. �

Remark 4.5: The construction in Theorem 4.4 is proposed

in terms of an MDS code at the end of [5, Section 4.2] (see
also [13, Chapter 11 §5]).

In particular, when d = 2, it suffices to take

fi(x1, x2) = x1 + αix2 ∈ Fq[x1, x2]

for each αi ∈ Fq \ {0,±1}. Then, the squares generated by
fi are MODLS(q), which achieve the upper bounds in The-
orem 3.4 ([11, Theorem 2]).

Next, by regarding fi(1, σ2, σ3, . . . , σd) as a polyno-
mial with respect to αi over Fq, we propose a further result
in Theorem 4.7 for even q when d ≥ 3, which improves
Theorem 3.5 (ii) ([6, Theorem 3.3]) in a variety of cases.

Lemma 4.6 ([14, Theorem 3.4.21]): The polynomial 1 +

α + α2 + · · · + αd−1 ∈ Fq[α] is irreducible over Fq if and
only if d is prime and q is a primitive root modulo d.

Theorem 4.7: Let d ≥ 3 be a prime and q ≥ d + 1 be
a power of 2. If q is a primitive root modulo d, with
the definition of fi in (4), the set of d-cubes generated by
f1, f2, . . . , fq−1 is a (d, d − 1)-MODC(q).

Proof. Since Fq is of characteristic 2, the polynomials
fi(1, σ2, σ3, . . . , σd) ∈ Fq[αi], for 1 ≤ i ≤ q − 1, are identi-
cal with hd−1(α) = 1 + α + α2 + · · · + αd−1 ∈ Fq[α] for any
(σ2, σ3, . . . , σd) ∈ {1,−1}d−1.

By Lemma 4.6, it is clear that hd−1(α) is irreducible and
of degree greater than 2. Therefore, we have hd−1(α) , 0
for any α ∈ Fq. Then, the proof is completed by utilizing
Theorem 4.4. �

4.2 Kronecker Product Construction

For any two orthogonal Latin squares A1, A2 of order m,
and orthogonal Latin squares B1, B2 of order n, the Kro-
necker products A1 ⊗ B1 and A2 ⊗ B2 are also orthogo-
nal Latin square of order mn (see [1, §2.3]). Moreover, the
Kronecker products preserve the diagonal property of Latin
square (see [11]).

Similarly, Kronecker products can be generalized to d-
orthogonal d-cubes (see [5, Section 4.3]). It is obvious that
d-dimensional Kronecker products also preserve the diago-
nal property (see [6]). Hence, we can immediately obtain
the following theorem.

Theorem 4.8: Let n = q1q2 . . . qr, where qi is a prime
power for each 1 ≤ i ≤ r with q1 < q2 < · · · < qr and
gcd(qi, q j) = 1 for any 1 ≤ i < j ≤ r. If d ≥ 2, then

N(d)(n) ≥ min{N(d)(qi) | 1 ≤ i ≤ r} and

D(d)(n) ≥ min{D(d)(qi) | 1 ≤ i ≤ r}.

5. Constructions for (3, 2)-MODC(n)

In this section, we focus on the constructions for (d, d − 1)-
MODC(n) with d = 3. Consequently, we improve the
known lower bounds for the maximum possible number
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D(3)(n) of such cubes.
First, for Fq of characteristic 2, we introduce the fol-

lowing construction by Arkin et al. [6]. (The result is previ-
ously stated in Theorem 3.5 (iii).)

Theorem 5.1 (see [6]): Let h(α) = α2 + aα + b be an ir-
reducible polynomial in Fq[α] with ab , 0. Let y1, y2, y3
be three distinct elements in F∗q and let hi(α) = y−2

i h(yiα) ∈
Fq[α] for i ∈ {1, 2, 3}. Moreover, define q + 2 polynomials in
Fq[x1, x2, x3] as follows:

fα j (x1, x2, x3) = h1(α j)x1 + h2(α j)x2 + h3(α j)x3

with α j ∈ Fq,

f∞(x1, x2, x3) = x1 + x2 + x3,

f ′(x1, x2, x3) = y−1
1 x1 + y−1

2 x2 + y−1
3 x3.

Then, the cubes generated by { fα j | α j ∈ Fq} ∪ { f∞, f ′} are
mutually 3-orthogonal. Moreover, at least q of these cubes
are diagonal.

Example 5.2: Consider F4 := F2[β]/(β2 + β + 1) and let
h(α) = 1 + βα + α2 ∈ F4[α]. It is easy to check that h(α)
is irreducible over F4. Take (y1, y2, y3) = (1, β, β2). Then,
hi(α) = βi−1 + β2−iα + α2 for i ∈ {1, 2, 3}. We have

f0(x1, x2, x3)
f1(x1, x2, x3)
fβ(x1, x2, x3)
fβ2 (x1, x2, x3)
f∞(x1, x2, x3)
f ′(x1, x2, x3)


=



1 β β2

β β 1
1 β2 1
β β2 β2

1 1 1
1 β2 β


x1
x2
x3

 ,

where f0(1, 1, 1) = f ′(1, 1, 1) = 0 and hence the corre-
sponding cubes are not diagonal. While, it can be verified
that the remaining four cubes are diagonal. Moreover, since
the coefficient matrix is of rank 3 over F4, it follows from
Lemma 4.2 that these six cubes are mutually 3-orthogonal.

More precisely, we can obtain the corresponding H1,
H2, H3, H∞ as shown in Example 3.6, where β and β2 are
replaced by 2 and 3, respectively.

Remark 5.3: Let q = 2r. There is an irreducible trinomial
of the form x2 + ax + b ∈ Fq[x] with ab , 0 if and only
if the absolute trace TrFq (a−1) = a−1 + a−2 + a−4 + · · · +

a−q/2 = 1. (This is a straightforward conclusion by taking
the characteristic 2 in [14, Corollary 3.4.12].) In addition,
there are q/2 elements in Fq whose absolute trace equals
to 1, which guarantees the existence of such an irreducible
trinomial.

Next, we suppose q is a power of an odd prime p. De-
note by

(
x
q

)
the Legendre symbol of x ∈ Fq, so that

(
x
q

)
is 0,

1 or −1 according to whether x is respectively zero, a square
or a non-square in Fq. By the following Lemma 5.4, we
obtain Theorem 5.5 on the existence of specific irreducible
polynomials.

Lemma 5.4 ([15, Corollary 1.12]): For every ordered triple
(ε1, ε2, ε3) ∈ {1,−1}3, there exists x ∈ Fq such that

(
x+i
q

)
= εi

for each i ∈ {1, 2, 3}, whenever q ≥ 19.

Theorem 5.5: For any odd prime power q ≥ 7, there exists
c1, c2 ∈ F

∗
q, such that the trinomials 1 ± c1α ± c2α

2 ∈ Fq[α]
are irreducible over Fq.

Proof. It is easily seen that the trinomial f (α) = 1 + c1α +

c2α
2 ∈ Fq[α] is irreducible if and only if f (α) = 0 has no

solution in Fq, i.e., c2
1 − 4c2 is not a square in Fq.

Firstly, we set c2 = 4−1, and then the trinomials 1 ±
c1α±4−1α2 ∈ Fq[α] are irreducible if and only if both c2

1 + 1
and c2

1 − 1 are non-squares.
By Lemma 5.4, for any q ≥ 19, there exists x ∈ F∗q,

such that x − 1, x, x + 1 are respectively a non-square, a
square, a non-square. Let c1 be a square root of such x.
Then both c2

1 + 1 and c2
1 − 1 are non-squares.

It remains to consider q ∈ {7, 9, 11, 13, 17}.
For q = 7 or 17, we can take c1 = 2, so that

(
3
q

)
=

(
5
q

)
=

−1. For q = 11, we can take c1 = 3, so that
(

8
q

)
=

(
10
q

)
= −1.

For q = 9, we consider F9 := F3[β]/(β2 + 1). Then, ±1,±β
are squares. We take c1 = 1 − β, so that c2

1 = β and
(
β−1

q

)
=(

β+1
q

)
= −1.

For q = 13, we set c2 = 2−1 and consider the trinomials
1 ± c1α ± 2−1α2 ∈ Fq[α], which are all irreducible if and
only if c2

1 ± 2 are non-squares. We take c1 = 2 and then(
2
q

)
=

(
6
q

)
= −1. �

Theorem 5.6: If q ≥ 7 is an odd prime power, then
D(3)(q) ≥ q − 1.

Proof. Let fi(x1, x2, x3) = x1 + c1αix2 + c2α
2
i x3 with αi ∈ F

∗
q

for 1 ≤ i ≤ q − 1, such that 1 ± c1α ± c2α
2 ∈ Fq[α] are all

irreducible, whose existence is guaranteed by Theorem 5.5.
Then, by Lemmas 4.1, 4.2, and 4.3, we can conclude that
D(3)(q) ≥ q − 1 for odd q ≥ 7. �

There does not exist c1, c2 ∈ F
∗
5, such that 1 ± c1α ±

c2α
2 ∈ F5[α] are all irreducible over F5. However, we

can explicitly construct four 3-orthogonal diagonal cubes of
type 2 as follows.

Example 5.7: Let f1, f2, f3, f4 be the polynomials over F5
defined as follows:

f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)
f4(x1, x2, x3)

 =


1 1 1
1 −1 1
1 1 −1
1 −1 −1


x1
x2
x3

 .
By Lemmas 4.1 and 4.3, the cubes generated by f1, f2, f3,
f4 are of type 2 and diagonal. Moreover, it can be eas-
ily checked that the coefficient matrix is of rank 3 over F5.
Thus, it follows from Lemma 4.2 that the resulting cubes are
mutually 3-orthogonal. Hence, we have D(3)(5) ≥ 4.

Combining Theorem 3.5 (iii), Theorem 5.6, and Exam-
ple 5.7, we obtain Theorem 5.8.

Theorem 5.8: For any prime power q ≥ 4, the following
holds:
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D(3)(q) ≥

q, if q is even,
q − 1, if q is odd.

The bound in Theorem 5.8 improves Theorem 3.5 (i),
which claims that D(3)(q) ≥ q − 8 for d = 3 and odd prime
power q.

By considering Trenkler’s construction (Theorem 3.8)
and the Kronecker products (Theorem 4.8), we conclude this
section by providing the following.

Theorem 5.9: Let n = q1q2 . . . qr, where qi is a prime
power for each 1 ≤ i ≤ r with q1 < q2 < · · · < qr and
gcd(qi, q j) = 1 for any 1 ≤ i < j ≤ r. Then,

D(3)(n) ≥


3, if q1 = 3 and n , 3,
q1, if q1 ≥ 4 is even,
q1 − 1, if q1 ≥ 5 is odd.

6. Concluding Remarks and Further Work

The notion of mutually dimensionally orthogonal d-cubes of
type d− 1 (simply, (d, d− 1)-MOC(n)) and mutually dimen-
sionally orthogonal diagonal d-cubes of type d − 1 (simply,
(d, d − 1)-MODC(n)), are d-dimensional generalization of
MOLS and MODLS, respectively.

In Sects. 3 and 4, we summarized and characterized the
known results on N(d)(n) and D(d)(n) and the constructions
on (d, d − 1)-MOC(n) and (d, d − 1)-MODC(n). We also
proposed a finite field construction for (d, d − 1)-MODC(n).
By using these constructions, we proved the following main
theorems.

Theorem 3.8: If d is odd and n > d is odd, then D(d)(n) ≥ d
for any odd d and odd n > d.

Theorem 4.7: Let d ≥ 3 be a prime and q ≥ d + 1 be
a power of 2. Let fi be the polynomials defined in Theo-
rem 4.4. If q is a primitive root modulo d, the set of d-cubes
generated by f1, f2, . . . , fq−1 is a (d, d − 1)-MODC(q).

In Sect. 5, we focused on the 3-dimensional cubes and
showed the following results by investigating the existence
of irreducible polynomials over finite fields.

Theorem 5.8: For any prime power q ≥ 4, the following
holds:

D(3)(q) ≥

q, if q is even,
q − 1, if q is odd.

Following our previous results and observations, we
propose the following conjectures.

Conjecture 6.1: (i) D(3)(n) ≤ n − 1 if n is odd.

(ii) D(3)(n) ≤ n if n is even.

(iii) D(d)(n) ≥ d for any positive integer n < {2, 3, 6}.

In particular, for d = 3, it remains to study the con-
structions of 3-orthogonal diagonal cubes of type 2 with or-
der n ≡ 2 (mod 4).

It is remarkable that Trenkler [12], [16] proposed el-
ementary approaches for mutually d-orthogonal d-cubes.
However, his constructions cannot give d-cubes of type d−1
in general.

More generally, when the number of symbols does not
equal to the order, the notions of frequency hypercubes (see
[4]) and hypercubes of class r (see [17]) are proposed. It
is also interesting to study the “diagonal property” for these
generalized hypercubes.
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[2] A.D. Keedwell and J. Dénes, Latin Squares and Their Applications,
2nd ed., Elsevier, 2015.
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