
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020
1227

PAPER Special Section on Discrete Mathematics and Its Applications

Codeword Set Selection for the Error-Correcting 4b/10b Line Code
with Maximum Clique Enumeration

Masayuki TAKEDA†a), Nonmember and Nobuyuki YAMASAKI†, Member

SUMMARY This paper addresses the problem of finding, evaluating,
and selecting the best set of codewords for the 4b/10b line code, a depend-
able line code with forward error correction (FEC) designed for real-time
communication. Based on the results of our scheme [1], we formulate code-
word search as an instance of the maximum clique problem, and enumerate
all candidate codeword sets via maximum clique enumeration as proposed
by Eblen et al. [2]. We then measure each set in terms of resistance to
bit errors caused by noise and present a canonical set of codewords for the
4b/10b line code. Additionally, we show that maximum clique enumeration
is #P-hard.
key words: 4b/10b, NP-hard, maximum clique enumeration

1. Introduction

Most control systems today are designed as distributed real-
time systems. Instances of these systems can be found ev-
erywhere: in industrial plants, robots, and spacecraft.

In a real-time system, correctness of tasks are defined
not only by the correctness of a given task’s output but also
by the completion of the task before a given deadline. Meet-
ing deadlines is crucial for these systems as failure to do so
may result in catastrophic consequences including loss of
life. Thus, tasks and the underlying software are subject to
strict requirements and schedulability analysis [3] in order
to guarantee deadlines.

Modern real-time systems are usually comprised of
many real-time systems interoperating in a distributed fash-
ion. Real-time communication, with guarantees on bounds
of end-to-end latency is required for building these systems
[4]. Retransmission cannot be tolerated in real-time commu-
nication as it introduces unbounded latency in transmission.

Choices and tradeoffs made at various abstraction lay-
ers found in modern communication protocol stacks are of-
ten ill-suited for real-time communication, a notable ex-
ample being line codes. Indeed, the recent trend among
line codes is to improve throughput by adopting longer and
longer codeword lengths in order to reduce overhead intro-
duced by encoding. This is exemplified by modern line
codes such as 64b/66b and 128b/132b in contrast to older
line codes such as 8b/10b and NRZI. These line codes are
used as the underlying encodings for various serial commu-
nication protocols such as 100 Gigabit Ethernet [5] and USB

Manuscript received October 22, 2019.
Manuscript revised February 26, 2020.
†The authors are with the Department of Information and Com-

puter Science, Faculty of Sciece and Technology, Keio University,
Yokohama-shi, 223-8521 Japan.

a) E-mail: mtakeda@ny.ics.keio.ac.jp
DOI: 10.1587/transfun.2019DMP0019

3.1 [6]. However, most line codes are problematic to build
upon when devising protocols for communication in real-
time systems. In general, line codes such as 8b/10b are
designed with three things in mind: achieve DC-balance,
where the resulting number of zeros and ones transmitted
are the same over time, clock embedding, i.e. the clock may
be extracted from the stream of codewords on the receiving
end, and error detection. Additional codewords for trans-
mission control may also be desirable.

Unfortunately, line codes with only these three charac-
teristics implicitly assume either a communication channel
with little to no noise or lax latency requirements. Real-time
systems often operate in environments where the former
does not hold, and it is safe to assume that the latter never is
the case. One result of this assumption is that conventional
line codes do not incorporate any form of FEC, so must rely
on either error correction implemented at higher abstraction
layers or retransmission. The problem with adding on error
correction is that a single bit error occurring at the line code
level is translated to a multiple bit error when decoded, thus
requiring block-level error correction codes such as Reed-
Solomon codes [7]. This necessitates waiting for a whole
block of bytes to arrive before performing error correction,
introducing latency unacceptable for real-time systems. Re-
transmission, as noted above, is also not an option as it intro-
duces unbounded latency and, in some cases, makes trans-
mission all but impossible due to exponential decreases in
throughput as the bit error rate (BER) increases [8].

The 4b/10b line code, proposed by Suito et al. [9]
and standardized in IPSJ-TS 0015:2015 [10] and IEC TR
63094:2017 [11], addresses these issues by adding bit-level
error correction at the line code level for single bit error cor-
rection and double bit error detection, while preserving DC-
balance and facilitating clock recovery. This is achieved by
setting several constraints on codewords and searching over
the ten bit codeword space in an ad-hoc manner. The 18
codewords found are mapped to four bits and two control
characters corresponding to “setup” and “idle”.

We have found a set of 20 codewords that satisfy the
same constraints on codewords imposed by the protocol [1],
and used the two additional codewords to add two more
control characters used to implement functional compati-
bility with 8b/10b. Due to the formulation of code search
as a Maximum Clique Problem, we know that the set of
codes found is the largest possible, but the question remains
whether the particular ones found is the best among all code
sets of size 20.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

1228
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

We answer this by improving upon this work by find-
ing all such sets of 20 codewords and presenting the set of
codewords which have the best qualitative characteristics for
use as a line code. Finding this set corresponds to solv-
ing the Maximum Clique Problem and enumerating all such
sets correspond to solving the Maximum Clique Enumera-
tion Problem. Additionally, we show that the problem that
we are trying to solve is #P-hard.

2. Preliminaries

When considering MCP and related problems, we are con-
cerned with a simple graph G = (V, E) consisting of a set
of vertices V and edges E = {{x, y}|(x, y) ∈ V × V}. Two
vertices x and y are said to be adjacent if {x, y} ∈ E. We
define Γ(x) to be the set of vertices which are adjacent to x.
A clique in G is a complete subgraph, i.e. a subgraph of V in
which all vertices are adjacent to each other. If no vertices
can be added to a given clique to make a larger clique, the
clique is said to be maximal, and the largest maximal cliques
in a graph are referred to as maximum cliques. The problem
of finding a maximum clique in a given graph is referred
to as the Maximum Clique Problem (MCP) and the prob-
lem of enumerating all maximum cliques in a given graph
is referred to as the Maximum Clique Enumeration Problem
(MCE).

3. Related Work

Raahemi proposed an error correction scheme for use with
the 64b/66b line code [12] which takes error multiplication
properties of 64b/66b into account. Carney and Chandler
proposed a line code integrated with a BCH code [13]. A
line code integrating Reed-Solomon codes, designed for us-
age in high-energy physics, has been proposed by Papotti
[14]. However, these line codes all result in long decode
latencies due to large frames or error correction block sizes
and are undesirable for use in real-time communication with
strict latency requirements.

MCP is known to be an NP-hard problem and there
is extensive literature on approaches to solve this problem
[15]. While binary code search formulated as MCP has
been studied in the relatively limited scope of Hamming
and Johnson graphs [16], [17], we are not aware of prior
work applying exact algorithms to the problem motivated
by finding codes for designing line codes or related encod-
ing schemes.

We make heavy use of the work by Eblen et al. [2] of
applying MCP and MCE algorithms to problems in bioin-
formatics, the only work we are aware of concerning the
enumeration of all maximum cliques.

4. The 4b/10b Line Code

We briefly review the 4b/10b line code proposed by Suito et
al. [9]. 4b/10b is a line code which encodes four bits of data
as ten bit codewords and has the following characteristics:

Fig. 1 A comparison of line codes in terms of latency until the first bit is
decoded and code rate. In this plot, error-correcting capability is not con-
sidered. 4b/10b, the line code which is the focus of this work, is highlighted
in bold.

Table 1 Machine specifications.

Processor Intel Core i7-7600U @ 2.80 GHz
Memory 8x2 GB 2133 MHz DDR4 SODIMM

Operating System Linux 4.19.80, NixOS 19.03 (Koi)
Nixpkgs Channel 19.03.173677.daf861a810d (Koi)

Rust Compiler rustc 1.42.0-nightly (3e0a1c091 2019-12-26)

• DC-balance,
• clock recovery,
• single bit error correction and double bit error detec-

tion,
• a few control characters for transmission control (two

in the case of the original standard, four in the case of
our improved version [1]).

This is achieved by selecting codewords which obey the fol-
lowing constraints; for all ten bit codewords x,

1. The Hamming weight of x must be five.
2. The run length of x must be less than or equal to five.
3. The run length of x, with a single bit flip in an arbitrary

location, must be less than or equal to five.

and for all two codewords x and y where x , y,

1. The Hamming distance between x and y must be
greater or equal to four.

2. The run length of xy must be less than or equal to five.
3. The run length of xy, with two bit flips at least four bits

apart, must be less than or equal to five.

where xy is the concatenation of x and y, and the run length
of x is defined as the length of the longest string of consec-
utive 0s or 1s in x. For example, the run length of the code-
word 1010100011 is three. The error pattern 0000100001
will cause two bit flips four bits apart, changing, for exam-
ple, the codeword 1010100011 to 1010000010. This error
pattern fulfills the criteria for Constraint 3. An example

TAKEDA and YAMASAKI: CODEWORD SET SELECTION FOR THE ERROR-CORRECTING 4B/10B LINE CODE WITH MAXIMUM CLIQUE ENUMERATION
1229

Table 2 Codewords appearing in maximum cliques found (continued in
Table 3).

vertex number codeword
0 0010110101
1 0010110110
2 0010111001
3 0010111010
4 0011001101
5 0011001110
6 0011010011
7 0011100101
8 0011100110
9 0011101001
10 0011101010
11 0100101101
12 0100101110
13 0100110011
14 0100111001
15 0100111010
16 0101001011
17 0101010101
18 0101010110
19 0101011001
20 0101011010
21 0101011100
22 0101100011
23 0101100101
24 0101100110
25 0101101001
26 0101101010
27 0101110001
28 0101110010
29 0101110100
30 0110001011
31 0110001101
32 0110001110
33 0110010101
34 0110010110
35 0110011001
36 0110011010
37 0110011100
38 0110100011
39 0110100101
40 0110100110
41 0110101001
42 0110101010
43 0110110100
44 0111000101
45 0111000110
46 0111001100
47 0111010001
48 0111010010
49 1000101101

of an error pattern that does not is 0000010001, as the bit
flips it will cause are only three bits apart. Constraint 1 en-
ables single bit error correction and double bit error detec-
tion. Constraints 2 and 3 enable clock recovery by ensuring
a timely bit transition.

We show a comparison between 4b/10b and other line
codes in Fig. 1. Note that while 4b/10b has a significantly
lower code rate when compared to other error-correcting
line codes, it is the only line code with a decode latency
on par with 8b/10b.

Table 3 Codewords appearing in maximum cliques found (continued
from Table 2).

vertex number codeword
50 1000101110
51 1000110011
52 1000111001
53 1000111010
54 1001001011
55 1001010101
56 1001010110
57 1001011001
58 1001011010
59 1001011100
60 1001100011
61 1001100101
62 1001100110
63 1001101001
64 1001101010
65 1001110001
66 1001110010
67 1001110100
68 1010001011
69 1010001101
70 1010001110
71 1010010101
72 1010010110
73 1010011001
74 1010011010
75 1010011100
76 1010100011
77 1010100101
78 1010100110
79 1010101001
80 1010101010
81 1010110100
82 1011000101
83 1011000110
84 1011001100
85 1011010001
86 1011010010
87 1100010101
88 1100010110
89 1100011001
90 1100011010
91 1100101100
92 1100110001
93 1100110010
94 1101000101
95 1101000110
96 1101001001
97 1101001010

5. Codeword Search as a Maximum Clique Problem

We are interested in finding the largest set of bit strings, or
codewords, that obey a set of constraints which give rise
to desirable characteristics of the 4b/10b line code such as
error correction, DC-balance, and clock embedding. Fol-
lowing our scheme [1], we consider the generalized version
of this problem by considering arbitrary constraints on indi-
vidual codewords and arbitrary constraints on pairs of code-
words which must hold for all pairs in a candidate set of
codewords. This problem can then be formally described in

1230
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

Table 4 All maximum cliques found. Refer to Tables 2 and 3 for actual
codewords. Vertices 6 and 91, highlighted in bold, form the smallest maxi-
mum clique cover. Set 8 is the codeword set specified in [1] and set 7 is the
set that we base the proposed canonical 4b/10b translation table upon, both
highlighted in bold.

set number vertices

0 0 5 6 9 11 13 17 20 24 34
35 42 50 52 54 56 61 69 74 76

1 0 5 6 9 11 15 16 17 24 34
35 38 51 56 57 61 64 69 74 78

2 0 5 6 9 12 14 16 18 23 31
36 38 49 51 55 58 62 72 73 80

3 0 5 6 9 13 18 19 23 26 31
36 40 49 53 54 55 62 72 73 76

4 1 4 6 10 11 15 16 17 24 32
35 38 50 51 56 57 61 71 74 79

5 1 4 6 10 12 13 18 19 23 33
36 41 49 53 54 55 62 70 73 76

6 1 4 6 10 12 14 16 18 23 33
36 38 51 55 58 62 63 70 73 77

7 1 4 6 10 13 17 20 24 25 32
35 39 50 52 54 56 61 71 74 76

8 2 5 6 7 11 15 18 19 22 30
33 40 51 55 58 62 63 69 72 80

9 2 5 6 7 13 17 20 24 25 31
34 42 49 53 56 57 60 68 71 78

10 3 4 6 8 12 14 17 20 22 30
34 39 51 56 57 61 64 70 71 79

11 3 4 6 8 13 18 19 23 26 32
33 41 50 52 55 58 60 68 72 77

12 17 24 25 35 39 42 46 48 59 61
66 74 79 81 83 85 88 91 92 97

13 17 25 28 34 35 39 42 46 57 64
67 75 78 79 82 86 90 91 92 95

14 18 23 26 36 40 41 46 47 59 62
65 73 80 81 82 86 87 91 93 96

15 18 26 27 33 36 40 41 46 58 63
67 75 77 80 83 85 89 91 93 94

16 19 23 28 33 36 40 41 46 59 62
63 73 80 81 82 86 88 91 92 97

17 19 26 29 37 40 41 44 48 55 63
66 72 73 77 80 84 90 91 92 95

18 20 24 27 34 35 39 42 46 59 61
64 74 79 81 83 85 87 91 93 96

19 20 25 29 37 39 42 45 47 56 64
65 71 74 78 79 84 89 91 93 94

20 21 23 26 36 41 43 45 47 58 62
65 72 73 77 80 84 87 91 93 96

21 21 23 28 36 41 43 45 47 55 62
63 73 77 80 84 86 88 91 92 97

22 21 24 25 35 42 43 44 48 57 61
66 71 74 78 79 84 88 91 92 97

23 21 24 27 35 42 43 44 48 56 61
64 74 78 79 84 85 87 91 93 96

the following way: given a unary relation A ⊆ V and a bi-
nary symmetric relation B ⊆ V ×V where the set V = {0, 1}n

is the set of all bit strings of length n,

maximize
S

|S |

subject to S ⊆ A, S × S ⊆ B.
(1)

One solution to this problem can be found by solving MCP
on a corresponding graph. By setting V = A and E =

{{x, y}|(x, y) ∈ B}, a maximum clique S in G will yield a

Algorithm 1 4b/10b Codeword Set Enumeration
function Enumerate4b10b

V, E ← formulate graph from 4b/10b constraints
Qmax ← MCS(V)
V′ ← GetDegeneracyOrdering(V)
C ← V′

N ← ∅
for c ∈ C do

Extend(Qmax, {c}, C ∩ Γ(c), N)
C ← C \ {c}
N ← N ∪ {c}

end for
end function
function Extend(Qmax, Q, C, N)

if |Q| + |C| < |Qmax | then return
if C = ∅ then

if N = ∅ then output Q
return

end if
p← arg minp∈C∪N |C \ Γ(p)|
for c ∈ C \ Γ(p) do

Extend(Q ∪ {c}, C ∩ Γ(c), N ∩ Γ(c))
C ← C \ {c}
N ← N ∪ {c}

end for
end function

solution to the codeword search problem above, as by defi-
nition, no clique S ′ such that |S ′| > |S | can exist.

One question that may arise is whether there are more
efficient algorithms for solving this problem. Unfortunately,
there is strong evidence that this is most likely not the case.
We have shown that this problem is NP-hard [1], meaning
that if this problem could be solved in its general form in
polynomial time, then P=NP. Indeed, the algorithm used to
find the original set of codewords specified in the standard
is a greedy heuristic which, while being polynomial in com-
plexity, has no guarantees of finding the maximum set and
found a set of only 18 codewords [18].

6. Codeword Enumeration as a Maximum Clique Enu-
meration Problem

Given a set of codewords found via some MCP algorithm, a
question that arises is whether such set is the only set of its
size and if not, whether there are others which are more suit-
able for use as a line code. Multiple maximum cliques may
exist; the problem of enumerating all of them is referred
to as the Maximum Clique Enumeration Problem (MCE).
In order to solve MCE, we use the Intelligent Backtrack-
ing algorithm, proposed by Eblen et al. [2] with the MCS
algorithm, proposed by Tomita et al. [19], instead of using
MaximumCliqueFinder as the maximum clique algorithm.
Additionally, we apply a degeneracy ordering of the vertices
as a preprocessing step as proposed by Eppstein and Strash
[20]. We show the full algorithm in Algorithm 1. The algo-
rithm was implemented in the Rust programming language,
executed on a machine specified in Table 1, and took 7.11
seconds.

We present the sets of codewords found in Tables 2,

TAKEDA and YAMASAKI: CODEWORD SET SELECTION FOR THE ERROR-CORRECTING 4B/10B LINE CODE WITH MAXIMUM CLIQUE ENUMERATION
1231

Fig. 2 The distribution of the run length of concatenated codewords. The 4b/10b line code specifies
that this value must be equal or less than five for all pairs of codewords in order to enable clock recovery.

Fig. 3 The distribution of the run length of concatenated codewords, when two bits at least four bits
apart, have been flipped. The 4b/10b line code specifies that this value must be equal or less than five for
all pairs of codewords in order to preserve clock recovery in the presence of noise. Ideally, this should
hold for all double bit flips, but strengthening this constraint further will reduce the size of candidate
codewords to the point where it becomes impossible to map four bits to them.

Fig. 4 The distribution of the hamming distance between codewords. The 4b/10b line code specifies
this value must be greater or equal than four in order to implement error correction. As codewords have
the same number of zeros and ones, hamming distances only take even values.

3, and 4. As there was significant overlap among the sets,
we number and list the union of all codewords appearing

in maximum cliques found in Tables 2 and 3, and refer to
codewords by number when listing them in Table 4.

1232
IEICE TRANS. FUNDAMENTALS, VOL.E103–A, NO.10 OCTOBER 2020

Table 5 The canonical 4b/10b translation table based on codeword set 7.

input output
0000 0010110110
0001 0011001101
0010 0011010011
0011 0011101010
0100 0100110011
0101 0101010101
0110 0101011010
0111 0101100110
1000 0101101001
1001 0110001110
1010 0110011001
1011 0110100101
1100 1000101110
1101 1000111001
1110 1001001011
1111 1001010110
setup 1001100101
idle 1010010101
ack 1010011010

command 1010100011

Eblen et al. [2] empirically observes that there exists a
nonempty set of “essential” vertices shared by all maximum
cliques for most graphs and proposes a pruning method
based on this fact for use prior to running MCE algorithms.
Notably, this is not the case for our graph, despite signifi-
cant overlap among maximum cliques found, with vertices
6 and 91 both being shared among 12 cliques and coming
the closest to being “essential”. Furthermore, these two ver-
tices form the smallest instance of a maximum clique cover
V ′ ⊆ V where all maximum cliques in G contain a vertex in
V ′. This can be explained by the constraints being agnostic
to order and inversion; that is, given a set of codewords con-
formant to these constraints, the set of codewords obtained
by reversing or inverting all codewords will also result in
a conformant codeword set. Thus, if a codeword set is not
equal to itself under either reversion or inversion, the essen-
tial set will be empty. This can be confirmed by observing
that the codeword corresponding to vertex 6 is both the in-
verted and reversed version of the codeword corresponding
to vertex 91.

7. Evaluation and Selection

We evaluate the sets found based on the 4b/10b line code’s
constraints with respect to each other mentioned in Sect. 4
The distribution of these values for all candidate sets are
shown in Figs. 2, 3, and 4. As Fig. 2 shows, set 7 and 20
have the shortest run lengths on average, with 182 instances
out of a total 380 having a run length of 2. These two sets are
similarly favorable across all remaining measures, with neg-
ligible differences between cliques as seen in Figs. 3 and 4.
Thus, we present set 7, somewhat arbitrarily, as the canon-
ical 4b/10b line code in Table 5. Notably, the codeword
set found in [1] corresponds to set 8, which has a worse
run length distribution when compared to set 7 as shown in
Fig. 2.

8. #P-hardness of Maximum Clique Enumeration

As MCP is NP-hard, MCE is clearly also NP-hard, but it re-
mains to be seen whether it can be classified as an instance
of a more specific complexity class. Here, we show the fol-
lowing:

Theorem 1. Maximum Clique Enumeration is #P-hard.

Proof. We show this by reduction from #3SAT. Given an
instance of 3SAT, under Karp’s formulation as a graph [21]
for the proof of the NP-completeness of the clique decision
problem, enumerating all maximum cliques will enumerate
all assignments that satisfy the formula. Thus, counting the
number of enumerated maximum cliques will yield the an-
swer to #3SAT. As this reduction can be performed in poly-
nomial time, MCE is #P-hard. �

9. Conclusion

We have presented all maximum sets of codewords possible
for the 4b/10b line code found via formulation of codeword
search and enumeration as instances of maximum clique
problems, and chosen a canonical set based on qualitative
evaluations. The 4b/10b line code has substantial applica-
tion in real-time communication due to its ease of imple-
mentation due to its simplicity and codeword-level compat-
ibility with 8b/10b enabling switching between line codes
depending on the use case. Additionally, we have shown
that maximum clique enumeration belongs to the #P-hard
complexity class. We believe that this approach of finding
and enumerating codewords under various constraints has
wide applications and deserves further study.

References

[1] M. Takeda and N. Yamasaki, “Finding the maximum number of
symbols for the 4b/10b line code with error correction,” 2019
Seventh International Symposium on Computing and Networking
Workshops, 2019.

[2] J.D. Eblen, C.A. Phillips, G.L. Rogers, and M.A. Langston, “The
maximum clique enumeration problem: Algorithms, applications,
and implementations,” BMC Bioinform., vol.13, p.S5, BioMed Cen-
tral, 2012.

[3] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Springer Science & Busi-
ness Media, 2011.

[4] K. Tindell, A. Burns, and A.J. Wellings, “Analysis of hard real-time
communications,” Real-Time Syst., vol.9, no.2, pp.147–171, 1995.

[5] “802.3-2018 - IEEE Standard for Ethernet,” 2018.
[6] “Universal Serial Bus 3.1 Specification,” 2013.
[7] I.S. Reed and G. Solomon, “Polynomial codes over certain finite

fields,” J. Soc. Ind. Appl. Math., vol.8, no.2, pp.300–304, 1960.
[8] K. Suito, R. Ueda, K. Fujii, T. Kogo, H. Matsutani, and N. Yamasaki,

“The dependable responsive multithreaded processor for distributed
real-time systems,” IEEE Micro, vol.32, no.6, pp.52–61, 2012.

[9] K. Suito, T. Kogo, H. Matsutani, and N. Yamasaki, “Design and im-
plementation of dependable communication mechanism on respon-
sive link for distributed real-time systems,” IPSJ Journal of Informa-
tion Processing, vol.53, no.12, pp.2728–2739, 2012 (in Japanese).

http://dx.doi.org/10.1109/candarw.2019.00087
http://dx.doi.org/10.1109/candarw.2019.00087
http://dx.doi.org/10.1109/candarw.2019.00087
http://dx.doi.org/10.1109/candarw.2019.00087
http://dx.doi.org/10.1186/1471-2105-13-s10-s5
http://dx.doi.org/10.1186/1471-2105-13-s10-s5
http://dx.doi.org/10.1186/1471-2105-13-s10-s5
http://dx.doi.org/10.1186/1471-2105-13-s10-s5
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/bf01088855
http://dx.doi.org/10.1007/bf01088855
http://dx.doi.org/10.1109/ieeestd.2016.7428776
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1109/mm.2012.88
http://dx.doi.org/10.1109/mm.2012.88
http://dx.doi.org/10.1109/mm.2012.88

TAKEDA and YAMASAKI: CODEWORD SET SELECTION FOR THE ERROR-CORRECTING 4B/10B LINE CODE WITH MAXIMUM CLIQUE ENUMERATION
1233

[10] “Dependable Line Code with Error Correction Capability: 4b/10b,”
IPSJ-TS 0006:2003.

[11] “Multimedia systems and equipment - Multimedia signal trans-
mission - Dependable line code with error correction,” IEC TR
63094:2017.

[12] B. Raahemi, “Error correction on 64/66 bit encoded Links,” Cana-
dian Conference on Electrical and Computer Engineering, 2005,
pp.412–416, IEEE, 2005.

[13] D.T. Carney and E.W. Chandler, “Error correction coding for a se-
rial digital multi-gigabit communication system,” 2004 IEEE Elec-
tro/Information Technology Conference, pp.33–41, Aug. 2004.

[14] G. Papotti, “Architectural studies of a radiation-hard transceiver asic
in 0.13 um cmos for digital optical links in high energy physics ap-
plications,” Technical Report, CERN, 2007.

[15] Q. Wu and J.K. Hao, “A review on algorithms for maximum clique
problems,” Eur. J. Oper. Res., vol.242, no.3, pp.693–709, 2015.

[16] T. Etzion and P.R. Ostergard, “Greedy and heuristic algorithms for
codes and colorings,” IEEE Trans. Inf. Theory, vol.44, no.1, pp.382–
388, 1998.

[17] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo, “The max-
imum clique problem,” Handbook of Combinatorial Optimization,
pp.1–74, Springer, 1999.

[18] N. Yamasaki, “Conversion method of transmission line code for dig-
ital communication, and code generation method for the conversion
method,” Japanese Patent #P5900850, 2016.

[19] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki,
“A simple and faster branch-and-bound algorithm for finding a max-
imum clique,” International Workshop on Algorithms and Compu-
tation, pp.191–203, Springer, 2010.

[20] D. Eppstein and D. Strash, “Listing all maximal cliques in large
sparse real-world graphs,” International Symposium on Experimen-
tal Algorithms, pp.364–375, Springer, 2011.

[21] R.M. Karp, “Reducibility among combinatorial problems,” Com-
plexity of Computer Computations, pp.85–103, Springer, 1972.

Masayuki Takeda is an undergraduate stu-
dent at the Department of Information and Com-
puter Science at Keio University, expected to re-
ceive his B.S. degree in 2020. His research in-
terest include real-time systems and clique prob-
lems.

Nobuyuki Yamasaki is a Professor in the
Department of Information and Computer Sci-
ence at Keio University. He received his B.S.,
M.S., and Ph.D. degrees from Keio University
in 1991, 1993, and 1996, respectively. His
research interests include processor architec-
ture, parallel and distributed systems, real-time
systems, real-time communication, System-on-
Chip (SoC), and robotics.

http://dx.doi.org/10.1109/ccece.2005.1556959
http://dx.doi.org/10.1109/ccece.2005.1556959
http://dx.doi.org/10.1109/ccece.2005.1556959
http://dx.doi.org/10.1109/eit.2004.4569363
http://dx.doi.org/10.1109/eit.2004.4569363
http://dx.doi.org/10.1109/eit.2004.4569363
http://dx.doi.org/10.1016/j.ejor.2014.09.064
http://dx.doi.org/10.1016/j.ejor.2014.09.064
http://dx.doi.org/10.1109/18.651069
http://dx.doi.org/10.1109/18.651069
http://dx.doi.org/10.1109/18.651069
http://dx.doi.org/10.1007/978-1-4757-3023-4_1
http://dx.doi.org/10.1007/978-1-4757-3023-4_1
http://dx.doi.org/10.1007/978-1-4757-3023-4_1
http://dx.doi.org/10.1007/978-3-642-11440-3_18
http://dx.doi.org/10.1007/978-3-642-11440-3_18
http://dx.doi.org/10.1007/978-3-642-11440-3_18
http://dx.doi.org/10.1007/978-3-642-11440-3_18
http://dx.doi.org/10.1007/978-3-642-20662-7_31
http://dx.doi.org/10.1007/978-3-642-20662-7_31
http://dx.doi.org/10.1007/978-3-642-20662-7_31
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

