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LETTER
A New Construction of (m + k, m)-Functions with Low Differential
Uniformity∗

Tailin NIU†, Xi CHEN†, Nonmembers, Longjiang QU†,††a), Member, and Chao LI†, Nonmember

SUMMARY (m + k,m)-functions with good cryptographic properties
when 1 ≤ k < m play an important role in several block ciphers. In
this paper, based on the method introduced by Carlet et al. in 2018, we
construct infinite families of (m + k,m)-functions with low differential
uniformity by constructing a class of pairwise disjoint special subsets in
Fk2 . Such class of subsets Ui are chosen to generate multisets such that
all elements in Fk2 appears as many times as possible in each of these
multisets. We construct explicitly such kind of special subsets by linearized
polynomials, and provide differentially ∆-uniform (m + k,m)-functions
with ∆ < 2k+1, k ≤ m − 2. Specifically when k = m − 2, the differential
uniformity of our functions are lower than the function constructed by
Carlet et al. The constructed functions provide more choices for the design
of Feistel ciphers.
key words: substitution boxes, Feistel structures, differential uniformity

1. Introduction

Substitution boxes (S-boxes) play an important role in many
block ciphers since they are the only nonlinear component
and provide nonlinear relationship between the input bits
and the output bits in a controllable fashion. These S-boxes
are functions from Fn2 to Fm2 , which are also called (n,m)-
functions [14]. Permutations with n = m are widely used
in the Substitution-Permutation-Network (SPN) structure as
S-boxes such as the AES [11], Serpent [1], PRESENT [3],
MISTY [16], LED [13] and Kuznyechik [12]. Studies on
(n, n)-permutationswith good cryptographic propertieswere
very active in the last decade, please refer to [2], [5], [6],
[9], [20]–[24] and the references therein. However, (n,m)-
functions with m < n or even m > n can also be used in the
Feistel structure as S-boxes. For example, theDES cipher has
eight S-boxes each mapping 6 bits to 4 bits. Compared with
(n, n)-permutations, little theoretical work has been done on
(n,m)-functions with good cryptographic properties when
n
2 < m < n.

In order to prevent various attacks on the cipher, such
(n,m)-functions are required to have low differential unifor-
mity [19], high nonlinearity [19] and high algebraic degree
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[17]. Since we mainly focus on the case n > m here, we
let n = k + m with k ≥ 1. According to Nyberg’s results
[10], [18], the differential uniformity of (m+ k,m)-functions
with m > k ≥ 1 is bounded below by 2k + 2, which is
called Nyberg’s bound. An (n, n)-function is called almost
perfect nonlinear (APN) if its differential uniformity equals
2, which is the lowest possible value. Differentially 2k+1-
uniform (m+ k,m)-functions are easily found by composing
on the left any APN (m + k,m + k)-function by a surjective
affine (m + k,m)-function. When k = 1, these functions
achieve Nyberg’s bound which is 4. Very recently, Carlet et
al. [8] introduced a method to construct (m+k,m)-functions
(1 ≤ k ≤ m − 1) of the form F (x, z) = φ(z)I (x) with differ-
ential uniformity ∆ < 2k+1, where I (x) is the (m,m)-inverse
function and φ(z) is a (k,m)-function. Then for k = m − 1,
they constructed an infinite family of (m + k,m)-functions
achieveing Nyberg’s bound, while for k ≤ m − 2, they intro-
duced a class of special subsets to construct infinite families
of low differential uniformity functions (see Proposition 2.1
for details). However, for the latter case, they only gave one
specific construction with k = m − 2 (see Proposition 2.2).
As pointed out in [8], it is still an interesting question to con-
struct explicit differentially ∆-uniform (m + k,m)-functions
with 2 ≤ k ≤ m − 3 and ∆ < 2k+1.

In this paper, we construct special sets suitable for
Proposition 2.1 by linearized polynomials. These sets lead
to specific families of (m + k,m)-functions with differential
uniformity ∆ < 2k+1, high nonlinearity and not too low al-
gebraic degree when k ≤ m − 2. Thus we partly answer
the above interesting quesiton. Even when k = m − 2, our
constructions have better cryptographic properties than the
function constructed in [8]. The constructed functions in this
paper provide more choices for the design of Feistel ciphers.

2. Preliminaries

In this section, we give some necessary definitions and no-
tions related to (n,m)-functions and then recall the previous
results.

2.1 Necessary Definitions

Let F2n be an extension field of the finite field F2. Let
Γ(x) ∈ F2[x] be a primitive monic polynomial of degree n
and α be a root of Γ(x) in its splitting field. Then

F2n =
{
a0 + a1α + · · · + an−1α

n−1��a0, a1, · · · , an−1 ∈ F2
}
.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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For any a = a0 + a1α + · · · + an−1α
n−1 ∈ F2n , the mapping

a → ~a := (a0, a1, · · · , an−1)T is a bijection from F2n to the
linear space Fn2 . Thus, the finite field F2n is also viewed as
the linear space Fn2 over F2 [15, Definition 1.83]. Throughout
this note, we will switch between these two points of view
without explanation if the context is clear. The set of all
nonzero elements of F2n (resp. Fn2 ) is denoted by F∗2n (resp.
Fn∗2 ). In the note, we always define I (0) = 0 for the multi-
plicative inverse function I (x) = 1/x. For the convenience
and clarity, the zero vector in a linear space V is denoted by
0V . We use Span(A) to denote the linear span of a set A in
Fn2 . A polynomial of the form

L(x) =
n∑
i=0

αi x2i

with coefficients in F2n is called a linearized polynomial
over F2n . If L(x) permutes F2n , the unique polynomial
L−1(x) over F2n such that L

(
L−1(x)

)
≡ L−1 (L(x)) ≡ x

(mod x2n − x) is called the compositional inverse of L(x).
There exist several types of unique representations for

(n,m)-functions. One such representation is the algebraic
normal form (ANF):

F (x) = ( f1(x), . . . , fm(x))

=
*.
,

∑
P⊆{1,2,...,n}

b1,P

(∏
i∈P

xi
)
, . . . ,

∑
P⊆{1,2,...,n}

bm,P
(∏
i∈P

xi
)+/

-
=

∑
P⊆{1,2,...,n}

aP

(∏
i∈P

xi
)
,

(1)

where x = (x1, . . . , xn) ∈ Fn2, aP = (b1,P , . . . , bm,P) ∈ Fm2
and the algebraic normal form of f j (x) (the j-th coor-
dinate function of F (x), 1 ≤ j ≤ m) is defined by∑
P⊆{1,2,...,n}

bj,P

(∏
i∈P xi

)
.

The algebraic degree of an (n,m)-function is defined
by the global degree of its ANF:

d◦(F) = max {#P, where aP , 0} ,

where #P denotes the cardinality of a set P.
Let F be an (n,m)-function. The differential uniformity

of F is defined as:

∆F = max
a∈Fn∗2 ,b∈Fm2

#
{
x ∈ Fn2 | F (x + a) + F (x) = b

}
.

The Walsh transform FW : Fn2 × F
m∗
2 → C of F is

defined by:

FW (u, v) =
∑
x∈Fn2

(−1)v ·F (x)+u ·x,

where “·” denotes the inner product in Fn2 .
The nonlinearity of F is defined as

N L(F) = 2n−1 −
1
2

max
(u,v)∈Fn2 ×F

m∗
2

|FW (u, v) |.

The nonlinearity of (n,m)-functions is bounded above
by 2n−1 − 2n/2−1 according to the Parseval identity∑

u∈Fn2
FW (u, v)2 = 22n and the fact that the maximum

value of a list of real numbers must not be less than their
average.

2.2 Previous Results

Very recently, Carlet et al. [8] proposed a new method to
construct infinite families of (m + k,m)-functions with low
differential uniformity.

Proposition 2.1. [8, Proposition 4.6] Let m, l be positive
integers and 1 ≤ k ≤ m − 2. Let Ui (1 ≤ i ≤ m − k − 1) be

disjoint sets in Fk2 satisfying
m−k−1∑
i=1

#Ui ≤ 2k−2 − l and such

that, for any Ui , any element in Fk2 appears at least 2l times
in the multiset {∗ z1 + z2 |(z1, z2) ∈ Ui ×Ui ∗}.
Consider the function F : Fm+k2 → F2m in the form F (x, z) =
φ(z)I (x), where I (x) is the (m,m)-inverse function and φ :
Fk2 → F2m is defined as

φ(z) =



L(z) + ci, when z ∈ Ui,

L(z) + c0, when z ∈ Fk2 \
m−k−1⋃
i=1

Ui,

and satisfies Rank{φ(z) |z ∈ Fk2 } = m, L : Fk2 → F2m is
linear and ci (0 ≤ i ≤ m− k −1) are constants in F2m . Then
F is a differentially∆-uniform functionwith∆ ≤ 2k+1−4l+2.

According to Proposition 2.1, the problem of construct-
ing (m + k,m)-functions with low differential uniformity
∆ < 2k+1 was transformed to the problem of construct-
ing these suitable special sets. Furthermore, the differential
uniformity of such functions are highly depending on the
properties of the constructed sets.

In the case k = m − 2, these pairwise disjoint sets Ui

become one setU1. According to Proposition 2.1, an infinite
family of (2m − 2,m)-functions with ∆ ≤ 2m−1 − 2m−6 + 2
and algebraic degree m + 5 for any m ≥ 8 was constructed.

Proposition 2.2. [8, Proposition 4.7] Let m ≥ 8 be an
integer. Assume that

f (z) = ((z1 + 1)(z2 + 1)(z3 + 1) + 1)((z4 + 1)(z5 + 1)(z6 + 1) + 1) + 1,

where zi, 1 ≤ i ≤ 6 are the first 6 bits of z ∈ Fm−2
2 .

Consider the function F : F2m−2
2 → F2m in the form

F (x, z) = φ(z)I (x). Here I (x) is the (m,m)-inverse function
and φ(z) = (z, f (z), f (z) + 1). Then F is a differentially ∆-
uniform function with ∆ ≤ 2m−1−2m−6+2 and the algebraic
degree of F is m + 5.

Let

U1 =
{

(x, 0F3
2
, y) |x ∈ F3

2, y ∈ F
m−8
2

} ⋃
{

(0F3
2
, x, y) |x ∈ F3

2, y ∈ F
m−8
2

}
.
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Then the φ(z) in Proposition 2.2 can be expressed by

φ(z) =
{

(z, 1, 0), when z ∈ U1;
(z, 0, 1), when z ∈ Fm−2

2 \U1.

3. Construction of Special Sets

In this section, we generalize the set U1 ⊆ F
m−2
2 in Proposi-

tion 2.2 and construct pairwise disjoint special setsUi ⊆ F
k
2 ,

where k is not necessary equal to m − 2. We first give a
useful basic lemma.

Lemma 3.1. For j = 1, 2, let k j, l j be positive integers
satisfying k j ≥ 4, and Aj be a set with elements in Fk j2 such
that any element in Fk j2 appears at least 2l j times in the
multiset {∗ z1 + z2 |(z1, z2) ∈ Aj × Aj ∗}. Define

A = {(x, y) | x ∈ A1, y ∈ A2} ⊆ F
k1+k2
2 .

Then any element in Fk1+k2
2 appears at least 4l1l2 times in

the multiset

{∗ z1 + z2 | (z1, z2) ∈ A × A ∗} .

Proof: According to the assumption, x ′ ∈ Fk1
2 has at least 2l1

orderly addictive decompositions in A1. Thus for each or-
derly addictive decomposition of y ′ ∈ Fk2

2 in A2, the element
(x ′, y ′) ∈ Fk1+k2

2 has at least 2l1 orderly addictive decompo-
sitions. Since y ′ ∈ Fk2

2 have at least 2l2 orderly addictive
decompositions in A2, we obtain that (x ′, y ′) ∈ Fk1+k2

2 has
at least 4l1l2 orderly addictive decompositions in A. �

We can generalize the set U1 in Proposition 2.2. By
linearized polynomials, we construct pairwise disjoint sets
Ui ⊆ F

k
2 in the following two propositions.

Proposition 3.2. Let m, k, s, t be positive integers such that
1 ≤ k ≤ m − 2, 2 ≤ t and 2 ≤ s ≤ 2t−1. Assume Li, j (x)
are linearized polynomials over F2t satisfying that (Li1, j1 +

Li2, j2 )(x) is a permutation for any (i1, j1) , (i2, j2) (i.e.,
i1 , i2 or j1 , j2), where 1 ≤ i ≤ m − k − 1, 1 ≤ j ≤ s.
Define the sets

U ′i =
s⋃
j=1

W ′
i, j,

where

W ′
i, j =

{
(x, Li, j (x)) | x ∈ Ft∗2

}
⊆ F2t

2 .

Then U ′i (1 ≤ i ≤ m − k − 1) are pairwise disjoint sets in

F2t
2 ,

m−k−1∑
i=1

#U ′i = (2t − 1)s(m − k − 1) and for any U ′i , all

elements in F2t
2 appear at least s(s − 1) times in the multiset

T ′i =
{
∗ z1 + z2 |(z1, z2) ∈ U ′i ×U ′i ∗

}
.

Proof: Wefirst show thatU ′i (1 ≤ i ≤ m−k−1) are pairwise

disjoint sets in F2t
2 satisfying

m−k−1∑
i=1

#U ′i = (2t − 1)s(m − k − 1).

Notice that (Li1, j1 + Li2, j2 )(x) is a permutation for any
(i1, j1) , (i2, j2). Then Li1, j1 (x) = Li2, j2 (x) if and only
if x = 0, and thus we have W ′

i1, j1

⋂
W ′

i2, j2
= ∅. Therefore,

U ′i =
s⋃
j=1

W ′
i, j (1 ≤ i ≤ m − k − 1) are pairwise disjoint sets

and
m−k−1∑
i=1

#U ′i = (2t − 1)s(m − k − 1).

Secondly, we prove that any element (x ′, x ′′) ∈ F2t
2

appears at least s(s − 1) times in the multiset T ′i , where
x ′, x ′′ ∈ Ft2. It is clear that 0F2t

2
< U ′i . The rest of proof is

divided into three cases.
Case 1: (x ′, x ′′) = 0F2t

2
.

Since 0F2t
2
= z + z holds for any z ∈ U ′i , 0F2t

2
appears

at least #U ′i times in the multiset T ′i . Clearly we have #U ′i =
(2t − 1)s ≥ (s − 1)s, where the inequality holds since 2 ≤
s ≤ 2t−1.

Case 2: (x ′, x ′′) <
{
0F2t

2

} ⋃
U ′i .

We first prove that for any j1 , j2, (x ′, x ′′) ∈ F2t
2

appears at least 2 times in the multiset
{
∗ z1 + z2 | (z1, z2) ∈ W ′

i, j1

⋃
W ′

i, j2
×W ′

i, j1

⋃
W ′

i, j2
∗

}
.

Without lost of generality, we assume j1 = 1, j2 = 2 here.
Since (x ′, x ′′) <

{
0F2t

2

} ⋃
U ′i , the addictive decomposition

of (x ′, x ′′) into two elements in W ′
i,1

⋃
W ′

i,2 is equivalent to
the following linear equation system:{

x1 + x2 = x ′

Li,1(x1) + Li,2(x2) = x ′′, (2)

where x1, x2 ∈ F
t∗
2 are unknowns. Plugging x1 = x2+ x ′ and

x2 = x1 + x ′ into the second equation of Eq. (2) respectively,
we obtain{

x1 = (Li,1 + Li,2)−1(Li,2(x ′) + x ′′)
x2 = (Li,1 + Li,2)−1(Li,1(x ′) + x ′′), (3)

where (Li,1 + Li,2)−1(x) denotes the compositional inverse
of (Li,1 + Li,2)(x). Since (x ′, x ′′) <

{
0F2t

2

} ⋃
U ′i , we have

x1, x2 , 0Ft2 according toEq. (3). Thenwe obtain two orderly
addictive decompositions

(x ′, x ′′) = (x1, Li,1(x1)) + (x2, Li,2(x2))
= (x2, Li,2(x2)) + (x1, Li,1(x1)),

where (x1, Li,1(x1)) ∈ W ′
i,1 and (x2, Li,2(x2)) ∈ W ′

i,2. That
is, (x ′, x ′′) ∈ F2t

2 appears at least 2 times in the multiset
{
∗ z1 + z2 | (z1, z2) ∈ W ′

i,1

⋃
W ′

i,2 ×W ′
i,1

⋃
W ′

i,2 ∗
}
.

After that, we prove (x ′, x ′′) ∈ F2t
2 appears at least
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s(s − 1) times in the multiset T ′i . Actually, there are
(
s
2

)
combinations of W ′

i, j1

⋃
W ′

i, j2
for any 1 ≤ j1 , j2 ≤ s.

Notice that U ′i =
s⋃
j=1

W ′
i, j and W ′

i1, j1

⋂
W ′

i2, j2
= ∅ for any

(i1, j1) , (i2, j2). Thus we have (x ′, x ′′) ∈ F2t
2 appears at

least 2
(
s
2

)
= s(s − 1) times in the multiset T ′i .

Case 3: (x ′, x ′′) ∈ U ′i .
Without lost of generality, assume that (x ′, x ′′) ∈ W ′

i,1.
On one hand, we show that (x ′, x ′′) ∈ F2t

2 appears at least
2t − 2 times in the multiset

{
∗ z1 + z2 | (z1, z2) ∈ W ′

i,1 ×W ′
i,1 ∗

}
.

For any z ∈ Ft∗2 \ {x
′}, it is clear that

(
z, Li,1(z)

)
,(

z + x ′, Li,1(z + x ′)
)
∈ W ′

i,1 are distinct and

(x ′, Li,1(x ′)) =
(
z, Li,1(z)

)
+

(
z + x ′, Li,1(z + x ′)

)
.

Thus (x ′, x ′′) ∈ F2t
2 appears at least 2t−2 times in themultiset

{∗ z1 + z2 |(z1, z2) ∈ W ′
i,1 ×W ′

i,1 ∗}. On the other hand, since

(x ′, x ′′) <
{
0F2t

2

} ⋃ s⋃
j=2

W ′
i, j , clearly (x ′, x ′′) ∈ F2t

2 appears

at least (s − 1)(s − 2) times in the multiset



∗ z1 + z2 | (z1, z2) ∈

s⋃
j=2

W ′
i, j ×

s⋃
j=2

W ′
i, j ∗




similarly to Case 2. Thus (x ′, x ′′) appears at least 2t − 2 +
(s − 1)(s − 2) ≥ s(s − 1) times in the multiset T ′i , where the
inequality holds since 2 ≤ s ≤ 2t−1.

All in all, U ′i (1 ≤ i ≤ m − k − 1) are pairwise disjoint

in F2t
2 ,

m−k−1∑
i=1

#U ′i = (2t − 1)s(m− k − 1) and for anyU ′i , any

element in F2t
2 appears at least s(s − 1) times in the multiset

T ′i . �
For each 1 ≤ i ≤ m − k − 1, if we let A1 = U ′i ⊆

F2t
2 , A2 = F

k−2t
2 in Lemma 3.1, then we have the following

proposition.

Proposition 3.3. For any 1 ≤ i ≤ m − k − 1, 1 ≤ j ≤ s, let
Li, j be defined as in Proposition 3.2. Define the sets

Ui =

s⋃
j=1

Wi, j,

where

Wi, j =
{
(x, Li, j (x), y) | x ∈ Ft∗2 , y ∈ F

k−2t
2

}
⊆ Fk2 .

Then Ui (1 ≤ i ≤ m − k − 1) are pairwise disjoint sets

in Fk2 satisfying
m−k−1∑
i=1

#Ui = 2k−2t (2t − 1)s(m − k − 1)

and such that, for any Ui , any element in Fk2 appears at
least 2k−2t s(s − 1) times in the multiset {∗ z1 + z2 |(z1, z2) ∈
Ui ×Ui ∗}.

Remark 3.4. Let ai, j ∈ F2t (1 ≤ i ≤ m − k − 1, 1 ≤ j ≤ s)
be pairwise distinct. Let Li, j (x) = ai, j x2d

+ G(x) ∈ F2t [x],
where d is an integer and G(x) is a linearized polynomial
over F2t . It is easy to verify that (Li1, j1 + Li2, j2 )(x) is a
permutation for any (i1, j1) , (i2, j2).

4. Low Differential Uniformity (m + k, m)-Functions

Now we use the new construction of special sets to build
low differential uniformity (m + k,m)-functions in the form
F (x, z) = φ(z)I (x), where k is not necessarily equal tom−2.
The following theorem is a generalization of Proposition 2.2.

Theorem 4.1. Let m, k, t, s, d be integers satisfying 1 ≤ k ≤
m − 2, 1 ≤ t ≤ bk/2c, 2 ≤ s ≤ min

{
2t−1, 2t/(m − k − 1)

}
.

Assume ai, j ∈ Ft2 satisfying ai1, j1 , ai2, j2 for any (i1, j1) ,
(i2, j2). Let

Ui =

s⋃
j=1

Wi, j ⊆ F
k
2,

where for any 1 ≤ i ≤ m − k − 1, 1 ≤ j ≤ s,

Wi, j =
{
(x, ai, j x2d

+ G(x), y) | x ∈ Ft∗2 , y ∈ F
k−2t
2

}
⊆ Fk2

and G(x) is a fixed linearized polynomial over F2t .
Consider the function F : Fm+k2 → Fm2 in the form F (x, z) =
φ(z)I (x). Here I (x) is the (m,m)-inverse function and φ :
Fk2 → F2m is defined as follows:

φ(z) =




(
z, 0Fm−k2

)
+ em+1−i, when z ∈ Ui;(

z, 0Fm−k2

)
+ ek+1, when z ∈ Fk2 \

m−k−1⋃
i=1

Ui,

where e1, e2, ..., em denote the standard basis of Fm2 . Then
F is a differentially ∆-uniform function with ∆ ≤ 2k+1 −
4lm,k (s, t) + 2 and the algebraic degree of F is at least m,
where lm,k (s, t)

= min
{
2k−2 − 2k−2t (2t − 1)s(m − k − 1), 2k−2t−1s(s − 1)

}

is a positive integer.

Proof: Since s ≤ 2t/(m − k − 1), there are enough distinct
ai, j ∈ Ft2 to constitute Ui . Let Li, j (x) = ai, j x2d

+ G(x) in
Proposition 3.3 and we obtain that (Li1, j1 + Li2, j2 )(x) is a
permutation for any (i1, j1) , (i2, j2) according to Remark
3.4. Furthermore, according to Proposition 3.3, we have

m−k−1∑
i=1

#Ui = 2k−2t (2t−1)s(m−k−1) ≤ 2k−2−lm,k (s, t)

and for any Ui , any element in Fk2 appears at least

2k−2t s(s − 1) ≥ 2lm,k (s, t)

times in the multiset {∗ z1 + z2 | (z1, z2) ∈ Ui ×Ui ∗}.
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Thus we only need to prove the last condition in Propo-
sition 2.1, i.e., Rank{φ(z) |z ∈ Fk2 } = m. For clarity, here
we use e(m)

1 , e(m)
2 , ..., e(m)

m denote the standard basis of Fm2
and e(k)

1 , e(k)
2 , ..., e(k)

k
denote the standard basis of Fk2 . Firstly,

we prove e(m)
k+1, e

(m)
k+2, . . . , e

(m)
m ∈ Span

{
φ (z) |z ∈ Fk2

}
. No-

tice that 0Fk2 ∈ F
k
2 \

m−k−1⋃
i=1

Ui , we have φ(0Fk2 ) = e(m)
k+1 ∈

Span
{
φ (z) |z ∈ Fk2

}
. Then for each 1 ≤ i ≤ m − k − 1, let

βi ∈ Ui . Since βi ∈ Ui appears at least 2k−2t s(s − 1) ≥ 1
times in the multiset {∗ z1 + z2 | (z1, z2) ∈ Ui ×Ui ∗}, there
exists θi, ηi ∈ Ui such that βi = θi + ηi . Thus for any
1 ≤ i ≤ m − k − 1, we have

e(m)
m+1−i =

(
βi, 0Fm−k2

)
+ e(m)

m+1−i +
(
θi, 0Fm−k2

)
+ e(m)

m+1−i

+

(
ηi, 0Fm−k2

)
+ e(m)

m+1−i

=φ(βi) + φ(θi) + φ(ηi) ∈ Span
{
φ (z) |z ∈ Fk2

}
,

i.e., e(m)
k+2, . . . , e

(m)
m ∈ Span

{
φ (z) |z ∈ Fk2

}
. Secondly, we

prove e(m)
1 , e(m)

2 , . . . , e(m)
k
∈ Span

{
φ (z) |z ∈ Fk2

}
. For each

1 ≤ j ≤ k, if there exists 1 ≤ i j ≤ m − k − 1
such that e(k)

j ∈ Ui j , then we have e(m)
j = φ(e(k)

j ) +

e(m)
m+1−i j ∈ Span

{
φ (z) |z ∈ Fk2

}
, where φ(e(k)

j ) + e(m)
m+1−i j ∈

Span
{
φ (z) |z ∈ Fk2

}
holds since e(m)

k+1, e
(m)
k+2, . . . , e

(m)
m ∈

Span
{
φ (z) |z ∈ Fk2

}
. Otherwise, we have e(k)

j ∈ Fk2 \
m−k−1⋃
i=1

Ui and e(m)
j = φ(e(k)

j ) + e(m)
k+1 ∈ Span

{
φ (z) |z ∈ Fk2

}
.

Thus all the standard basis of Fm2 are contained in
Span

{
φ (z) |z ∈ Fk2

}
. This means Rank{φ(z) |z ∈ Fk2 } = m.

All in all, F is a differentially ∆-uniform function with
∆ ≤ 2k+1−4lm,k (s, t)+2 according to Proposition 2.1. Since
the algebraic degree of I (x) is m− 1, the algebraic degree of
the (m + k,m)-function F (x, z) = φ(z)I (x) is at least m. �

Remark4.2. Any parameters t and s satisfying lm,k (s, t) ≥ 1
can be used to build differentially ∆-uniform (m + k,m)-
functions with ∆ ≤ Dm,k (s, t) = 2k+1−4lm,k (s, t)+2, where

lm,k (s, t) = min
{

fm,k (s, t), gm,k (s, t)
}

fm,k (s, t) = 2k−2 − 2k−2t (2t − 1)s(m − k − 1),

gm,k (s, t) = 2k−2t−1s(s − 1).

Algorithm1provides a fast way to obtain theminimal value of
Dm,k (s, t) for fixedm, k. For any fixed t, regard fm,k (s, t) and
gm,k (s, t) as functions with independent variable s. Since
fm,k (s, t) monotonically decreases while gm,k (s, t) increases
as s increases from 2 to c, lm,k (s, t) will be possible to reach
its maximum only when s is the boundary point or near the
positive solution of the equation fm,k (s, t) = gm,k (s, t). Thus
only when s ∈ Ht (see line 7 of Algorithm 1), the value of
Dm,k (s, t) will be possible to reach its minimal value for each
m, k, t. Furthermore, we find most of the output Tm,k is equal
or close to bk/2c for each m, k.

Algorithm 1 The minimal value of Dm,k (s, t)
1: Input m, k.
2: lm,k := 0;
3: for t in [1.. bk/2c] do
4: c := min

{
2t−1, 2t/(m − k − 1)

}
;

5: b := 1/2 − (2t − 1)(m − k − 1); s1 := b +
√

22t−1 + b2;
6: H′t := {2, c, ds1 e, bs1 c }; Ht :=

{
x ∈ H′t | 2 ≤ x ≤ c

}
;

7: for s in Ht do
8: if lm,k (s, t) ≥ lm,k then
9: lm,k := lm,k (s, t); Sm,k := s; Tm,k := t;
10: end if
11: end for
12: end for
13: if lm,k ≥ 1 then
14: Dm,k := 2k+1 − 4lm,k + 2;
15: Output Dm,k, Sm,k, Tm,k .
16: end if

According to Algorithm 1, we calculate by Magma [4]
the minimal upper bound of differential uniformity of spe-
cific (m+ k,m)-functions constructed by Theorem 4.1 when
m ≤ 24 (see Table 1). Based on these results, we obtain
specific differentially ∆-uniform (m + k,m)-functions with
∆ < 2k+1, k ≤ m − 2 but k is close to m − 2. As far as the
authors know, this is the first time when specific ∆-uniform
(m + k,m)-functions with ∆ < 2k+1, k < m − 2 are con-
structed.

The existence of differentially ∆-uniform (m + k,m)-

Table 1 The minimal upper bound Dm,k of differential uniformity of
(m + k,m)-functions constructed by Theorem 4.1.

m

Dm,k k
m − 2 m − 3 m − 4 m − 5

8 27 − 2 — — —
9 28 − 6 — — —
10 29 − 14 — — —
11 210 − 30 29 − 2 — —
12 211 − 82 210 − 6 — —
13 212 − 166 211 − 22 — —
14 213 − 362 212 − 46 211 − 2 —
15 214 − 726 213 − 94 212 − 6 211 − 2
16 215 − 1622 214 − 190 213 − 38 212 − 6
17 216 − 3246 215 − 418 214 − 78 213 − 22
18 217 − 6494 216 − 838 215 − 178 214 − 46
19 218 − 12990 217 − 1858 216 − 358 215 − 110
20 219 − 26218 218 − 3718 217 − 838 216 − 222
21 220 − 52438 219 − 7562 218 − 1678 217 − 446
22 221 − 105338 220 − 15126 219 − 3442 218 − 894
23 222 − 210678 221 − 30502 220 − 6886 219 − 1858
24 223 − 422278 222 − 610006 221 − 13942 220 − 3718

m

Dm,k k
m − 6 m − 7 m − 8 m − 9 m − 10

17 — — — — —
18 213 − 10 — — — —
19 214 − 22 213 − 2 — — —
20 215 − 58 214 − 6 213 − 2 — —
21 216 − 118 215 − 38 214 − 6 213 − 2 —
22 217 − 262 216 − 78 215 − 22 214 − 6 —
23 218 − 526 217 − 178 216 − 46 215 − 22 —
24 219 − 1198 218 − 358 217 − 142 216 − 46 215 − 10
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Table 2 The differential uniformity ∆ and nonlinearity NL of (14, 8)-
functions constructed by Theorem 4.1 with G(x) = 0, d = 1.

a1,1 and a1,2 ∆ NL a1,1 and a1,2 ∆ NL

Proposition 2.2 114 7954 α3, α6 116 7988
α, α6 114 7988 1, α4 116 7984
0, α6 114 7980 0, 1 116 7980
1, α5 114 7976 0, α3 116 7980
α2, α5 114 7976 α3, α4 116 7980
α, α4 114 7976 1, α3 116 7972
0, α2 114 7972 1, α2 116 7964
α, α2 114 7972 α5, α6 116 7964
α3, α5 114 7972 1, α 116 7960
α, α5 114 7964 α4, α5 116 7956
α4, α6 114 7964 0, α4 118 7984
α2, α6, 114 7960 α2, α4, 118 7980
0, α5 114 7956 1, α6 118 7976

0, α 118 7964
α2, α3, 118 7964
α, α3 118 7960

functionswith k = m−2,m ≥ 8,∆ < 2k+1 is unknown before
[8]. The following examples show that even when k = m−2,
our constructions have better cryptographic properties than
the function constructed in Proposition 2.2.

Example 1. Let m = 8, k = 6, d = 0 and G(x) = 0 in
Theorem 4.1. By Algorithm 1 we pick t = T8,6 = 3 and s =
S8,6 = 2. Then we have W1,1 =

{
(x, a1,1x) |x ∈ F3∗

2

}
, W1,2 ={

(x, a1,2x) |x ∈ F3∗
2

}
and U1 = W1,1

⋃
W1,2, where a1,1 ,

a1,2. Thus (14, 8)-functions with low differential uniformity
are obtained by all possible combinations of a1,1 , a1,2 ∈
F23 (see Table 2).

The differential uniformity and nonlinearity of the
(14, 8)-function constructed by Theorem 4.1 with parame-
ters a1,1 = α, a1,2 = α

6 achieve 114 and 7988 = 213 − 204
respectively. It is an improvement comparing with 7954 =
213 − 238, which is the nonlinearity of the function con-
structed in Proposition 2.2. Furthermore, most of these
functions in Table 2 are pairwise CCZ inequivalent, since it
is well known that CCZ equivalence preserves the differential
uniformity and the nonlinearity [7].

Example 2. Let m = 12, k = 10. By Algorithm 1, we pick
t = T12,10 = 5 and s = S12,10 = 7. Then Theorem 4.1 builds
differentially∆-uniform (22, 12)-functionswith∆ ≤ 211−82.
However, the function constructed in Proposition 2.2 is only
∆ ≤ 211 − 62.
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