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LETTER
A Note on the Algebraic Immunity of the Enhanced Boolean
Functions

Deng TANG†,††a), Member

SUMMARY In 2015, Carlet and Tang [Des. Codes Cryptogr. 76(3):
571-587, 2015] proposed a concept called enhanced Boolean functions
and a class of such kind of functions on odd number of variables was
constructed. They proved that the constructed functions in this class have
optimal algebraic immunity if the numbers of variables are a power of 2
plus 1 and at least sub-optimal algebraic immunity otherwise. In addition,
an open problem that if there are enhanced Boolean functions with optimal
algebraic immunity and maximal algebraic degree n − 1 on odd variables
n , 2k + 1 was proposed. In this letter, we give a negative answer to the
open problem, that is, we prove that there is no enhanced Boolean function
on odd n , 2k + 1 variables with optimal algebraic immunity and maximal
algebraic degree n − 1.
key words: stream cipher, enhanced Boolean function, balancedness,
algebraic immunity

1. Introduction

Nonlinear Boolean functions play a central role in the secu-
rity of symmetric-key cryptosystems. The widely accepted
properties for a Boolean function to be used in stream ci-
phers are balancedness (for avoiding statistical dependence
between the plaintext and the ciphertext), high nonlinear-
ity (to resist the best affine approximation [1] and the fast
correlation attack [2]), high algebraic degree (for allowing
resistance to the Berlekamp-Massey algorithm [3] and the
Rønjom-Helleseth attack [4]), optimal algebraic immunity
(to withstand the standard algebraic attack [5]), and high
fast algebraic immunity (to resist fast algebraic attacks [6]).
Additionally, the distribution of some vectorial sequences
of the form (si+j1, · · · , si+jn ) from the keystream (si)i∈N
generated by the pseudo-random generator must be uniform
for any tapping sequence, for resisting Anderson’s attack
[7]. J. Golić [8] observed that if the filter function em-
ployed in a filter model has the form x1 + f (x2, · · · , xn) or
f (x1, · · · , xn−1) + xn, then the property of uniformity is sat-
isfied for any tapping sequence. It has been later shown that
[9] the function must have one of these two forms for having
uniformity for any tapping sequence.

During the past fifteen years, the algebraic immunity
and fast algebraic immunity are the most infusive criteria
on the design of cryptographic Boolean functions, due to
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the high efficiency of the algebraic and fast algebraic at-
tacks on stream ciphers; the algebraic and fast algebraic
attacks have allowed to cryptanalyse some stream ciphers
which were previously believed secure. Till date, Boolean
functions with optimal algebraic immunity and high fast al-
gebraic immunity have been built in several ways. In the
literature, the majority function, which is a subclass of sym-
metric Boolean functions, is the first class of functions which
has been found with optimal algebraic immunity [10], [11].
For odd number of variables n, Qu et al. proved in [12] that
there are exactly two symmetric Boolean functions fm and
fm + 1 in symmetric Boolean functions with optimal alge-
braic immunity (n + 1)/2. For even number of variables
n, except the majority function, some constructions of sym-
metric Boolean functions with optimal algebraic immunity
can be found in [13]–[15]. In 2011, Peng et al. [16] de-
termined all the even-variable symmetric Boolean functions
with optimal algebraic immunity. The total number of such
symmetric Boolean functions is

(
2wt(n)+1

)
2 blog2 nc , where

wt(n) is the Hamming weight of the binary expansion of
the integer n. After the optimal algebraic immunity of the
majority function was proven, there are many works on the
constructions of Boolean functions with optimal algebraic
immunity by modifying the majority function, for instance
in [10], [17]–[27]. However, the nonlinearities of all found
functions are very closed to 2n−1 −

(
n−1
bn/2c

)
, which is almost

the worst possible value according to Lobanov’s bound [28]
and therefore they are not suitable for the cryptographic use
in stream ciphers. In 2008, Carlet and Feng [29] studied
an infinite class of n-variable balanced Boolean functions
with optimal algebraic immunity. This class had already
been studied for its nonlinearity (only) in [30] and it was
the single-output case of a construction of vectorial Boolean
functions introduced in [31]. It was the first class of Boolean
functions almost satisfying all the criteria and potentially
satisfying them completely. Inspired by the work of Carlet
and Feng, many works on the Boolean functions with opti-
mal algebraic immunity defined over finite field have been
done, see for instance Ref. [32]–[36]. It should be noted that
the balanced functions in [34] are very weak against fast al-
gebraic attacks (see [37]–[39]) and so cannot be used. There
are also some other methods to construct Boolean functions
achieving optimal algebraic immunity, for an example, re-
cursive constructions have been proposed in [40].

In [41], the function of the form f (x1, · · · , xn−1) + xn
is called the enhanced Boolean function of f .
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Definition 1 ([41]). Given any (n − 1)-variable Boolean
function f , the enhanced function f ∈ Bn is defined as
f (x1, · · · , xn−1) + xn.

The authors of [41] studied the relations between the charac-
teristics of a Boolean function and its enhanced function, and
they constructed a class of enhanced functions by altering
one entry in the truth table of the Carlet-Feng function [29].
The constructed functions have optimal algebraic immunity
for even numbers of variables and at least sub-optimal alge-
braic immunity for odd numbers of variables. Particularly,
they proved those functions have optimal algebraic immu-
nity if the numbers of variables is a power of 2 plus 1.
In [41, Remark 6] , an open problem that if there are en-
hanced Boolean functions with optimal algebraic immunity
and maximal algebraic degree n − 1 on odd n , 2k + 1 vari-
ables was proposed. In this letter, we prove that there is no
enhanced Boolean function on odd n , 2k +1 variables with
optimal algebraic immunity and maximal algebraic degree
n − 1.

The remainder of this letter is organized as follows.
In Sect. 2, the notations and the necessary preliminaries re-
quired for the subsequent sections are reviewed. In Sect. 3,
we present our main result that there is no enhanced Boolean
function on odd n , 2k+1 variables having optimal algebraic
immunity and maximal algebraic degree n − 1.

2. Preliminaries

Let Fn2 be the vector space of n-tuples over the field F2 =
{0, 1} of two elements. For any vector a = (a1, · · · , an) of
Fn2 , its Hamming weight wt(a) is defined as the size of the
support supp(a) = {1 ≤ i ≤ n | ai , 0}. A Boolean function
on n variables is a function from Fn2 into F2. Denote by
Bn the set of Boolean functions of n variables. The basic
representation of a Boolean function f (x1, · · · , xn) is by its
truth table, i.e.,

f =
[

f (0, 0, · · · , 0), f (1, 0, · · · , 0), · · · , f (1, 1, · · · , 1)
]
.

The support of f , denoted by supp( f ), is defined as the set
{x ∈ Fn2 | f (x) , 0}. The Hamming weight wt( f ) of f is
the cardinality of the support of f , i.e., wt( f ) = |supp( f ) |.
We say that the Boolean function f ∈ Bn is balanced if its
Hamming weight equals 2n−1.

Besides, it is well-known that any Boolean function f ∈
Bn can be uniquely represented by amultivariate polynomial
over F2, called the algebraic normal form (ANF), namely:

f (x1, · · · , xn) =
⊕
u∈Fn2

au
( n∏
j=1

xu j

j

)
=

⊕
u∈Fn2

au xu,

where au ∈ F2 and u = (u1, · · · , un) ∈ Fn2 . The algebraic
degree, denoted by deg( f ), is the maximal value of wt(u)
such that au , 0. A Boolean function is called an affine
function if its algebraic degree is at most 1. The set of
all affine functions is denoted by An. In order to resist the
Berlekamp-Massey algorithm [3] and the Rønjom-Helleseth

attack [4], Boolean functions used in stream ciphers should
have high algebraic degree. It should be noted that the
maximum algebraic degree of a balanced Boolean function
of n variables is n − 1.

In order to resist the best affine approximation
(BAA) [1] and the fast correlation attack [2], Boolean func-
tions used in a cryptosystem must have high nonlinearity.
The nonlinearity nl( f ) of a Boolean function f ∈ Bn is
defined as

nl( f ) = min
g∈An

(dH ( f , g)),

where dH ( f , g) is the Hamming distance between f and g,
i.e., dH ( f , g) = |{x ∈ Fn2 | f (x) , g(x)}|. In other words,
the nonlinearity nl( f ) is the minimum Hamming distance
between f and all affine functions.

In recent years, algebraic attacks have become a power-
ful attack which have allowed to cryptanalyse some stream
ciphers which were previously believed secure [5]. As a re-
sponse to the standard algebraic attack, a new cryptographic
property for designing Boolean functions used in stream ci-
phers, called algebraic immunity, has been introduced.

Definition 2 ([42]). Given two n-variable Boolean functions
f and h, we say that h is an annihilator of f if the function f h
defined as ( f h)(x) = f (x)h(x) is equal to 0. The algebraic
immunity AI ( f ) of a Boolean function f is defined to be the
minimum algebraic degree of nonzero Boolean functions h
such that h is an annihilator of f or f + 1.

To resist the standard algebraic attack, a Boolean func-
tion should have algebraic immunity as high as possible.
It was proved in [5] that AI ( f ) ≤ d n2 e for an arbitrary n-
variable Boolean function f . In this letter, f is said to have
optimal algebraic immunity if it achieves the maximum d n2 e.

3. Main Result

Let n ≥ 5 be an odd integer and any enhanced Boolean
function f ∈ Bn with algebraic degree n− 1. In this section,
we will prove that f never achieves the maximal algebraic
immunity (n + 1)/2 if n is not equal to a power of 2 plus 1.

We first give some preliminary results which are par-
ticularly useful to derive our results.

Lemma1 ([41], Lemma 1). For every non-constant Boolean
function f (x1, · · · , xn−1), we have

nl( f ) = 2nl( f ) and
deg( f ) = deg( f ).

Lemma 2 ([41], Lemma 2). Let f be an (n − 1)-variable
function. Then

AI ( f ) ≤ AI ( f ) ≤ AI ( f ) + 1

and AI ( f ) = AI ( f ) if and only if there exist an annihilator
g of f and an annihilator h of f + 1 such that deg(g) =
deg(h) = deg(g + h) + 1 = AI ( f ).
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The following lemma has been directly used in [43]
without proof. Wegive a proof here for the self-completeness
of the paper.

Lemma 3. Let n ≥ 4 be an even integer. Then we have(
n−1
n
2 −1

)
≡ 1 (mod 2) if and only if n is equal to a power of 2.

Proof. Note that
(
n
n
2

)
= 2

(
n−1
n
2 −1

)
. Hence, for proving that(

n−1
n
2 −1

)
≡ 1 (mod 2) if and only if n is equal to a power of

2, we only need to prove that
(
n
n
2

)
≡ 2 (mod 4) if and only

if n is equal to a power of 2. The expression of binomial
coefficients modulo a prime number p is given by Lucas’s
Theorem (e.g., ([44], p.79)). That is, given two integers a
and b and their p-adic representations a =

∑e
i=0 aipi and

b =
∑e

i=0 bipi , then we have(
a
b

)
≡

e∏
i=0

(
ai
bi

)
mod p.

For p = 2, we can see that
(
a
b

)
≡ 1 (mod 2) if

and only if ∀i, bi ≤ ai . Denoted by Bc the coef-
ficient vector (c0, c1, · · · , cs) of c =

∑s
i=0 ci2i . As-

sume B n
2 −1 = (d0, d1, · · · , de−1, 0), then we have Bn−1 =

(1, d0, d1, · · · , de−1). Then we can easily deduce that(
n−1
n
2 −1

)
≡ 1 (mod 2) if and only if for every 0 ≤ i, j ≤ e

such that di ≥ d j and hence
(
n
n
2

)
≡ 2 (mod 4) if and only if

the even n ≥ 4 is equal to a power of 2. This is the desired
conclusion. �

In addition, we need the following lemmas.

Lemma 4 ([43],Theorem 5). Let f ∈ Bn and f2n−1 be the
coefficient of the monomial x1x2 · · · xn in its ANF. Let e be
a positive integer such that e < n/2. If f2n−1 =

(
n−1
e

)
+ 1

mod 2, then there exists g , 0 with algebraic degree at most
e such that f g has degree at most n − e − 1.

By Lemmas 3 and 4, we have the following corollary.

Corollary 1. Let n ≥ 3 be an even integer such that n is not
equal to a power of 2 and f ∈ Bn be a function which has
the property that AI ( f ) = n/2 and deg( f ) = n. Then there
exists a function µ ∈ Bn with 1 ≤ deg(µ) ≤ n/2 − 1 such
that the algebraic degree of f µ is n/2.

Proof. According to Lemmas 3 and 4, there exists a nonzero
function µ ∈ Bn of algebraic degree at most n/2 − 1 such
that the algebraic degree of f µ is at most n/2. In addition,
we can see that the algebraic degree of f µ is exact n/2 since
AI ( f ) = n/2 implies that deg( f g) ≥ n/2 for any nonzero
function g with algebraic degree strictly less than n/2. On
the other hand, we have deg(µ) ≥ 1 due to µ is nonzero
and µ , 1 since deg( f µ) = n if µ = 1. This completes the
proof. �

We are ready now to present and prove the main results
of this letter.

Theorem 1. Let n ≥ 5 be an odd integer such that n is not
equal to a power of 2 plus 1. There is no enhanced function
f ∈ Bn with deg( f ) = n−1 such that f has optimal algebraic
immunity (n + 1)/2.

Proof. Assume that there is an enhanced function f ∈ Bn

such that deg( f ) = n − 1 and AI ( f ) = (n + 1)/2. Note that
deg( f ) = n − 1. Thus, we have deg( f ) = n − 1 by Lemma
1. On the other hand, it follows from Lemma 2 that f has
optimal algebraic immunity (n− 1)/2. Then by Corollary 1,
there exists a function µ ∈ Bn with 1 ≤ deg(µ) ≤ (n − 3)/2
such that the algebraic degree of f µ is (n − 1)/2. Note that
f ( f µ+ xnµ+ µ) = ( f + xn)( f µ+ xnµ+ µ) = 0. Note also
that deg( f µ + xnµ + µ) ≤ (n − 1)/2 and f µ + xnµ + µ =
( f + xn + 1)µ , 0. This implies that f has a nonzero
annihilator f µ + xnµ + µ with algebraic degree (n − 1)/2
which is strictly less than (n+1)/2, which is contradict to the
assumption that f has optimal algebraic immunity (n+1)/2.
This completes the proof. �
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