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Shift Invariance Property of a Non-Negative Matrix Factorization

Hideyuki IMAI†,††a), Member

SUMMARY We consider a property about a result of non-negative
matrix factorization under a parallel moving of data points. The shape of
a cloud of original data points and that of data points moving parallel to a
vector are identical. Thus it is sometimes required that the coefficients to
basis vectors of both data points are also identical from the viewpoint of
classification. We show a necessary and sufficient condition for such an
invariance property under a translation of the data points.
key words: non-negative matrix factorization, semi non-negative matrix
factorization, parallel moving

1. Introduction

Non-negative matrix factorization (abbreviated to NMF) is
a matrix decomposition method first introduced by Lee and
Seung [1], [2]. In an early period of NMF, it focused on
decomposing parts based representation such as a picture
part classification [1] or an audio signal processing [3], since
NMF would reveal the intrinsic parts underlying the object.
It has been applied also for clustering or object classification
such as document classification [4] or image classification
[5]. However, we do not always regard NMF as a clustering
function because it depend not only on distances between
individuals, but on the selection of the origin.

In this paper, we consider an invariance property under
a parallel moving of data points, or in other words, a transla-
tion of the data matrix, and show a necessary and sufficient
condition such that coefficient matrices of NMF are identical
under a translation of the data matrix.

2. Non-Negative Matrix Factorization

A matrix whose elements are non-negative is called a non-
negative matrix. The basic idea of NMF is to decompose a
non-negative data matrix into a product of two non-negative
matrices. It enables us to represent a column vector of a data
matrix as an additive combination of basis vectors.

Let X = (xi j ) be a p × n non-negative matrix, where
p and n represent the numbers of variables (or features) and
individuals, respectively.

Thus, the aim of NMF is to find matrices satisfying

X = UV, (1)

Manuscript received August 27, 2019.
†The author is with Faculty of Information Science and Tech-

nology, Hokkaido University, Sapporo-shi, 060-0814 Japan.
††The author is with Global Station for Big Data and Cyberse-

curity, Hokkaido University, Sapporo-shi, 060-0814 Japan.
a) E-mail: imai@ist.hokudai.ac.jp
DOI: 10.1587/transfun.2019EAL2121

whereU and V are p× r and r × n non-negative matrices, re-
spectively. The columns of thematrixU are regarded as basis
vectors, r is the number of basis vectors, and the columns of
the matrix V are regarded as coefficients to basis vectors. In
practice, r is often chosen such that r � min(p, n). In this
paper, we assume that rank(V ) = r .

Unfortunately, the decomposition (1) is in general not
unique. Uniqueness of NMF has been studied since it was
proposed and some conditions for uniqueness with its geo-
metric interpretation are found in Donoho and Stodden [6],
and Huang et al. [7].

3. Shift Invariance Property

Consider a translation of the data matrix that has the form

X (a) = X + a1>n , (2)

where a ∈ Rp is a non-zero vector, 1n denotes the n-
dimensional column vector with all components one, and
A> denotes the transpose of a vector or a matrix A. As in
Eq. (1), we write NMF of X (a) as

X (a) = U (a)V (a), (3)

where the sizes of non-negative matricesU (a) and V (a) are
equal to those of U and V . Because the shapes of the data
points X and X (a) in p dimensional Euclidean space are
identical, the coefficients matrices V and V (a) are needed to
be identical when we use NMF as a clustering function. We
say NMF of X is shift invariant to a ∈ Rp if X (a) has a non-
negative factorization X (a) = U (a)V under a translation
(2). It is shown about a shift invariance property that:

Let X = UV be a non-negative factorization with
rank(V ) = r . NMF of X is shift invariant to a ∈
Rp , that is, X (a) has a non-negative factorization

X (a) = U (a)V, (4)

if and only if there exists a constant vector w =
[w1, . . . , wr ]> such that

V>w = 1n, (5)

and U + aw> has non-negative entries.

Proof. If Eq. (4) holds, we have

V>(U (a) −U)> = 1na>.
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Let ai be a non-zero elements of a = [a1, . . . , ap]> and
U (a) −U = [u1(a), . . . , ur (a)]>, then

V>w = 1n,

holds for w = a−1
i ui (a). Since rank(V ) = r , w is a constant

vector and U + aw> = U (a) has non-negative entries.
Conversely, if there exists a constant vector w ∈ Rr

such that V>w = 1n and U + aw> has non-negative entries,
we have

X (a) = UV + a1>n = UV + aw>V
= (U + aw>)V = U (a)V

as a non-negative factorization. �

4. Application to Data Analysis

The condition Eq. (5) does not depend on a shift vector a ∈
Rp . Thus, NMF of X is shift invariant to an arbitrary shift
vector a ∈ Rp such that U + aw> has non-negative entries
if the condition Eq. (5) holds.

Though the condition contains an unknown vector w ∈
Rr , it seems to be free from ambiguity. Suppose that we
find a solution of Eq. (1) with V>1r = 1n, then we obtain a
solution U1 = UW and V1 = W−1V with the r × r diagonal
matrix W whose diagonal elements {w1, . . . , wr }. This is a
solution satisfying V>1 w = 1n. Thus, we always use 1r as a
weighting vector w ∈ Rr .

Consequently, in an application, our aim is to find non-
negative matrices U∗ and V ∗ such that

(U∗,V ∗) = argmin
U,V

‖X −UV ‖2

= argmin
U,V

p∑
i=1

n∑
j=1

*
,

xi j −
r∑
α=1

uiαvα j+
-

2

subject to

V>1r = 1n.

Under the optimization criterion, NMF of X is shift
invariant to an arbitrary shift vector a ∈ Rp such that U∗ +
a1>r has non-negative entries if rank(V ∗) = r holds, because

argmin
U,V

‖X (a) −UV ‖2 = argmin
U,V

‖X + (U − a1>r )V ‖2

shows that (U∗ + a1>r ,V ∗) is an optimal solution for a non-
negative matrix X (a) = X + a1>n .

5. Concluding Remarks

When we use NMF as a clustering function, it is natural to
require the same results when all data points move parallel
to a vector. We show a necessary and sufficient condition for
such a requirement.

It is to be noted that the proof of the invariance property
for NMF can be applied for semi-NMF [8], because it is still
valid for X and U with negative elements.

An advantage of NMF is that we have a sparse solution
for bothU andV . It enables us to interpret an underlying data
structure such as picture parts in digital images. A shift in-
variant NMF, however, gives a non-sparse solution in almost
all cases, and it may become a serious drawback for under-
standing a data structure. To overcome such disadvantages,
we should impose some constraints [9].

On the basis of the result shown in the study, we will
develop an effective algorithm for a shift invariant NMF, and
apply it to find groups or clusters in real world data sets.
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