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Linear Complexity of n-Periodic Cyclotomic Sequences over Fp

Qiuyan WANG†a), Member and Yang YAN††b), Nonmember

SUMMARY Periodic sequences, used as keys in cryptosystems, plays
an important role in cryptography. Such periodic sequences should possess
high linear complexity to resist B-M algorithm. Sequences constructed by
cyclotomic cosets have been widely studied in the past few years. In this
paper, the linear complexity of n-periodic cyclotomic sequences of order
2 and 4 over Fp has been calculated, where n and p are two distinct odd
primes. The conclusions reveal that the presented sequences have high
linear complexity in many cases, which indicates that the sequences can
resist the linear attack.
key words: Legendre sequences, cyclotomic sequences, linear complexity,
Gauss periods

1. Introduction

Periodic sequences used for stream ciphers are required to
have qualities of unpredictability. The linear complexity is
shown to have valuable properties as a measure for the ran-
domness (or equivalently the unpredictability) of periodic
sequences. Let c = (ci)∞i=0 be a sequence of period n over
the finite field Fq. The linear complexity (also called lin-
ear span) of c over Fq, denoted by Lq(c), is defined to be
the smallest positive integer l such that there are constants
a0 , 0, a1, . . ., al ∈ Fq satisfying −a0ci = a1ci−1 + a2ci−2 +

· · · + alci−l = 0 for all i ≥ l. The Berlekamp-Massey algo-
rithm [1], [10] states that if Lq(c) > n/2, then c is considered
good with respect to its linear complexity.

For an odd prime n, let n−1 = ek (e ≥ 2) and Fn be the
finite field with n elements. Suppose θ is a primitive element
of F∗n = Fn\{0}. Let

Cλ = C(e)
λ = θλ C0, (0 ≤ λ ≤ e − 1),

where C0 = 〈 θe〉 is the subgroup of F∗n generated by θe and
Cλ (0 ≤ λ ≤ e − 1) are the cosets of C0 in F∗n. Let S be a
subset of {0, 1, . . . , e − 1} and

ΣS =
⋃
λ∈ S

Cλ.

We define the following binary periodic sequence cS =

(ci)∞i=0 with period n by
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ci =

{
1, if (i mod n) ∈ ΣS ,
0, otherwise, for all i ≥ 0.

Such sequences are called binary cyclotomic sequences of
order e and used as keys in cryptography since they have
good pseudo-random properties and correlation properties
[6], [8], [11]–[13]. The linear complexity of such sequences
over F2 has been determined by Ding et al. [5] for order
2 case (Legendre sequences) and Edemskii [7] for order 4
case. Since ci is either 0 or 1, such sequences can be viewed
over Fq, where q = pm and p is a prime number. When
(n − 1)/4 ≡ 0 (mod p), Ding [4] has determined the lin-
ear complexity of cyclotomic sequences of order 4 over Fpm

from the view point of coding theory. In this paper, our
first contribution is to give a general formula on the linear
complexity of cyclotomic sequences by using Gauss peri-
ods. Our second contribution is to determine the linear com-
plexity of binary n-periodic cyclotomic sequences of order
2 and 4 over a finite field Fpm , where p and n are two distinct
odd primes. The results show that the linear complexity of
c over Fpm is nearly equal to the period n in many cases so
that they can resist the linear attack in cryptography.

This paper is organized as follows. Section 2 contains
the definitions and formulas of linear complexity of periodic
sequences and Gauss periods. In Sect. 3, we determine the
linear complexity of the binary cyclotomic sequences of or-
der 2 and 4 over Fq.

2. Preliminaries

Firstly, we introduce the definition and formula of linear
complexity of periodic sequences over a finite field. See
[3] or [9] for more details.

Let q be a power of a prime p and let c = (ci)∞i=0 be a
periodic sequence over Fq with period n, where ci ∈ Fq (i ≥
0). The sequence c can be viewed as a power series

c∞(x) =

∞∑
n=0

cnxn =
u(x)

1 − xn ,

u(x) = c0 + c1x + c2x2 + · · · + cn−1xn−1 ∈ Fq[x]

in the power series ring Fq[[x]].
Let h(x) = gcd(u(x), 1 − xn), then

c∞(x) =
w(x)
v(x)

, v(x) =
1 − xn

h(x)
w(x) =

u(x)
h(x)

where u(x), v(x), h(x) ∈ Fq[x].
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Definition 2.1 ([9]) The polynomial v(x) is called the min-
imal polynomial of the periodic sequence c over Fq. The
deg v(x) = n − deg h(x) is called the linear complexity of
the sequence c over Fq, which is denoted by Lq(c).

Indeed, Lq(c) is the length of the shortest linear feed-
back shift register which generates the sequence c.

If gcd(n, p) = 1, then 1− xn has n distinct zeros ζ i
n (0 ≤

i ≤ n − 1) in the algebraic closure Ωq of Fq. Let

m = #{i : 0 ≤ i ≤ n − 1, u(ζ i
n) = 0}.

Then it is easy to see that deg h(x) = m and Lq(c) = n − m.
In order to determine Lq(c) for the binary cyclotomic

sequences, we introduce Gauss periods.

Definition 2.2 ([2]) For a prime power q = pm (p , n), let
ζn be a primitive n-th root of unity in the algebraic closure
Ωq of Fq. The Gauss periods of order e are defined by

ηλ =
∑
x∈Cλ

ζ x
n , (0 ≤ λ ≤ e − 1).

The following Lemma states some basic properties on
Gauss periods which can be derived from the definition di-
rectly.

Lemma 2.3 ([2]) Let symbols be the same as before. Then
we have

(1)
e−1∑
λ=0

ηλ = −1;

(2) For a = θs,
∑

x∈Cλ

ζax
n = ηs+λ;

(3) For 0 ≤ λ ≤ e − 1, let

gλ =

n−1∑
x=0

ζ xeθλ

n .

Then

gλ = 1 + eηλ;

(4) For p ∈ Ci,

η
p
λ = ηλ+i.

The values of Gauss periods of order 2 and 4 can be
determined explicitly (see [2] or [9]) by Gauss sums. In this
paper, we need the following results on the modified period
polynomial

f (x) = (x − g0)(x − g1) · · · (x − ge−1).

For e = 2 and n − 1 = 2k, it is well known that [2]

(x − g0)(x − g1) = x2 −

(
−1
n

)
n.

For e = 4, n = 4k + 1 can be expressed by

n = a2 + b2, a, b ∈ Z,

where a is determined by a ≡ −
(

2
n

)
(mod 4), the even in-

teger b is determined up to sign and
(

x
n

)
is the Legendre

symbol ([2], Theorem 3.2.1).

Lemma 2.4 ([2], Theorem 4.2.1, Corollary 4.2.2)
(1) For e = 4 and n − 1 = 4k,

f (x) =

3∏
λ=0

(x − gλ)= x4 − 2n
[
1 + 2

(
2
n

)]
x2 − 8

(
2
n

)
anx

+

[
1 − 4

(
2
n

)]
n2 + 4b2n,

where(
2
n

)
=

{
1, i f n ≡ 1 (mod 8),
−1, i f n ≡ 5 (mod 8).

(2) The discriminant of f (x) is

4 = 214b2n3
[
n
(
1 − 2

(
2
n

))
+ a2

]2

.

Therefore, f (x) has multiple zeros in Ωq if and only if

2bn
[
n(1 − 2

(
2
n

)
) + a2

]
≡ 0 (mod p).

(3) For g0, we have

g0 =
√

n ±
[
2
(

2
n

) (
n + a

√
n
)] 1

2

.

3. Results and Proofs

Let n be an odd prime and n − 1 = ek. Let q = pm for
an odd prime p and satisfy gcd(n, q) = 1. For a non-empty
subset S of {0, 1, . . . , e− 1}, the binary cyclotomic sequence
cS = (ci)∞i=0 with period n is defined by

ci =

{
1, if (i mod n) ∈ ΣS ,
0, otherwise, for all i ≥ 0. (3.1)

Let c(x) =
n−1∑
i=0

cixi ∈ Fq[x]. It is not difficult to see that

c(x) =

n−1∑
i=1

i∈ΣS

xi. (3.2)

Let h(x) = gcd(xn − 1, c(x)). Then

Lq(cS ) = n − deg h(x). (3.3)

Since the greatest common divisor of c(x) and 1− xn over Fq
is equal to that of these two polynomials over Fp, we then
get the following fact. For a binary periodic sequence c, we
have Lq(c) = Lp(c).

Due to the above fact, we will focus on the prime field
Fp in the following. Let ζn be an n-th primitive root of unity
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over the algebraic closure Ωp of Fp. Then

deg h(x) = #{i : 0 ≤ i ≤ n − 1, c(ζ i
n) = 0},

where h(x) = gcd(xn − 1, c(x)). Notice that for i = 0, c(1) =

|S | · k. For 1 ≤ i ≤ n − 1, set i ∈ Ct = θtC0. Direct
computation shows

c(ζ i
n) =

n−1∑
x=1

x∈ΣS

ζ ix
n

=
∑
λ∈ S

∑
x∈Cλ

ζ ix
n

=
∑
λ∈ S

ηλ+t,

where ηλ is the Gauss period defined in Sect. 2. Let

At = At,S =
∑
λ∈ S

ηλ+t ∈ Ωp, (0 ≤ t ≤ n − 2). (3.4)

N = #{t : 0 ≤ t ≤ e − 1, At = 0}. (3.5)

As ηλ = ηλ+e, we have At = At+e, hence

deg h(x) = δ + #{t : 0 ≤ t ≤ n − 2, At = 0}
= δ + k · #{t : 0 ≤ t ≤ e − 1, At = 0}
= δ + k · N.

where

δ =

{
1, if |S | · k ≡ 0 (mod p),
0, otherwise. (3.6)

By (3.3), we get a key result for the whole paper.

Theorem 3.1 Let n − 1 = ek, p , n be an odd prime, and
S be a non-empty subset of {0, 1, . . . , e − 1}. Then for the
sequence cS = (ci)∞i=0 defined by (3.1), we have

Lp(cS ) = n − δ − k · N,

where N and δ are defined by (3.5) and (3.6) respectively.

By Theorem 3.1, the complexity Lp(cS ) is reduced to
determining how many At are zero in Ωp. For a large order
e, the following result simplifies the computation of Lp(cS ).

Lemma 3.2 Let 1 ≤ a ≤ e − 1 and S be a non-empty
subset of Ze = {0, 1, . . . , e − 1}. If S

′

= a + S = {a + λ
(mod e) : λ ∈ S }, then for any odd prime p , n, we have

Lp(cS ) = Lp(cS ′ ).

Proof. By Theorem 3.1, Lp(cS ) = n − δ − kN and Lp(cS ′ ) =

n − δ − kN
′

, where

N = #{t : 0 ≤ t ≤ e − 1, At = 0},

N
′

= #{t : 0 ≤ t ≤ e − 1, A
′

t = 0},

At = At,S =
∑
λ∈ S

ηλ+t,

A′t = At,S ′ =
∑
λ∈ S ′

ηλ+t =
∑
λ∈ S

ηλ+a+t.

Therefore N = N
′

and Lp(cS ) = Lp(cS ′ ). �

For the case S = {0, 1, . . . , e − 1}, the period has only
one 0 with the rest 1’s and this is a trivial case. Hence,
we assume 1 ≤ |S | ≤ e − 1 in the sequel. By Lemma
3.2, it is enough to consider S = {0} for e = 2 and
S = {0}, {0, 1}, {0, 1, 2} for e = 4.

3.1 Case e = 2

In this case, n − 1 = 2k, F∗n = 〈 θ〉, furthermore

C0 = C(2)
0 = 〈 θ2〉 =

{
a : 1 ≤ a ≤ n − 1,

(a
n

)
= 1

}
,

C1 = C(2)
1 = θC0 =

{
a : 1 ≤ a ≤ n − 1,

(a
n

)
= −1

}
,

where ( a
n ) is the Legendre symbol. From the explanation

above, it is enough to consider S = {0}. In this case, the
sequence c = cS = (ci)∞i=0 is the Legendre sequence which is
defined by

ci =

{
1, if (i mod n) ∈ C0,
0, otherwise, for all i ≥ 0. (3.7)

Theorem 3.3 Let p , n be an odd prime. Then for the
Legendre sequence c defined by (3.7), we have

Lp(c) =


n−1

2 , i f n ≡ 1 (mod 4) and p | n − 1,
n+1

2 , i f n ≡ 3 (mod 4) and p | n + 1,
n − 1, i f n ≡ 3 (mod 4) and p | n − 1,

n, otherwise.

Proof. For e = 2 and S = {0},

A0 = η0 =
∑
x∈C0

ζ x
n ,

A1 = η1 =
∑
x∈C1

ζ x
n .

By Theorem 3.1 and k = n−1
2 , we know that

Lp(c) = n − δ −
n − 1

2
· N. (3.8)

where N = #{λ : λ ∈ {0, 1}, ηλ = 0 ∈ Fp}. By the definition
of δ and |S | = 1, we know

δ =

{
1, if p | (n − 1),
0, otherwise.

For gλ = 1 + 2ηλ, it is well known that [2],

(x − g0)(x − g1) = x2 −

(
−1
n

)
n (3.9)
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From (3.9), we have

{g0, g1} =

±
√(
−1
n

)
n

 .
Therefore, {η0, η1} =

{
1
2

(
−1 ±

√(
−1
n

)
n
)}

.
Since η0 + η1 = −1, η0 and η1 can not be zero at the

same time. From (3.8), we get Lp(c) ∈
{

n±1
2 , n, n − 1

}
and

Lp(c) =
n − 1

2
⇔ δ = 1 and N = 1

⇔ p | n − 1 and 0 = η0η1 =
1
4

(
1 −

(
−1
n

)
n
)

⇔ p | n − 1 and p | 1 −
(
−1
n

)
n

⇔ p | n − 1 and n ≡ 1 (mod 4).

Similarly,

Lp(c) =
n + 1

2
⇔ δ = 0 and N = 1

⇔ p - n − 1 and 0 = η0η1 =
1
4

(
1 −

(
−1
n

)
n
)

⇔ p - n − 1 and p | 1 −
(
−1
n

)
n

⇔ n ≡ 3 (mod 4) and p | n + 1.

Lp(c) = n − 1⇔ δ = 1 and N = 0

⇔ p | n − 1 and p - 1 −
(
−1
n

)
n

⇔ n ≡ 3 (mod 4) and p | (n − 1).

For other cases, Lp(cS ) = n. This completes the proof. �

3.2 Case e = 4

In this case, n = 4k + 1 is an odd prime. Let p be an odd
prime and p , n, F∗n = 〈 θ〉 and

Cλ = C(4)
λ = θλ〈 θ4〉, (0 ≤ λ ≤ 3).

The prime n = 1 + 4k can be expressed as

n = a2 + b2,

where a is determined by a ≡ −( 2
n ) (mod 4) and the even

integer b is determined up to sign.
By Lemma 2.4, for gλ = 1 + 4ηλ, we know

3∏
λ=0

(x − gλ) =x4 − 2n
[
1 + 2

(
2
n

)]
x2 − 8

(
2
n

)
anx

+

[
1 − 4

(
2
n

)]
n2 + 4b2n, (3.10)

where(
2
n

)
=

{
1, if n ≡ 1 (mod 8),
−1, if n ≡ 5 (mod 8),

and

g0 =
√

n + ε

[
2
(

2
n

)
(n + a

√
n)

] 1
2

, ε ∈ {±1}. (3.11)

Since C(4)
0 ∪ C(4)

2 = C(2)
0 and C(4)

1 ∪ C(4)
3 = C(2)

1 , by Theorem
1.2.4 in [2] we have

g0 + g2 = 2 + 4(η0 + η2)

= 2 + 4
∑

x∈C(4)
0 ∪C(4)

2

ζ x
n

= 2 + 4
∑

x∈C(2)
0

ζ x
n

= 2
√

n.

From (3.11) we get

g2 =
√

n − ε
[
2
(

2
n

) (
n + a

√
n
)] 1

2

, ε ∈ {±1}. (3.12)

Similarly,

g1 + g3 = 2 + 4(η1 + η3) = 2 + 4
∑

x∈C(2)
1

ζ x
n = −2

√
n.

Then by (3.10) and the Viete’s formula [15], we have

−2n
[
1 + 2

(
2
n

)]
= (g0 + g2)(g1 + g3) + g0g2 + g1g3

= −4n + n − 2
(

2
n

)
(n + a

√
n) + g1g3.

Therefore, g1g3 = n − 2
(

2
n

)
(n − a

√
n) and

z2− (g1 +g3)z+g1g3 = z2 +2
√

nz+n−2
(

2
n

)
(n−a

√
n).

We get

{g1, g3} =

−√n ±
[
2
(

2
n

)
(n − a

√
n)

] 1
2
 . (3.13)

From (3.11), (3.12), (3.13) and gλ = 1+4ηλ, we get the
following result.

Lemma 3.4 Let symbols be the same as before. Then we
have

{η0, η2} =

1
4

−1 +
√

n ±
[
2
(

2
n

) (
n + a

√
n
)] 1

2

 ,

{η1, η3} =

1
4

−1 −
√

n ±
[
2
(

2
n

) (
n − a

√
n
)] 1

2

 .
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As we mentioned before, it is enough to consider the
sequence cS for S = {0},{0, 1} and {0, 1, 2}, where cS =

(ci)∞i=0 is defined by

ci =

{
1, if (i mod n) ∈ ΣS ,
0, otherwise, for all i ≥ 0. (3.14)

By Theorem 3.1, we know that for any odd prime p (p , n),

Lp(cS ) = n − δ −
n − 1

4
· N, (3.15)

where

δ =

{
1, if (n − 1) · |S | ≡ 0 (mod p),
0, otherwise, (3.16)

N = #

t : 0 ≤ t ≤ 3,
∑
λ∈ S

ηλ+t = 0 ∈ Fp

 . (3.17)

With the conditions and notations introduced at the be-
ginning of this case, we have the following results.

Theorem 3.5 If the odd prime p ∈ C1 ∪ C3, then for S =

{0}, {0, 1}, {0, 1, 2},

Lp(cS ) = n − δ,

where δ is defined by (3.16).

Proof. By Theorem 3.1, Lp(cS ) = n − δ − n−1
4 · N, where δ

and N are defined by (3.16) and (3.17) respectively.
If p ∈ C1 ∪ C3, we need to show that N = 0 for S =

{0}, {0, 1} and {0, 1, 2}. For S = {0}, N = #{λ : 0 ≤ λ ≤
3, ηλ = 0 ∈ Fp}. From η0 + η1 + η2 + η3 = −1 and ηp

λ = ηλ+1
or ηλ+3, we know that N = 0.
Similarly, we can show that for S = {0, 1},

N = #{λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 = 0} = 0,

and for S = {0, 1, 2},

N = #{λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 + ηλ+2 = 0} = 0.

This finishes the proof of Theorem 3.5. �

Theorem 3.6 If p ∈ C2, then then the linear complexity of
cS with period n is given by
(1) for S = {0},

Lp(cS ) =


n−1

2 , if n ≡ 1 (mod p) and a ≡ −1 (mod p),
n − 1, if n ≡ 1 (mod p) and a . −1 (mod p),

n, otherwise.

(2) for S = {0, 1},

Lp(cS ) = n − δ;

(3) for S = {0, 1, 2},

Lp(cS ) =

{
n+1

2 , if p , 3 and (n, a) ≡ (9, 3) (mod p),
n − δ, otherwise;

where δ is defined by (3.16).

Proof. If p ∈ C2, then ηp
λ = ηλ+2 for 0 ≤ λ ≤ 3.

(1) For S = {0}, by the value of ηλ given in Lemma 3.4, we
know that

η0 = 0⇔ η2 = 0

⇔ −1 +
√

n ±
[
2
(

2
n

) (
n + a

√
n
)] 1

2

= 0 ∈ Fp

⇔
√

n = 1 and a +
√

n = 0 in Fp

⇔
√

n ≡ 1 and a ≡ −1 (mod p).

By a similar computation,

η1 = 0⇔ η3 = 0

⇔
√

n ≡ −1 and a ≡ −1 (mod p).

Therefore, N = 2 if n ≡ 1 and a ≡ −1 (mod p), N = 0
otherwise. Then the result follows from (3.15).
(2) For S = {0, 1},

N = # {λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 = 0} .

From (ηλ + ηλ+1)p = ηλ+2 +ηλ+3 and ηλ+ηλ+1 +ηλ+2 +ηλ+3 =

−1,
we know that

N = # {λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 = 0} = 0.

Therefore, Lp(cS ) = n − δ.
(3) For S = {0, 1, 2},

N = # {λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 + ηλ+2 = 0}
= # {λ : 0 ≤ λ ≤ 3, ηλ = −1} .

But

η0 = −1⇔ η2 = −1

⇔
1
4

−1 +
√

n ±
[
2
(

2
n

) (
n + a

√
n
)] 1

2
 = −1 ∈ Fp

⇔
√

n + a = 0 and −1 +
√

n = −4

⇔
√

n ≡ −3 and a ≡ 3 (mod p).

By a similar computation,

η1 = −1⇔ η3 = −1

⇔
1
4

−1 −
√

n ±
[
2
(

2
n

)
(n − a

√
n)

] 1
2
 = −1 ∈ Fp

⇔
√

n ≡ a ≡ 3 (mod p).

Therefore, N = 2 and δ = 0 if p , 3, n ≡ 9 and a ≡ 3
(mod p), N = 0 otherwise. The result follows from (3.15).

�

Theorem 3.7 Assume that p ∈ C0, then the linear complex-
ity of cS with period n satisfies:
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(1) For S = {0}, let

A0 = 1 − 2n
[
1 + 2

(
2
n

)
+ 4

(
2
n

)
a − 2b2

]
+ n2

[
1 − 4

(
2
n

)]
,

A1 = 1 − n
[
1 + 2

(
2
n

)
(1 + a)

]
,

A2 = 3 − n
[
1 + 2

(
2
n

)]
.

Then

Lp(cS ) =


n − δ, i f A0 . 0 (mod p),

3n+1
4 − δ, i f A0 ≡ 0, A1 . 0 (mod p),

n+1
2 − δ, i f A0 ≡ A1 ≡ 0, A2 . 0 (mod p),

n+3
4 − δ, i f A0 ≡ A1 ≡ A2 ≡ 0 (mod p).

(2) For S = {0, 1},

Lp(cS ) =


n+1

2 − δ, if n ≡
( 2

n
)

(mod p) and p | b,
3n+1

4 − δ, if 1 −
( 2

n
)
n ≡ ± b

√
n (mod p)

and p - b,
n − δ, otherwise.

(3) For S = {0, 1, 2}, let

B0 = 81 − 2n
[
9+18

(
2
n

)
− 12

(
2
n

)
a − 2b2

]
+n2

[
1 − 4

(
2
n

)]
,

B1 = −27 + n
[
3 + 6

(
2
n

)
− 2

(
2
n

)
a
]
,

B2 = 27 − n
[
1 + 2

(
2
n

)]
.

Then

Lp(cS ) =


n − δ, i f B0 . 0 (mod p),

3n+1
4 − δ, if B0 ≡ 0, B1 . 0 (mod p),

n+1
2 − δ, if B0 ≡ B1 ≡ 0, B2 . 0 (mod p),

n+3
4 − δ, if B0 ≡ B1 ≡ B2 ≡ 0 (mod p).

where δ is defined by (3.16).

Proof. (1) For S = {0}, we have

Lp(cS ) = n − δ −
n − 1

4
· N,

where

δ =

{
1, if n − 1 ≡ 0 (mod p),
0, otherwise.

and

N = # {λ : 0 ≤ λ ≤ 3, ηλ = 0}
= # {λ : 0 ≤ λ ≤ 3, gλ = 1 + 4ηλ = 1} ,

According to Lemma 2.4,

f (x) =

3∏
λ=0

(x − gλ) = x4 − 2n
[
1 + 2

(
2
n

)]
x2 − 8

(
2
n

)
anx

+

[
1 − 4

(
2
n

)]
n2 + 4b2n.

Then

3∏
λ=0

(x − (gλ − 1)) = f (x+1) = x4+4x3+2A2x2+4A1x+A0.

Therefore,

N = 0 ⇐⇒ A0 . 0 (mod p);
N = 1 ⇐⇒ A0 ≡ 0, A1 . 0 (mod p);
N = 2 ⇐⇒ A0 ≡ A1 ≡ 0, A2 . 0 (mod p);
N = 3 ⇐⇒ A0 ≡ A1 ≡ A2 ≡ 0 (mod p).

The final result follows from Lp(cS ) = n − δ − n−1
4 · N.

(2) For S = {0, 1}, then

N = # {λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 = 0} .

As η0 + η1 + η2 + η3 = −1, we have
either η0 +η1 or η2 +η3 is zero ⇐⇒ (η0 +η1)(η2 +η3) =

0

⇐⇒ 0 =
[
− 1 +

√
n + ε

(
2
(

2
n

)
(n + a

√
n)

) 1
2

−1 −
√

n + µ(2
(

2
n

)
(n − a

√
n))

1
2
]
·[

− 1 +
√

n − ε(2
(

2
n

)
(n + a

√
n))

1
2

−1 −
√

n − µ(2
(

2
n

)
(n − a

√
n))

1
2
]

( ε, µ ∈ {±1})
=

[
− 2 + ε(2

(
2
n

)
(n + a

√
n))

1
2 + µ(2

(
2
n

)
(n − a

√
n))

1
2
]
·[

− 2 − ε(2
(

2
n

)
(n + a

√
n))

1
2 − µ(2

(
2
n

)
(n − a

√
n))

1
2
]

= 4 − 2
(

2
n

)
(n + a

√
n) − 2

(
2
n

)
(n − a

√
n)

−2εµ
(
4(n2 − a2n)

) 1
2

= 4 − 4
(

2
n

)
n − 4εµb

√
n

⇐⇒
(

2
n

)
n − 1 ≡ −εµb

√
n (mod p).

Similarly,

either η1 + η2 or η0 + η3 is zero⇔ (η1 + η2) (η0 + η3) = 0

⇔

(
2
n

)
n − 1 ≡ εµ b

√
n (mod p).

Therefore when p | b, we have N = 2 if n ≡ ( 2
n ) (mod p)

and N = 0 otherwise.
When p - b, we have N = 1 if 1 −

(
2
n

)
n ≡ b

√
n or −b

√
n

(mod p) and N = 0 otherwise. Then the result follows from
Lp(cS ) = n − δ − n−1

4 · N.
(3) For S = {0, 1, 2}, we have

N = #
{
λ : 0 ≤ λ ≤ 3, ηλ + ηλ+1 + ηλ+2 = 0 ∈ Fp

}
= # {λ : 0 ≤ λ ≤ 3, ηλ = −1}
= # {λ : 0 ≤ λ ≤ 3, gλ = 1 + 4ηλ = −3} .
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Table 1 The linear complexity of some segments of Legendre se-
quences.

period p the starting point k segment length N L2(c
′
)

p = 89 17 35 19
p = 89 45 20 10
p = 89 31 47 23
p = 97 3 50 25
p = 97 27 65 33
p = 97 15 45 21

Direct computation shows that

3∏
λ=0

(x − (gλ + 3)) = f (x−3) = x4−12x3+2B2x2+4B1x+B0.

If N = 4, then Lp(cS ) = 0 or 1 which is impossible since cS
is not a constant sequence. Therefore,

N = 0 ⇐⇒ B0 . 0 (mod p);
N = 1 ⇐⇒ B0 ≡ 0, B1 . 0 (mod p);
N = 2 ⇐⇒ B0 ≡ B1 ≡ 0, B2 . 0 (mod p);
N = 3 ⇐⇒ B0 ≡ B1 ≡ B2 ≡ 0 (mod p), p , 3.

Then the final result follows from Lp(cs) = n − δ − n−1
4 · N.

This finishes the proof. �

Remark 1. For e = 2 and e = 4, the linear complexity of
the cyclotomic sequences have been determined in [16] and
[4], respectively. But in this paper we use Gauss periods to
uniformly compute Lp(c). By (3.4) and Theorem 1, we can
deduce that the linear complexity Lp(cs) of cS can be com-
puted by determining the values of ηt (0 ≤ t ≤ e − 1). It can
be seen that the results of this paper are based on Theorem
3.1, which gives a formula on Lp(cS ) and the Gauss periods
of order e. Hence, if the values of Gauss periods of order e
are known, then Lp(cS ) can be computed. By the results in
Theorem 4.1.2 and Theorem 4.1.4 of [2], the Gauss periods
of order 6 can be determined. Therefore, the method pre-
sented in this paper works for the case e = 6. Here we omit
it, since the computation is too complicated.

Remark 2. As pointed out by one of the anonymous re-
viewers, we consider the linear complexity of some seg-
ments of Legendre sequences. In brief, for the Legendre
sequence c = (c0, c1, . . . , cp−1) we compute the linear com-
plexity L2(c

′

) of c
′

by the help of NIST SP 800-22, where
c
′

= (ck, ck+1 . . . , ck+N−1), k denotes the starting point of c
′

and N denotes the segment length of c
′

. The results are listed
in Table 1. From Table 1, we know Legendre sequences are
complex enough in the view of linear complexity.

4. Concluding Remarks

From the results we know that once we fix an odd prime
n, the linear complexity of n-periodic cyclotomic sequences

over Fp is exactly n for all but a finite number of p, which
means that the sequences reach high complexity in many
cases and can resist the attack of the Berlekamp-Massey al-
gorithm [1], [10].
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