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LETTER
Unsupervised Deep Embedded Hashing for Large-Scale Image
Retrieval∗

Huanmin WANG†a), Member

SUMMARY Hashing methods have proven to be effective algorithm for
image retrieval. However, learning discriminative hash codes is challenging
for unsupervised models. In this paper, we propose a novel distinguishable
image retrieval framework, named Unsupervised Deep Embedded Hashing
(UDEH), to recursively learn discriminative clustering through soft clus-
tering models and generate highly similar binary codes. We reduce the
data dimension by auto-encoder and apply binary constraint loss to reduce
quantization error. UDEH can be jointly optimized by standard stochastic
gradient descent (SGD) in the embedd layer. We conducted a comprehen-
sive experiment on two popular datasets.
key words: hashing, unsupervised learning, deep learning

1. Introduction

Recently, in order to solve the problem of retrieval in
large-scale images [19], the computer vision community
has focused on hashing algorithm which learns similarity-
preserving binary codes. Encoding a high-dimensional im-
age descriptor into a compact binary codes can improve
storage efficiency and computational efficiency of similar
searches, and can be implemented using data structures and
algorithms that are simpler than other large-scale retrieval
methods. The existing unsupervised hashing algorithms can
be simply classified into twomain types according towhether
similarity information is precomputed before training. The
first class usually directly employs deep neural networks to
generate binary codes with some external constraints. For
example, Deep Hashing (DH) [2] and Deepbit [3] exploit
evenly distribution loss and the quantization loss to optimize
the generated binary codes, which can only preserve the vari-
ance of binary codes but cannot obtain the real distribution
of the raw data. To preserve more information through deep
models without pre-computed similarities, some researchers
leverage self-supervised algorithms such as reconstruction
[4] or discriminator [5], which can help to improve the re-
trieval performance. However, they still have the common
issues as DH and Deepbit and the performance is limited.

Methods of the second type try to conserve the simi-
larities of the original data. Anchor Graph Hashing (AGH)
[6] utilize the dense anchor map to obtain low rank adja-
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cency matrices and discover neighborhoods in the training
data, but AGH contains all the similarity values of the whole
datasets and some of them might be redundant, which of-
ten leads to performance degradation. Pseudo label based
methods [7], [8] convert the unsupervised learning into su-
pervised manner by generating pseudo labels for training
data. They apply clustering methods to generate pseudo la-
bels, which can avoid useless similarity as they only preserve
part of such information before training. However, most of
them are sensitive to the pre-defined class number [9], which
greatly limits their applications. Pseudo pair based methods
generate similar and dissimilar pairs to avoid the problem
of class number setting [10], [11], but it still need to de-
fine the threshold of similarity for pair generation. Besides,
these methods usually compute the pseudo labels or pseudo
pairs in the high-dimensional visual feature space, which is
computationally complex.

In order to solve the above problem, in this paper, we
introduce a novel end-to-end deep hashing algorithm for im-
age retrieval, namely Unsupervised Deep Embedded Hash-
ing (UDEH), which is capable of iteratively learn to cluster
in the network and yield binary codes with preserving the
structures of the input data distributions. Our contributions
can be summarized as follows: (1) We propose a novel hash-
ing framework that imposes constraints on the clustering
space. The generated binary code has spatial structure pro-
tection; (2) Our UDEH is an end-to-end deep network where
all objective functions can be optimized together by using a
stochastic gradient decent (SGD) with mini batches, and our
algorithm does not rely on pre-calculation.; (3) We conduct
experiments on two challenging datasets (i.e., CIFAR-10 [1],
NUS-WIDE [12]), and the results show that our UDEH con-
sumes very short runtime and has superior Mean Average
Precision (MAP).

2. Unsupervised Deep Embedded Hashing Method

Our task is to process a set of training samples X =

{x1, x2, · · · , xi, · · · , xn} ∈ Rd×n, without labels, where d
is the dimension of the image sample and n is the number
of image samples. The purposed algorithm is to learn a
set of compact binary codes B = {b1, b2, · · · , bi, · · · , bn} ∈
{−1,+1}r×n, which preserves the semantic similarity of the
original data. Therefore, we need a valid hash function
H : x → b to map the data to the low-dimensional Ham-
ming space.

In order to learn the discriminative hash code, we assign
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Fig. 1 An illustration of the proposed framework.

the hash layer after the reduced dimension to the k cluster
centers. To solve this problem, Unsupervised Deep Embed-
ded Hashing (UDEH) is designed to learn nonlinear hash
functions with the following characteristics: t-distribution
and binary quantization of learning image data. The entire
learning framework consists of a feature extractionmodule, a
pre-training module, and a model training module, as shown
in Fig. 1. In the feature extraction module, we will generate
a 4096 dimensional feature representation of the VGG-16
[13] model, Which has been pre-trained by imagenet. The
parameters of the pre-training model are then initialized us-
ing an auto-encoder consisting of four encoder layers and an
equal number of decoder layers. The parameters of the pre-
training model will then be transferred for use in a hashing
model with the same auto-encoder structure. After perform-
ing the automatic encoder pre-training, we obtain an initial
estimate of the encoder’s nonlinearmap gθ . Inspired byDEC
[14], we introduced the auxiliary distribution µ j , which is
initialized by the k-means algorithm. Students t-distribution
like DEC is used to measure code point zi and centroid µ j :

qi j =
(1+‖zi − µ j ‖

2)−1∑
j′ (1+‖zi − µ j′ ‖

2)−1 , (1)

We use the k-meas algorithm to initialize the centroid µ j and
iteratively optimize it like DEC [14]. In order to train the
neural network, we need to introduce the target distribution
instead of the ground truth. The target distribution can be
represented as:

pi j =
q2
i j/s j∑
` q2

i`
/s`

, (2)

where, s j =
∑

i qi j is the soft cluster frequency. Since it
is known that qi j represents for the probability of assigning
data point i to class j, it should fall in the interval of [0, 1].
The unknown ground truth for qi j is 0/1, thus, in order to
bring the results closer to 0/1, an effective way is to square
qi j and normalize it. After the process of Eq. (2), pi j is
much closer to 0/1 than qi j , thence it can satisfy the first
two properties. In addition, pi j is also the probability, so it
should fall in the interval of [0, 1] too. Thus, normalization
in Eq. (2) can enhance the data assignment to centroid with
high confidence, and normalize loss contribution of each

centroid to avoid over clustering in hidden code space. KL
divergence is used to measure the similarity between two
probability distributions, our effective loss function with KL
divergence can be written as follows:

Lc = −
1
n

n∑
i

k∑
j=1

pi j log
pi j
qi j

; (3)

As our UDEH is a data-dependent approach, the clustering
is required finding out the most suitable clusters while pre-
serving the spatial structures of the raw data distribution.
The embedded point zi also needs to be iterative for the clus-
tering. To overcome this challenge, we exploit a decoder
to reconstruct the input feature xi , where the reconstruction
loss is measured by Mean Squared Error (MSE):

Lr =
1
n

n∑
i

‖ f i − g′θ′ (gθ ( f i))‖2, (4)

where, g and g′ are encoder and decoder respectively, f i rep-
resents the 4096-dimensional VGG-16 feature of the sample
and θ and θ ′ are their corresponding network parameters.

3. Binary Quantization

In order to get the binary code, it is necessary to reduce the
quantization error. Specifically, we use the tanh activation
function to constrain the intermediate layer zi such that the
value of zi is in the interval [−1, 1]. In addition, to further
reduce the quantization error, we introduce the following
loss function,

Lb =
1
n

n∑
i

‖zi − bi ‖2,

s.t . bi ∈ {−1, 1}`
(5)

where, bi = sign(zi). The final loss function is defined as:

L =Lc + λ1Lr + λ2Lb

= −
1
n

n∑
i

k∑
j=1

pi j log
pi j
qi j
+ λ1‖ f i − g′θ′ (gθ ( f i))‖2

+ λ2‖zi − bi ‖2,
(6)

4. Optimization

We fixed the target distribution pi j and then calculated the
gradient of Lc relative to each projection data point zi and
each cluster center µ j as:

∂L

∂zi
=2

k∑
j=1

(1 + ‖zi − µ j ‖
2)−1 × (pi j − qi j )(zi − µ j )

+
2λ1

n
( f i − g′θ′ (zi))

∂g′θ′ (zi)
∂zi

+
2λ2

n
(zi − bi),

(7)
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and each cluster center µ j are computed as,

∂L

∂µ j
= −2

n∑
i=1

(1 + ‖zi − µ j ‖
2)−1 × (pi j − qi j )(zi − µ j ).

(8)

The above gradient ∂L
∂zi

is passed down to the neural net-
work and used to calculate its parameters in standard Back-
Propagation (BP) Gradient ∂L

∂θ , then θ can be used with
θ = θ − η1

∂L
∂θ , where η1 is the learning rate.

5. Performance Analysis

Evaluation Metrics: The indicator for evaluating these al-
gorithms is mean average precision (mAP). Suppose the re-
turned P images has p right results, mAP can be defined
as,

mAP =
1
p

p∑
i=1

i
Pi

(9)

where, i is the i-th correct retrieved image, and Pi stands for
the position of the i-th correct retrieved image in the returned
queue.

We evaluate ourUDTHand the baselines on three differ-
ent lengths of binary code {16, 32, 64}. For the cifar dataset,
we compute the mAP value from the top 1000 retrieved sam-
ples. On NUS-Wide and MIRFLICKR-25k, the number is
set as 5000. Besides, the Precision andRecall are alsowidely
used in the field of classification and retrieval to express the
performance, their definitions are,

Precision =
p
P
, Recall =

p
Q , (10)

where, Q is the total number of the image which share the
same label with the query image in the dataset.
Results: Before discussing the experimental results, we first
declare that all comparison experiments have the same input,
that is, 4096-dimensional VGG-16 features. On CIFAR-
10, we randomly pick 100 images from each category for
training and the left 5,900 images are included in test set.
On NUS-WIDE, 2,100 images are randomly selected from
the dataset for test and the remaining 157497 images are left
for training. Leaing rate is 0.0001, λ1 = 0.1 and λ2 = 0.1,
After learning the fixed-length binary code, our model enters
the query image and returns the image from the training set
according to the Hamming distance. Table 1 shows the
performance of UDEH. We can see that the experimental
results of UDEH on all bits are very good. In addition, we
can see that as the bit size grows, the value of mAP increases
steadily, so we can infer the algorithm to perform better on
larger bit sizes. We also compare UDEH-nr (UDEH without
Lr ), the performance of UDEH-nr is slightly lower. Table 2
shows the advantages of our algorithm in time complexity,
including Training time, Generation time and Search time.
From the data in the table, it is not difficult to find that the

Table 1 The following table shows the retrieval performance of 64-bit
codes. (MAP@1,000 on CIFAR-10, and MAP@5,000 on NUS-WIDE).

Method CIFAR-10 NUS-WIDE
16 32 64 16 32 64

ITQ 0.311 0.328 0.347 0.511 0.516 0.524
PCAH 0.212 0.186 0.168 0.410 0.392 0.376
LSH 0.179 0.214 0.217 0.410 0.406 0.438
DSH 0.246 0.262 0.292 0.501 0.491 0.518
SpH 0.204 0.237 0.259 0.418 0.455 0.473

SELVE 0.309 0.280 0.239 0.467 0.462 0.432
UN-BDNN 0.264 0.281 0.294 0.470 0.472 0.481
Deepbit 0.207 0.209 0.244 0.409 0.409 0.439
DDH 0.283 0.301 0.312 0.472 0.475 0.489

UDEH-nr 0.369 0.415 0.437 0.594 0.599 0.620
UDEH (ours) 0.383 0.428 0.455 0.602 0.625 0.641

Table 2 The following table shows that our method consumes very little
time, and unlike the pseudo-label algorithm, no pre-calculation is required.

Dataset CIFAR-10 NUS-WIDE
MAP 0.5673 0.7357

Training time (s) 561 1195
Generation time (s) 3.68 8.42
Search time (ms) 2.71 3.02

Fig. 2 The precision recall (PR) curve of CIFAR-10 and NUS-WIDE.
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algorithm in this paper consumes very little time to train and
generate code, and does not require pre-training. Figure 2
shows the Precision Recall (PR) curve of the hash code on
the CIFAR-10 and NUS-WIDE datasets. In order to evaluate
the effectiveness of the proposed method, we compare the
results of the proposed method and the comparison method,
including DDH [10], UH-BDNN [4], ITQ [15], AGH [6],
SpH [16], PCAH [17], LSH [18]. The length of the hash
code in the CIFAR-10 experiment is 64 bits, and the NUS-
WIDE experiment is 32 bits. From the curve we can see that
the return image with the shortest distance from the query
image Hamming has a high accuracy. The curve of our
method is much higher than all other comparison methods,
which proves the effectiveness of this algorithm.

6. Conclusion

Our proposed Unsupervised Deep Embedded Hashing
(UDEH) performs clustering and quantification tasks si-
multaneously in a low-dimensional space, and retains the
structural information of the raw image with reconstruction
loss. Compared with the previous image retrieval methods,
UDEH has great advantages in terms of time complexity and
retrieval precision.
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