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The Conditional Information Leakage Given
Eavesdropper’s Received Signals in Wiretap

Channels
Yutaka Jitsumatsu, Ukyo Michiwaki, and Yasutada Oohama,

Abstract—Information leakage in Wyner’s wiretap channel
model is usually defined as the mutual information between the
secret message and the eavesdropper’s received signal. We define
a new quantity called “conditional information leakage given the
eavesdropper’s received signals,” which expresses the amount of
information that eavesdropper gains from his/her received signal.
A benefit of introducing this quantity is that we can develop
a fast algorithm for computing the conditional information
leakage, which has linear complexity in the code length n, while
the complexity for computing the usual information leakage
is exponential in n. Validity of such a conditional information
leakage as a security criterion is confirmed by studying the cases
of binary symmetric channels and binary erasure channels.

Index Terms—Wiretap Channel, Information-Theoritic Secu-
rity, Information Leakage

I. Introduction
Information-theoretic security is a concept that we design

a cryptosystem so that our private information must be kept
hidden even if adversary’s computational power is unlim-
ited, as opposed to cryptography schemes whose secureness
critically depends on computational hardness assumption [1].
Such an information theoretically secure systems include secret
sharing [2], private information retrieval [3], and Wyner’s
wiretap channel [4].

Wiretap channel is a model of physical layer security in
wireless communications, in which Alice wants to transmit
a positive-rate message to Bob reliably and securely in the
presence of the eavesdropper Eve, where the coding scheme
is open to Eve as well as Bob. A discrete memoryless wiretap
channel is described by a conditional probability p(y, z |x),
where x, y, and z denote the symbols for input of the channel,
output of the main channel (the channel from Alice to Bob),
and the output of eavesdropper’s channel (the channel from
Alice to Eve). Wyner [4] proved that there exists a sequence
of encoding and decoding systems in which Alice can securely
transmit a message to Bob while keeping the information
leakage to Eve arbitrarily small if the coding rate R is smaller
than the secrecy capacity defined by

CS = max
pX

{I(X;Y ) − I(X; Z)} , (1)

where X , Y and Z are random variables for x, y and z, I(X;Y )
is the mutual information between X and Y , and pX is a
probability mass function for X .
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After Wyner’s pioneering work, many research has been
done. Wyner studied a degraded wiretap channel, where
X → Y → Z forms a Markov chain, while Csiszár and
Korner extended the channel model to a broadcast channel with
confidential messages [5]. The secrecy condition that Wyner
posed was that 1

n I(S; Zn) → 0 as n→∞, where S denotes the
random variable of a secret message and Zn = Z1, Z2, . . . Zn

is a random vector of Eve’s received symbols. Maurer and
Wolf [6] pointed out that such a secrecy criterion is weak and
they posed a stronger constraint that I(S; Zn) → 0 as n→∞.
They showed that the secrecy capacity (1) can be achieved
even under the strong secrecy criterion. Hayashi derived a
secrecy exponent [7] which shows that there exists a sequence
of encoders by which the information leakage goes to zero
exponentially.
Construction of wiretap channel codes has been extensively

studied. Coset-coding, also referred to as syndrome-coding,
is generally used. A wiretap channel codes using low density
parity check (LDPC) codes [8] and that using polar codes [9],
[10] were studied. Codes in [8], [9] satisfy weak secrecy,
while the wiretap codes based on polar codes [10] satisfy
strong secrecy, i.e., codes in [10] is proved to satisfy that
unnormalized information leakage goes to zero as n goes to
infinity.
The purpose of our research is the evaluation of the se-

cureness of a given encoder. Our fundamental question is that
when n is finite, how much information is leaked to Eve for
an explicitly designed wiretap code. This situation is the same
as the evaluation of bit error rate, i.e., we must evaluate the
bit error rate of an explicitly designed code, even if it is
a capacity-achieving code. However, there is a difficulty in
evaluation of information leakage; it takes exponential time in
n for computing the mutual information I(Sm; Zn). This fact
comes from the assumption that the eavesdropper is allowed
to access to unlimited computational resources. Thus, previous
studies for evaluating the information leakage focus on special
cases where the eavesdropper’s channel is a binary erasure
channel (BEC) or a binary symmetric channel (BSC). Ozarow
and Wyner [11] considered the case where the main channel is
noiseless and Eve’s channel is a BEC1. In this case, informa-
tion leakage is obtained by computing the rank of submatrix
consisting of all j-th rows of the parity check matrix, where
j’s are the indices of the erased bits. Zhang et al. [12], [13]

1 To be precise, Eve is assumed to access µ symbols out of n transmitted
symbols of her own choice [11]. Such a model is called a type II wiretap
channel.
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restricted their attention to the case when Eve’s channel is
a BSC and main channel is noiseless. Probability generating
function is used to efficiently compute the information leakage.
Unfortunately, Zhang et al.’s method cannot be applied for
other DMCs to compute the information leakage. Mori and
Ogawa evaluated an upper and lower bound of the information
leakage for binary symmetric wiretap channel and reduced the
complexity for computing the information leakage [14].

In this paper, we provide a method for evaluating the amount
of information leakage to Eve when the Alice’s encoding
system is a coset coding and eavesdropper’s channel is a
general binary-input discrete memoryless channel (BI-DMC).
The contribution of this paper is four-fold.
1) We introduce a new quantity called "conditional" infor-

mation leakage given Eve’s received signal, defined by
L(zn) = H (S) −H (S |Zn = zn), where H (X) denotes
the entropy of a random variable X . Introducing such
a new quantity is the key of this paper. The standard
definition of the information leakage I(S; Zn) is the
expectation of L(Zn) over Zn.

2) We propose a method for computing L(zn) when coset
coding is employed and Eve’s channel is a BI-DMC. The
proposed method is a modified version of Zhang et al.’s
method [12], [13]. Extension of the proposed method to
M-ary input M ≥ 2 is straightforward.

3) We show that if Eve’s channel is a BEC in addition to the
condition stated in 2), then L(zn) is equal to the number
of bits on S that Eve gains from zn. This fact supports
that the definition of L(zn) is reasonable. We also show
that L(zn) is computed by the rank of a submatrix of the
parity check matrix A for the coset coding.

4) We show that, under the conditions 2) and 3), the proba-
bility distribution of L(zn) = L(zn |A) which depends on
A can be well approximated by the ensemble average of
the probability distribution over random A.

The rest part of the paper is organized as follows. In Section
2, we give definitions of the wiretap channel model and the
coset coding. In Section 3, we define the "conditional" infor-
mation leakage and give an efficient method for computing
it when Eve’s channel is a BI-DMC. Computation of the
conditional information leakage when Eve’s channel is a BEC
is also discussed. In Section 4, the probability distribution of
the conditional information leakage when Eve’s channel is a
BEC is discussed. The ensemble average of the probability
distribution over a all possible coset coding is given. Section
5 concludes this paper.

II. Wiretap Channels with Coset Codes
Consider a wiretap channel with noiseless main channel and

a coset coding as the encoder (See Fig.1). Alphabets of the
input and Bob’s received symbols are F2, and that of Eve’s
received symbol is arbitrary, denoted by Z. In Section 2 and
3, we consider BSC and BEC for Eve’s channel.
Let A ∈ Fm×n2 (m < n) be a parity check matrix, where F2

is a finite field of order 2. Assume that A is constructed as
A = [Im A2], where Im is the identity matrix of m-th order.
As in [12]–[14], we assume that the main channel is noiseless.

Encoder

Alice Bob

Eve

Noiseless

main channel

Eve’s channel

Concatenate

Fig. 1. System model: A wiretap channel with noiseless main channel. Coset
coding with a parity check matrix A ∈ Fm×n2 is employed as a encoder. Sm

is Alice’s secret message and Un−m is a random bit sequence.

Let Sm ∈ Fm2 be a column vector of m random variables
for the secret message. For a fixed Sm = sm, a codeword is
randomly chosen from C(sm) = {xn |Axn = sm}, where C(sm)
is the coset with a coset leader sm. Then, the codeword for
a secret message sm is represented by a random variable Xn

that follows a uniform distribution on C(sm).
Then, the codeword can be expressed by using Sm ∈ Fm2 and

a column vector of n − m uniform random variables Un−m ∈
Fn−m2 as

Xn =

[
X1
X2

]
=

[
Sm

0

]
+

[
A2

In−m

]
Un−m (2)

It is easy to check that Sm = AXn holds. The assumption of
the noiseless main channel makes Bob’s received signal Yn

equal to Xn, and therefore Bob can perfectly recover Sm by
computing AYn.

III. Conditional information leakage given Eve’s
received signal

A. Definition
Wyner defined the information leakage by the mutual in-

formation between Eve’s received signal Zn and the secret
message Sm, denoted by I(Sm; Zn). 1

n I(Sm; Zn) or I(Sm; Zn)
have been used as the security measure [5]–[10], [12]–[14].
Let us revisit this measure. Before receiving Zn, Eve does
not have any knowledge about the transmitted message Sm.
Thus, her best guess for Sm is that Sm is uniformly distributed.
After Eve receiving Zn = zn, where zn is a realization of
Zn, her best guess for Sm is that Sm follows the a posteriori
probability pSm |Zn (sm |zn). Equivocation for Sm is reduced
from H (Sm) to H (Sm |Zn = zn). Thus, we can define the
amount of information on Sm that Eve gained by receiving zn

is

L(zn) =H (Sm) −H (Sm |Zn = zn). (3)

We see that the mutual information I(Sm; Zn) is the expec-
tation of Eq.(3) with respect to Zn. The use of I(Sm; Zn) as
the security criterion is reasonable since the code designer
does not know the realization of Zn beforehand. However,
when we perform a computer simulation, zn is available and
therefore we can treat L(zn) as the information leakage. We
refer to I(Sm; Zn) as the average information leakage and
L(zn) as the conditional information leakage given zn. Here we
give a remark that Eq.(3) can take negative value in general.
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Fig. 2. Illustration of the distribution of "conditional" information leakage
given zn .

However, if a prior probability distribution PSm is uniform,
then H (Sm) = m and therefore Eq.(3) is always nonnegative.
It is considered that L(Zn) is distributed according to the

probability distribution of Zn. As the eavesdropper’s received
signals are random variables, it is natural to consider infor-
mation leakage is also a random variable. An image of the
distribution of L(Zn) is illustrated in Fig.2. The distribution
of L(Zn) is more informative than the average information
leakage I(Sm; Zn) which is a single scalar and is equal to the
mean value of L(Zn).

B. Computation of the conditional information leakage
1) Probability Generating Function: In [12], [13], Zhang et

al. proposed an efficient method for computing the information
leakage when the encoder is a coset code with parity check
matrix A ∈ Fm×n and wiretapper’s channel is a BSC. They
used the probability generation function for computing the
probability distribution of AVn, where Vn denotes the random
vector expressing bit flip in the BSC. Note that Zhang et al.’s
method is only applicable when Eve’s channel is a BSC.

For a random vector X = (X1, X2, ..., Xm)T ∈ Fm2 , where (·)
T

denotes the transpose of a vector or a matrix, we define the
probability generation function GX (t) as

GX (t) = E[tX ] =
∑
x∈F2

m

P(X = x)tx . (4)

The following property of the probability generating function
is useful. Consider the "exclusive or" of two independent
random vectors X and Y ∈ Fm2 denoted by X ⊕ Y = (X1 ⊕
Y1, . . . , Xm⊕Ym)T . The probability generation function of X⊕Y ,
GX⊕Y (t) = E[tX⊕Y ] is computed by

GX⊕Y (t) = GX (t)GY (t). (5)

The conditional probability mass function PSm |Zn (·|zn) can be
computed using the property (5).
2) Computation of average information leakage for BSC:

The conventional method: In this subsection, we explain
Zhang et al.’s method [12], [13] for computing the information
leakage of a wiretap channel under the assumption that main
channel is noiseless, and the eavesdropper’s channel is a BSC
with crossover probability δ and the coset code with a parity
check matrix A is employed. Zhang et al. [12], [13] proved
that H (Sm |AZn) =H (AVn) holds and gave an efficient com-
putation method for H (AVn), by which mutual information
I(Sm; AZn) = H (Sm) − H (Sm |AZn) is computed. In [12],

[13], relation between the information leakage I(Sm; Zn) and
I(Sm; AZn) was not explicitly given. In order to clarify the
relation, we give the following theorem:
Theorem 1: Consider a wiretap channel with noiseless main

channel. Assume that Eve’s channel is a BSC and the encoder
uses a coset code with a parity check matrix A = [Im |A2] ∈
Fm×n2 . Let Vn be a random vector expressing the noise of the
BSC, i.e., Vi = 1 if i-th bit is flipped and Vi = 0 otherwise.
Then we have,

I(Sm; Zn) = m −H (AVn). (6)

This theorem shows that I(Sm; Zn) = I(Sm; AZn) holds. We
give a proof of this theorem in A.
A naive computation of the probability distribution of AVn

requires us to take a time proportional to 2n. Zhang et al.
showed that the computational complexity can be reduced by
the use of probability generating function. Zhang et al. gave
the following theorem [12], [13]:
Theorem 2 ( [12], [13]): Consider a wiretap channel with

noiseless main channel. Suppose that the eavesdropper’s chan-
nel is a BSC with crossover probability δ and a coset code with
a parity check matrix A = [a1 a2 · · · an] is used. The BSC is
expressed by an additive noise vector Vn = V1V2 · · ·Vn. Then,
the probability generating function of AVn is

GAV n (t) =
n∏
i=1
((1 − δ) + δtai ) . (7)

Although the proof was given in [12], to make this paper self-
contained, we give a proof here.
Proof: We have

Avn = a1v1 ⊕ a2v2 ⊕ · · · ⊕ anvn. (8)

Therefore, the following chain of equalities hold.

GAV n (t) =
∑
x∈Fm2

Pr(AVn = x)tx

=
∑
vn ∈Fn2

p(vn)tAvn

(a)
=

n∏
i=1

∑
vi ∈F2

p(vi)tai vi

=

n∏
i=1
((1 − δ) + δtai ) . (9)

Step (a) follows from the equality in (8) together with the
assumption that V1,V2, ...,Vn are independent. �
By Theorem 2, the probability generation function of AVn

is expressed by the multiplication of n terms. Expansion of
Eq.(9) as a polynomial of t is expressed as

GAV n (t) =
∑
x∈Fm2

βxtx, (10)

where βx is the probability of the event AVn = x. We can com-
pute βx recursively, as follows: For a given A = [a1 a2 ... an],
we define for r = 1, 2, . . . , n,

G(r)
AV n (t) =

r∏
i=1
((1 − δ) + δtai ) . (11)
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Let the expansion of G(r)
AV n (t) be G(r)

AV n (t) =
∑

x∈Fm2 β
(r)
x tx .

Then, we have

G(r+1)
AV n (t) = G(r)

AV n (t) ((1 − δ) + δtar+1 )
= (1 − δ)G(r)

AV n (t) + δ
∑
x∈Fm2

β
(r)
x tx⊕ar+1

=
∑
x∈Fm2

{
(1 − δ)β(r)x + δβ(r)x⊕ar+1

}
tx, (12)

and hence

β
(r+1)
x = (1 − δ)β(r)x + δβ(r)x⊕ar+1

. (13)

Eq.(13) shows that we can compute βx = β(n)x recursively with
initial value

β
(0)
x =

{
1, x = (0, . . . 0)T

0, otherwise.

Hence, the computation time is linear in n, while it is still
exponential in m because of the computation of β(r)x⊕ar+1

in
(13). Further reduction of computational time, for example
using Mori and Ogawa’s method [14], is left to be studied in
future.

3) Computation of the conditional information leakage for
BI-DMCs: The proposed method: In this section, we give
a method for computing the conditional information leakage
L(zn). We have

L(zn) =H (Sm) −H (Sm |Zn = zn)
= m +

∑
sm ∈Fm2

p(sm |zn) log p(sm |zn). (14)

Therefore, we compute the conditional probability distribution
of p(sm |zn) for a given zn. We define the conditional proba-
bility of backward channel as

Φ(x |z) 4= PX (x)WE (z |x)∑
x′∈X PX (x ′)WE (z |x ′)

=
WE (z |x)∑
x′ WE (z |x)

,

where WE (z |x) denotes the conditional probability for Eve’s
channel. The second equality follows from the assumption
that sm and un−m follow uniform distributions. We give the
following theorem:
Theorem 3: Let βs be the probability of the event Sm = s

given Zn = zn. Then, βs = β(n)s is obtained by computing

β
(r+1)
s = Φ(0|zi)β(r)s + Φ(1|zi)β(r)s⊕ar+1

(15)

for r = 0, 1, . . . , n − 1 with initial values β(0)0 = 1 and β
(0)
j = 0

for j , 0.
We give a proof of Theorem 3 in A
By Theorem 3, we can compute p(sm |zn) by a modified

Zhang et al’s method, which is obtained by simply replacing
(1 − δ) and δ in (13) with Φ(0|zi) and Φ(1|zi), respectively.

C. Computation of the conditional information leakage when
Eve’s channel is a BEC

In this section, binary erasure channel (BEC) is assumed
for Eve’s channel. Suppose that the main channel is noiseless
and coset coding is used. We show that, unlike the BSC case,

the conditional information leakage L(Zn) is distributed. We
compute L(zn) for a BEC as follows:
Theorem 4: Suppose that Eve’s channel is a BEC and that

Eve receives Zn = zn. Let A = [a1 a2 ... an] be the parity
check matrix for the coset code. Then the information leakage
to Eve is

L(zn) = m − rank[a j : zj = e], (16)

where [a j : zj = e] denotes the submatrix of A consisting of
all a j’s for which zj = e.
This is almost the same statement as [11, Lemma 4]. How-

ever, the authors in [11] assumed a combinatorial variation of
an erasure channel in which Eve observes µ symbols out of
the n transmitted symbols. Thus, in order to use the proof of
Lemma 4 in [11] as the proof of Theorem 4, a translation is
needed. Therefore, we give a direct proof of Theorem 4 in A.
It should be noted L(zn) is independent of the erasure

probability δ. Theorem 4 shows that L(zn) is equal to the
number of bit on Sm that Eve can recover from zn. This is
explained by the following example:
Example 1: Let m = 2, n = 3 and

A = [a1 a2 a3] =
[
1 0 1
0 1 1

]
.

The secrete message is denoted by (S1, S2). By (2), the code-
word is expressed by X1 = S1 ⊕ U, X2 = S2 ⊕ U and X3 = U,
where U ∈ F2 is a binary uniform random variable.

If no bit is erased so that Zi = Xi for i = 1, 2, 3, the secret
message (S1, S2) is leaked to Eve. Suppose one of Zis is erased.
If Z1 = e, Eve does not know X1 but she obtains X2 from
Z2 ⊕ Z3. If Z2 = e, Eve does not know X2 but she obtains X1
from Z1 ⊕ Z3. If Z3 = e, Eve does not know X1 or X2 but she
obtains X1⊕X2 from Z1⊕Z2. Thus, the amount of information
leakage is exactly 1 bit if one of Zis is erased. Suppose two
of Zis are erased. If Z2 and Z3 are erased, Eve cannot extract
any useful information from Z1 = S1 ⊕ U.

We can also confirm that the probability distribution of Sm

given Zn = zn is obtained by using the probability generating
function. For example, for the case of (Z1, Z2, Z3) = (1, 0, e) we
have GSm |Zn=zn = (0+1ta1 )(1+0ta2 )( 12+

1
2 ta3 ) = 1

2 ta1+ 1
2 ta1⊕a3 .

Since a1 = (1, 0)T and a1 ⊕ a3 = (0, 1)T , we have

P((S1, S2) = (1, 0)) = P((S1, S2) = (0, 1)) =
1
2

P((S1, S2) = (0, 0)) = P((S1, S2) = (1, 1)) = 0.

Then, we have H (Sm |Zn = zn) = 1, i.e., remaining ambiguity
on Sm is exactly 1 bit. Therefore the conditional information
leakage is I(Sm; Zn = zn) = m −H (Sm |Zn = zn) = 1.

IV. Distribution of the conditional information leakage

A. The case that Eve’s channel is a BSC
In the coset coding, both sm and un−m are uniformly

distributed, which makes xn also uniformly distributed. Thus,
in the case of BSC, we have Φ(x |z) = 1 − δ if x = z and
Φ(x |z) = δ if x , z. Then, the probability distribution obtained
by (15) depends on zn. However, we have the following:
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Fig. 3. The histogram of L(Zn) for a fixed parity check matrix A, where the
number of samples is 104

Theorem 5: If Eve’s channel is a BSC, for any zn ∈ Fn2 , the
conditional information leakage is independent of zn, i.e., we
have

L(zn) = I(Sm; Zn = zn)
= I(Sm; Zn) = m −H (AVn).

We give the proof in A
Theorem 5 shows that L(Zn) takes I(Sm; Zn) with proba-

bility one. BSC is a special case where L(Zn) is a fixed value.
For a general DMC, L(Zn) is distributed, as shown in the next
subsection.

B. The case that Eve’s channel is a BEC
If Eve’s channel is a BEC, the conditional information

leakage L(zn) is given by (16). Thus it depends on the pattern
of erased bits in zn. To obtain the distribution of L(zn) exactly
for a given parity check matrix A, we have to compute (16)
for all zn, taking a time proportional to 2n. This subsection
provides a numerical result by Monte Carlo simulation.
In the simulation, we generate zns, say

zn(1), zn(2), . . . zn(N), compute L(zn(i)) for i = 1, . . . , N , and
make a histogram of L(zn(i)). We put (m, n) = (100, 200)
and N = 104 and choose ε ∈ {0.46, 0.5, 0.54, 0.58}. A parity
check matrix A is generated once and fixed. Fig. 3 shows
the histogram of L(zn). We observe that when ε = 0.54
which is greater than 100/200 = 0.5, the average information
leakage is small, but the conditional information leakage takes
relatively large value, 6, 7 and 8 with probability 0.0081, 0.060
and 0.044. Thus, from a security perspective, the conditional
information leakage is more meaningful than the averaged
one.

C. Average distribution of L(Zn) over randomly generated
parity check matrices
The distribution of L(Zn), denoted by pL(`), depends on

the selection of A. However, if m is large enough, pL(`) can
be well-approximated by the ensemble average of pL(`) over
all possible A, as shown in this subsection.
Let us evaluate the ensemble average of the probability mass

function of L(Zn) over randomly generated parity check matri-
ces. Suppose Eve’s channel is a BEC with erasure probability
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Fig. 4. The ensemble average of the probability distribution, pL (`).

ε . To clarify the dependency of the parity check matrix A,
denote the conditional information leakage L(zn) as L(zn |A).
The probability mass function of L(Zn |A) is defined by

pL(`) = Pr(L(Zn |A) = `). (17)

Suppose A is generated equally randomly over Fm×n2 . Let us
denote the random variable for A by A. Express the right hand
side of (17) by PL |A(` |A) We define the average probability
distribution of L(Zn |A) over A as

pL(`) = EA[PL |A(` |A)]. (18)

We can evaluate pL(`) by counting the number of matrices
in Fm×n2 whose rank is r . The following function F(m, n) (m ≥
n) expresses the number of full-rank matrice in Fm×n2 :

F(m, n) =
n−1∏
i=0
(2m − 2i).

Then, the probability for m × n random binary matrix to have
rank r is given by

Q(r |m, n) = 1
2nm

F(m, r) · F(n, r)
F(r, r) (19)

See [15] for the derivation. We have
Theorem 6: Let K be a random variable following the

binomial distribution with parameter n and ε . The average
probability mass function pL(`) of L(Zn |A) over the random
matrix A is given by

pL(`) = EK [Q(m − ` |m,K)]

=

n∑
k=m−`

(
n
k

)
(1 − ε)n−kεkQ(m − ` |m, k). (20)

Proof : From (16), (17), and (18), we have

pL(`)
= EA[Pr(L(Zn |A) = `)]
= EA[Pr(rank[{a j : Z j = e}]) = m − `)]
=

∑
A∈Fm×n2

Pr(A = A)Pr(Zn = zn)

· 1l(rank[{a j : zj = e}]) = m − `)
= Pr(Zn = zn)Q(m − ` |m, #{ j : zj = e})
= EK [Q(m − ` |m,K)] (21)
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Since Q(r |m, n) = 0 if r > min{m, n}, we have (20). This
completes the proof. �
Fig. 4 shows the graph of pL(`) for (m, n) = (100, 200). We

observe that the histogram in Fig. 3 is well approximated by
the graph in Fig.4.

V. Conclusion
We have defined L(zn) = I(Sm; Zn = zn) as the con-

ditional information leakage given Eve’s received signal in
Wyner’s wiretap channel model and proposed to use it as
a secrecy criterion. The standard definition of information
leakage I(Sm; Zn) is the expectation of L(Zn) over Zn. We
have investigated the probability distribution of L(Zn).
We gave a method for computing L(zn) efficiently, which

is a modified version of Zhang et al.’s method [12], [13].
Although Zhang et al.’s method is only applicable to BSCs, our
method canbe applied to any BI-DMCs. Because of the space
limitation, we only investigated the probability distribution of
L(Zn) for the case of BSCs and BECs. Our proposed method
will work better in other DMCs than these two examples. The
case of other DMCs will be investigated in future.
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Appendix
In this section, we prove Theorem 1.
Proof of Theorem 1: We first expand I(Sm; Zn) =H (Zn)−

H (Zn |Sm). The codeword Xn is given by (2). Although the
additive noise in the BSC Vn is not uniform, Zn = Xn ⊕ Vn

follows a uniform distribution on Fn2 since Xn is a uniform
random vector because of its construction. Then, H (Zn) = n.
Express the noise vector as Vn = (VT

1 ,V
T
2 )

T . Then the vector
of Eve’s received symbols is expressed by Zn = Xn + Vn,
where Zn = (ZT

1 , Z
T
2 )

T is given by

Z1 = Sm + A2Un−m + V1, (22)
Z2 = Un−m + V2. (23)

We have the following chain of equalities:

H (Zn |Sm) =H (Z1, Z2 |Sm)
=H (Sm + A2Un−m + V1,Un−m + V2 |Sm)
(a)
= H (A2Un−m + V1,Un−m + V2 |Sm)
(b)
= H (A2Un−m + V1,Un−m + V2)
=H (A2Un−m + V1 |Un−m + V2) +H (Un−m + V2)
(c)
= H (A2Un−m + V1 + A2(Un−m + V2)|Un−m + V2)
+H (Un−m + V2)
=H (V1 + A2V2 |Un−m + V2) +H (Un−m + V2)
(d)
= H (V1 + A2V2) +H (Un−m + V2)
(e)
= H (V1 + A2V2) + (n − m).

Step(a) holds because we can remove Sm from the random
variable of the conditional entropy since Sm is a given random
variable. Step(b) follows since Un is generated independently
of Sm. Step(c) holds since we can add a function of Un−m +
V2 since it is given as the condition. Step(d) follows because
Un−m is uniform, we do not gain any information on V2 by
knowing Un−m +V2. This is confirmed more explicitly by the
following inequality showing that Un−m + V2 and V1 + A2V2
are independent:

I(V1 + A2V2; Un−m + V2)
=H (Un−m + V2) −H (Un−m + V2 |V1 + A2V2)
≤ H (Un−m + V2) −H (Un−m + V2 |V1,V2)
=H (Un−m + V2) −H (Un−m |V1,V2)
=H (Un−m + V2) −H (Un−m)
= (n − m) − (n − m) = 0.

Lastly, Step(e) follows from that Un−m + V2 is uniformly
distributed on Fn−m2 .
Consequently, we have

I(Sm; Zn) =H (Zn) −H (Zn |Sm)
= n − {H (V1 + A2V2) + (n − m)}
= m −H (V1 + A2V2)
= m −H (AVn).

This completes the proof. �
In this section, a proof of Theorem 3 is given.
Proof of Theorem 3: We have

p(sm |zn) =
∑
xn

p(sm, xn |zn)

=
∑
xn

p(xn |zn)p(sm |xn, zn)

=
∑
xn

Φ
n(xn |zn)1l(sm = Axn), (24)

where 1l denotes the indicator function. Because Xn follows
uniform distribution and the eavesdropper’s channel is mem-
oryless, we have

Φ
n(xn |zn) =

n∏
i=1
Φ(xi |zi). (25)

Then, the following chain of equalities holds for the probability
generation function of p(Sm |Zn = zn):

GSm |Zn=zn (t)
=

∑
sm ∈Fm2

p(sm |zn)tsm

(a)
=

∑
sm

∑
xn

Φ(xn |zn)1l(sm = Axn)tsm

=
∑
xn

Φ
n(xn |zn)tAxn (26)

=

n∏
i=1
(Φ(0|zi) + Φ(1|zi)tai ) , (27)

where Step (a) follows from (24). � By
expanding (27) in a way similar to Eqs.(10) to (12), we obtain
(13), which completes the proof.
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In this section, we prove Theorem 4. To this aim, we give
two lemmas.

Lemma 1: Suppose that the encoder uses a coset code and
Eve’s channel is a BEC. Then, the information leakage to Eve
only depends on the position of the erasure occurred and is
independent of whether zi = 0 or zi = 1 is received.
Lemma 2: Suppose the encoder uses a coset code with parity

check matrix A = [a1, . . . , an] and Eve’s channel is a BEC.
Assume xn = 0n is transmitted. Let zn be Eve’s received
signal and let Je(zn) = { j : zj = e}. Let w be the rank
of [a j | j ∈ Je(zn)]. Assume a j1 , a j2 . . . a jw are independent.
Then, we have

GSm |Zn=zn (t) =
1

2w
w∏
i=1
(1 + ta ji ) (28)

Proof of Lemma 1: Define the index set Je(zn) = { j |zj = e}
and J1(zn) = { j |zj = 1}. Then, we have

GSm |Zn=zn (t) =
∏

i∈J1(zn)
tai

∏
j∈Je(zn)

(
1
2
+

1
2

ta j

)
= t

∑
i∈J1(zn ) ai

∏
j∈Je(zn)

(
1
2
+

1
2

ta j

)
(29)

Define

ĜSm |Zn=zn (t) =
∏

j∈Je(zn)

(
1
2
+

1
2

ta j

)
. (30)

Then ĜSm |Zn=zn (t) is the probability generating function if
all zi = 1 in zn is replaced by 0. Put its expansion as
ĜSm |Zn=zn (t) =

∑
s∈Fm2 β̂sts . Then we have

GSm |Zn=zn (t) =
∑
s∈Fm2

β̂st
s⊕∑i∈J1 ai

=
∑
s∈Fm2

β̂s⊕∑i∈J1(zn ) ai
ts, (31)

which implies βs = β̂s⊕∑i∈J1(zn ) ai
and thus the distribution of

Sm given zn is a permutation of the distribution computed from
ĜSm |Zn=zn (t). Since entropy does not change by a permutation
of the probability distribution, we have Lemma 1. �

Proof of Lemma 2 Since a j1, a j2, ...a jw are linearly inde-
pendent, we can express a jk for k ∈ {w+1, w+2, . . . , |Je(zn)|}
as

a jk =

w∑
i=1

dk,ia ji (dk,i ∈ F2 for i = 1, 2, . . . , w)

for some coefficient dk, i. By Lemma 1, we can assume xn =
0n. Substituting the conditional probability of the backward

channel Φ(0|zi) into (27) gives

GSm |Zn=zn (t)

=

w∏
l=1

(
1
2
+

1
2

ta jl

) |Je(zn) |∏
k=w+1

(
1
2
+

1
2

ta jk

)
=

1
2 |Je(zn) |

w∏
l=1
(1 + ta jl )

|Je(zn) |∏
k=w+1

(
1 + t

∑w
i=1 dk, ia ji

)
=

1
2 |Je(zn) |

w∏
l=1
(1 + ta jl )

(
1 +

w∏
i=1

tdw+1, ia ji

)
|Je(zn) |∏
k=w+2

(
1 + t

∑w
i=1 dk, ia ji

)
=

1
2 |Je(zn) |

{
w∏
i=1

(
tdw+1, ia ji + t(1⊕dw+1, i )a ji

)
+

w∏
i=1
(1 + ta ji )

} |Je(zn) |∏
k=w+2

(
1 + t

∑w
i=1 dk, ia ji

)
.

Because tdw+1, ia ji + t(1⊕dw+1, i )a ji = 1 + ta ji holds for i ∈
{1, 2, ..., w}, we have

GSm |Zn=zn (t) =
1

2 |Je(zn) |−1

w∏
i=1
(1 + ta ji )

×
|Je(zn) |∏
k=w+2

(
1 + t

∑w
i=1 dk, ia ji

)
.

Continuing the same procedure for k = w + 2, ..., |Je(zn)|, we
obtain Lemma 2 �

Proof of Theorem 4 As Lemma 2, let w be the rank
of [a j | j ∈ Je(zn)] and assume a j1, a j2, ...a jw are linearly
independent. Then, for all

∑w
i=1 bia ji , bi ∈ F2 are different.

By expanding (28), we have βs = Pr(Sm = s) = 1
2w if

s =
∑w

i=1 bia ji for some bis and βs = 0 otherwise. This
completes the proof. �
This section gives a proof of Theorem 5.
Proof of Theorem 5: We have the following equality.

H (Sm |Zn = zn) =H (Sm ⊕ HZn |Zn = zn)
=H (HVn |Zn = zn)

However, we have

pHV n |Zn (ym |zn)

=
1

pZn (zn)
∑
xn

∑
vn

pXnV nHV nZn (xn, vn, ym, zn)

=
1

pZn (zn)
∑
xn

∑
vn

pXn (xn)pV n (vn)1l(ym = Hvn)

· 1l(zn = xn ⊕ vn)

=
1

pZn (zn)
∑
xn

pXn (xn)pV n (xn ⊕ zn)

· 1l(ym = H(xn ⊕ zn))

=
1

pZn (zn)
∑
xn

pXn (xn ⊕ zn)pV n (xn)1l(ym = H(xn))

(32)
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Since both Xn and Zn follow the uniform distribution, Eq.(32)
shows that pHV n |Zn (ym |zn) is independent of zn. This com-
pletes the proof. �

References
[1] Y. Liang, H.V. Poor, S. Shamai, et al., “Information theoretic security,”

Foundations and Trends® in Commun. and Inform. Theory, vol.5, no.4–
5, pp.355–580, 2009.

[2] A. Shamir, “How to share a secret,” Communications of the ACM,
vol.22, no.11, pp.612–613, 1979.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” 36th Annual Symposium on Foundations of Computer
Science, pp.41–50, 1995.

[4] A.D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol.54, no.8,
pp.1355–1387, 1975.

[5] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inform. Theory, vol.24, no.3, pp.339 – 348, 1978.

[6] U. Maurer and S. Wolf, “Information-theoretic key agreement: From
week to strong secrecy for free,” Advances in Cryptology – EURO-
CRYPTO 2000, pp.351–368, Springer-Verlag, May 2000.

[7] M. Hayashi, “General nonasympototic and asymptotic formulas in chan-
nel resolvability and identification capacity and their application to the
wiretap channel,” IEEE Trans. Inform. Theory, vol.52, no.4, pp.1562–
1575, 2006.

[8] A. Thangaraj, S. Dihidar, A.R. Calderbank, S.W. McLaughlin, and J.M.
Merolla, “Applications of LDPC codes to the wiretap channel,” IEEE
Trans. on Inform. Theory, vol.53, no.8, pp.2933–2945, 2007.

[9] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap
channels using polar codes,” IEEE Trans. on Inform. Theory, vol.57,
no.10, pp.6428–6443, 2011.

[10] E. Şaşoğlu and A. Vardy, “A new polar coding scheme for strong security
on wiretap channels,” 2013 IEEE Int. Symp. on Information Theory
(ISIT2013), pp.1117–1121, 2013.

[11] L.H. Ozarow and A.D. Wyner, “Wire-tap channel II,” AT&T Bell
Laboratories technical journal, vol.63, no.10, pp.2135–2157, 1984.

[12] K. Zhang, M. Tomlinson, M.Z. Ahmed, M. Ambroze, and M.R. Ro-
drigues, “Best binary equivocation code construction for syndrome
coding,” IET Communications, vol.8, no.10, pp.1696–1704, 2014.

[13] S. Al-Hassan, M.Z. Ahmed, and M. Tomlinson, “New best equivocation
codes for syndrome coding,” 2014 Int. Conf. on Information and
Communication Technology Convergence (ICTC), pp.669–674, 2014.

[14] Y. Mori and T. Ogawa, “On security evaluation for coset coding
in wiretap channel coding,” IEICE Technical Report, ISEC2017-131,
pp.237–243, 2018.

[15] P.J. Ferreira, B. Jesus, J. Vieira, and A.J. Pinho, “The rank of random
binary matrices and distributed storage applications,” IEEE Communi-
cations Letters, vol.17, no.1, pp.151–154, 2013.


	I Introduction
	II Wiretap Channels with Coset Codes
	III Conditional information leakage given Eve's received signal
	III-A Definition
	III-B Computation of the conditional information leakage
	III-B1 Probability Generating Function
	III-B2 Computation of average information leakage for BSC: The conventional method
	III-B3 Computation of the conditional information leakage for BI-DMCs: The proposed method

	III-C Computation of the conditional information leakage when Eve's channel is a BEC

	IV Distribution of the conditional information leakage
	IV-A The case that Eve's channel is a BSC
	IV-B The case that Eve's channel is a BEC
	IV-C Average distribution of L(Zn) over randomly generated parity check matrices

	V Conclusion
	Appendix
	References

