
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.12 DECEMBER 2021
1675

PAPER
Time-Optimal Self-Stabilizing Leader Election on Rings in
Population Protocols∗

Daisuke YOKOTA†, Yuichi SUDO††a), Nonmembers, and Toshimitsu MASUZAWA†, Member

SUMMARY We propose a self-stabilizing leader election protocol on
directed rings in the model of population protocols. Given an upper bound
N on the population size n, the proposed protocol elects a unique leader
within O(nN) expected steps starting from any configuration and uses
O(N) states. This convergence time is optimal if a given upper bound N is
asymptotically tight, i.e., N = O(n).
key words: leader election, self-stabilizing, population protocols

1. Introduction

In this paper, We consider the population protocol (PP)
model [2]. A network called population consists of a large
number of finite-state automata, called agents. Agents make
interactions (i.e., pairwise communication) with each other
to update their states. The interactions are opportunistic,
i.e., they are unpredictable for the agents. A population is
modeled by a graph G = (V,E), where V represents the set
of agents, and E indicates which pair of agents can inter-
act. Each pair of agents (u, v) ∈ E has interactions infinitely
often, while each pair of agents (u′, v ′) < E never has an
interaction. At each time step, one pair of agents chosen
uniformly at random from all pairs in E has an interaction.
This assumption enables us to evaluate time complexities
of population protocols. Almost all studies in the popula-
tion protocol model make this assumption when they eval-
uate time complexities of population protocols. In the field
of population protocols, many efforts have been devoted to
devising protocols for a complete graph, i.e., a population
where every pair of agents interacts infinitely often. In addi-
tion, several studies [2]–[12] have investigated populations
represented by communication graphs other than complete
graphs.

Self-stabilization [13] is a fault-tolerant property
whereby, even when any number and kinds of faults oc-
cur, the network can autonomously recover from the faults.
Formally, self-stabilization is defined as follows: (i) starting

Manuscript received October 19, 2020.
Manuscript revised April 17, 2021.
Manuscript publicized June 3, 2021.
†The authors are with Osaka University, Suita-shi, 565-0871

Japan.
††The author is with Hosei University, Koganei-shi, 184-8584

Japan.
∗This work was supported by JAPS KAKENHI Grant

No. 19H04085 and 20H04140. An extended abstract of this paper
[1] appears in the proceedigs of the 22nd International Symposium
on Stabilizing, Safety, and Security of Distributed Systems.

a) E-mail: sudo@hosei.ac.jp
DOI: 10.1587/transfun.2020EAP1125

from an arbitrary configuration, a network eventually reaches
a safe configuration (convergence), and (ii) once a network
reaches a safe configuration, it maintains its specification
forever (closure). Self-stabilization is of great importance in
the PP model because self-stabilization tolerates any finite
number of transient faults, and this is a necessary property
in a network consisting of a large number of inexpensive and
unreliable nodes.

Consequently, many studies have been devoted to self-
stabilizing population protocols [3]–[6], [9]–[12], [14]–[19].
For example, Angluin et al. [3] proposed self-stabilizing pro-
tocols for a variety of problems, i.e., leader election in rings,
token circulation in rings with a pre-selected leader, 2-hop
coloring in degree-bounded graphs, consistent global orien-
tation in undirected rings, and spanning tree construction in
regular graphs. Sudo et al. [10], [12] gave a self-stabilizing
2-hop coloring protocol that uses a much smaller memory
space of agents. Sudo et al. [20] investigates the possibil-
ity of self-stabilizing protocols for leader election, ranking,
degree recognition, and neighbor recognition on arbitrary
graphs.

Many of the above studies on self-stabilizing popula-
tion protocols have focused on self-stabilizing leader election
(SS-LE) because leader election is one of the most funda-
mental problems in the PP model. Several important pro-
tocols [2], [3], [21] require a pre-selected unique leader. In
particular, Angluin et al. [21] show that all semi-linear pred-
icates can be solved very quickly if we have a unique leader.
The goal of the leader election problem is electing exactly
one agent as a leader in the population. Unfortunately, SS-
LE is impossible to solve without an additional assumption
even if we focus only on complete graphs [3], [14], [20].
The studies to overcome this impossibility in the literature
are roughly classified into four categories. (Some of the
studies belong to multiple categories.)

The first category [14], [20], [22] assumes that every
agent knows the exact number of agents. With this assump-
tion, Cai et al. [14] gave an SS-LE protocol for complete
graphs, Burman et al. [22] gave faster protocols in the same
setting, and Sudo et al. [20] gave an SS-LE protocol for
arbitrary graphs.

The second category [4], [5], [15] employs oracles, a
kind of failure detectors. Fischer and Jiang [15] introduced
an oracle Ω? that eventually tells all agents whether or not at
least one leader exists. They proposed two SS-LE protocols
using Ω?, one for complete graphs and the other for rings.
Canepa et al. [5] proposed two SS-LE protocols that use

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers

1676
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.12 DECEMBER 2021

Table 1 Self-stabilizing leader election on rings.
Assumption Convergence Time #states

[3] n is not multiple of a given k Θ(n3) O(1)
[15] oracle Ω? Θ(n3) O(1)
[6] none exponential O(1)

this work n ≤ N for a given N O(nN) O(N)

Ω?, i.e., a deterministic protocol for trees and a randomized
protocol for arbitrary graphs. Beauquier et al. [4] presented
a deterministic SS-LE protocol for arbitrary graphs that uses
two copies of Ω?.

The third category [9]–[12], [16]–[19] slightly relaxes
the requirement of the original self-stabilization and gave
loosely-stabilizing leader election protocols. Specifically,
the studies of this category allow a population to deviate from
the specification of the problem (i.e., a unique leader) after
the population satisfies the specification for an extremely
long time. This concept was introduced by [18]. The proto-
cols given by [16]–[19] work for complete graphs and those
given by [9]–[12] work for arbitrary graphs. Recently, Sudo
et al. [17] gave a time-optimal loosely-stabilizing leader elec-
tion protocol for complete graphs: given a parameter τ ≥ 1,
an execution of their protocol reaches a configuration with
a unique leader within O(τn log n) expected steps starting
from any configuration, and thereafter, it keeps the unique
leader for Ω(nτ) expected steps, where n is the number of
agents in the population.

The forth category [3], [6], [15], [23] restricts the topol-
ogy of a graph to avoid the impossibility of SS-LE. A class
G of graphs is called simple if there does not exist a graph
in G which contains two disjoint subgraphs that are also in
G. Angluin et al. [3] proves that there exists no SS-LE pro-
tocol that works for all the graphs in any non-simple class.
Thus, if we focus on a simple class of graphs, there may
exist an SS-LE protocol for all graphs in the class. As a
typical example, the class of rings is simple. Angluin et
al. [3] gave an SS-LE protocol that works for all rings whose
sizes are not multiples of a given integer k (in particular,
rings of odd size). They posed a question whether SS-LE
is solvable or not for general rings (i.e., rings of any size)
without any oracle or knowledge such as the exact number of
agents in the population, while Fischer and Jiang [15] solves
SS-LE for general rings using oracle Ω?. This question had
been open for a decade until Chen and Chen [6] recently
gave an SS-LE protocol for general rings. These three pro-
tocols given by [3], [6], [15] use only a constant number of
states per agent. The expected convergence times (i.e., the
expected numbers of steps required to elect a unique leader
starting from any configuration) of the protocols proposed by
[3], [15] are Θ(n3), while the protocol given by [6] requires
an exponentially long convergence time. The oracleΩ? only
guarantees that it eventually reports to each agent whether
there exists a leader in the population. Here, the convergence
time of the protocol of [15] is bounded by Θ(n3) assuming
that the oracle immediately reports the absence of the leader
to each agent. All of the three protocols assume that the
rings are oriented or directed. However, this assumption is

not essential because Angluin et al. [3] also presented a self-
stabilizing ring orientation protocol, which gave a common
sense of direction to all agents in the ring. In this paper, we
also consider directed rings. Very recently, Chen and Chen
[23] generalized their work on the rings for regular graphs.

1.1 Our Contribution

This paper belongs to the fourth category. We propose an
SS-LE protocol PRL for directed rings. Specifically, given
an upper bound N on the population size n, PRL elects a
unique leader in O(nN) expected steps for all directed rings
(whose size is at most N). One can easily prove that no
protocol can solve SS-LE in o(n2) expected steps. Thus, PRL
is time-optimal if a given upper bound N is asymptotically
tight, i.e., N = O(n). The results are summarized in Table 1.

The main contribution of this paper is a novel mecha-
nism that largely improves the number of steps required to
decrease the number of leaders to one when there are multi-
ple leaders in the population. The mechanism requires only
O(n2) expected steps, while the existing three SS-LE pro-
tocols for rings [3], [6], [15] requires Ω(n3) expected steps
to decrease the number of leaders to one. Our mechanism
requires only O(1) states, which is the same as the existing
three protocols [3], [6], [15]. (Protocol PRL requires O(N)
states only to detect the absence of a leader.) Thus, if we
assume an oracle that reports to each leader an absence of
a leader within O(n2) expected steps, we immediately ob-
tain an SS-LE protocol with O(n2) expected convergence
time and constant space per agent by using the proposed
mechanism to remove leaders. We leave open an interesting
question whether or not this oracle can be implemented with
o(N) states.

2. Preliminaries

In this section, we describe the formal definitions of our
computation model.

A population is a simple and weakly connected digraph
G = (V,E), whereV (|V | ≥ 2) is a set of agents and E ⊆ V ×
V is a set of arcs. Each arc represents a possible interaction
(or communication between two agents): If (u, v) ∈ E , agents
u and v can interact with each other, where u serves as an
initiator and v serves as a responder. If (u, v) < E , agents u
and v never have an interaction. In this paper, we consider
only a population represented by a directed ring, i.e., we
assume thatV = {u0,u1, . . . ,un−1} and E = {(ui,ui+1 mod n) |

i = 0,1, . . . ,n−1}. Here, we use the indices of the agents only
for simplicity of description. The agents are anonymous, i.e.,
they do not have unique identifiers. We call ui−1 mod n and

YOKOTA et al.: TIME-OPTIMAL SELF-STABILIZING LEADER ELECTION ON RINGS IN POPULATION PROTOCOLS
1677

ui+1 mod n the left neighbor and the right neighbor of ui ,
respectively. We omit “modulo by n” (i.e., mod n) in the
index of agents when no confusion occurs.

A protocol P(Q,Y,T, πout) consists of a finite set Q of
states, a finite setY of output symbols, transition functionT :
Q×Q→ Q×Q, and an output function πout : Q→ Y . When
an interaction between two agents occurs, T determines the
next states of the two agents based on their current states.
The output of an agent is determined by πout: the output
of agent v with state q ∈ Q is πout(q). We assume that all
agents have a common knowledge N on n such that n ≤
N = O(poly(n)). Thus, the parameters Q, Y , T , and πout can
depend on the knowledge N . However, for simplicity, we
do not explicitly write protocol P as parameterized with N ,
e.g., PN = (QN ,YN ,TN , πout,N).

A configuration is a mapping C : V → Q that specifies
the states of all the agents. Since a set Q of states is given
by protocol P(Q,Y,T, πout), the set of all (possible) config-
urations depends on P. We denote this set by Call(P). We
simply denote it by Call when protocol P is clear from the
context. We say that configuration C changes to C ′ by an
interaction e = (ui,ui+1), denoted by C

e
→ C ′ if we have

(C ′(ui),C ′(ui+1)) = T(C(ui),C(ui+1)) and C ′(v) = C(v) for
all v ∈ V \ {ui,ui+1}. We simply write C → C ′ if there exits
e ∈ E such that C

e
→ C ′. We say that a configuration C ′ is

reachable from C if there exists a sequence of configurations
C0,C1, . . . ,Ck such that C = C0, C ′ = Ck , and Ci → Ci+1
for all i = 0,1, . . . , k − 1. We also say that a set C of config-
urations is closed if no configuration outside C is reachable
from a configuration in C.

A scheduler determineswhich interaction occurs at each
time step (or just step). In this paper, we consider a uniformly
random scheduler Γ = Γ0,Γ1, . . . : each Γt ∈ E is a random
variable such that Pr(Γt = (ui,ui+1)) = 1/n for any t ≥ 0
and i = 0,1, . . . ,n − 1. Each Γt represents the interaction
that occurs at step t. Given an initial configuration C0, the
execution of protocol P under Γ is defined as ΞP(C0,Γ) =
C0,C1, . . . such that Ct

Γt
→ Ct+1 for all t ≥ 0. We denote

ΞP(C0,Γ) simply by ΞP(C0) when no confusion occurs.
We address the self-stabilizing leader election problem

in this paper. For simplicity, we give the definition of a
self-stabilizing leader election protocol instead of giving the
definitions of self-stabilization and the leader election prob-
lem separately.

Definition 1 (Self-stabilizing Leader Election). For any pro-
tocol P, we say that a configurationC of P is safe if (i) exactly
one agent outputs L (leader) and all other agents output F
(follower) inC, and (ii) at every configuration reachable from
C, all agents keep the same outputs as those in C. A proto-
col P is a self-stabilizing leader election (SS-LE) protocol if
ΞP(C0,Γ) reaches a safe configuration with probability 1.

We evaluate a SS-LE protocol P with two metrics:
the expected convergence time and the number of states.
For a configuration C0 ∈ Call(P), let tP,C0 be the expected
number of steps until ΞP(C0,Γ) reaches a safe configura-

tion. The expected convergence time of P is defined as
maxC0∈Call(P) tP,C0 . The number of states of P = (Q,Y,T,O)
is simply |Q |.

3. Self-Stabilizing Leader Election Protocol

In this section, we propose a SS-LE protocol PRL that works
in any directed ring consisting of N agents or less. The
expected convergence time is O(nN), and the number of
states is O(N). Thus, PRL is time-optimal if a given upper
bound N of n is asymptotically tight, i.e., N = O(n).

The pseudocode of PRL is given in Algorithm 1, which
describes how two agents l and r update their states, i.e.,
their variables, when they have an interaction. Here, l and r
represents the initiator and the responder in the interaction,
respectively. That is, l is the left neighbor of r , and r is
the right neighbor of l. We denote the value of the variable
var at agent v ∈ V by v.var. Similarly, we denote the
variable var in state q ∈ Q by q.var. In this algorithm, each
agent v ∈ V maintains an output variable v.leader ∈ {0,1},
according to which it determines its output. Agent v outputs
L when v.leader = 1 and outputs F when v.leader = 0.
We say that v is a leader if v.leader = 1; otherwise v is
called a follower. For each ui ∈ V , we define the distance to
the nearest left leader and the distance to the nearest right
leader of ui as dL(i) = min{ j ≥ 0 | ui−j .leader = 1} and
dR(i) = min{ j ≥ 0 | ui+j .leader = 1}, respectively. When
there is no leader in the ring, we define dL(i) = dR(i) = ∞.

Algorithm PRL consists of two parts: the leader creation
part (Lines 1–5) and the leader elimination part (Lines 6–
16). Since PRL is a self-stabilizing protocol, it has to handle
any initial configuration, where there may be no leader or
multiple leaders. The leader creation part creates a new
leader when there is no leader, while the leader elimination
part decreases the number of leaders to one when there are
two or more leaders.

3.1 Leader Elimination

We are inspired by the algorithm of [15] to design the leader
elimination part (Lines 6–16). Roughly speaking, the strat-
egy of [15] can be described as follows.

• Each agent may have a bullet and/or a shield.
• A leader always fires a bullet: each time a leader ui+1
having no bullet interacts with an agent ui , the leader
ui+1 makes a bullet.

• Bullets move from left to right in the ring: each time
ui having a bullet interacts with ui+1, the bullet moves
from ui to ui+1.

• Conversely, shields move from right to left: each time
ui+1 having a shield interacts with ui , the shield moves
from ui+1 to ui .

• Each time two agents both with bullets (resp. shields)
have an interaction, the left bullet (resp. the right shield)
disappears.

• When a bullet and a shield pass each other, i.e., ui with

1678
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.12 DECEMBER 2021

Algorithm 1: PRL
Variables:
leader ∈ {0, 1}, bullet ∈ {0, 1, 2}, shield ∈ {0, 1}
signal ∈ {0, 1}, distL ∈ {0, 1, . . . , N }

Interaction between initiator l and responder r:

1 l.distL←

{
0 l.leader = 1
l.distL otherwise

2 r .distL←
0 r .leader = 1
min(l.distL + 1, N) r .leader = r .bullet = 0
r .distL otherwise

3 if r .distL = N then
4 r .leader← 1; r .distL← 0
5 r .bullet← 2; r .shield← 1; r .signal← 0

6 if l.leader = l.signal = 1 then
7 l.bullet← 2; l.shield← 1; l.signal← 0

8 if r .leader = r .signal = 1 then
9 r .bullet← 1; r .shield← 0; r .signal← 0

10 if l.bullet > 0 ∧ r .leader = 1 then

11 r .leader←

{
0 l.bullet = 2 ∧ r .shield = 0
1 otherwise

12 l.bullet← 0
13 else if l.bullet > 0 ∧ r .leader = 0 then

14 r .bullet←

{
l.bullet r .bullet = 0
r .bullet r .bullet > 0

15 l.bullet← 0; r .signal← 0

16 l.signal← max(l.signal, r .signal, r .leader)

a bullet and ui+1 with a shield have an interaction, the
bullet disappears.

• When a bullet moves to a leader without a shield, the
leader is killed (i.e., becomes a follower).

The algorithm of [15] assumes an oracle, called an even-
tual leader detector Ω?, which detects and tells each agent
whether a leader exists or not, when there is continuously a
leader or there is continuously no leader. A follower becomes
a leader when it is reported by Ω? that there is no leader in
the population. At this time, the new leader simultaneously
generates both a shield and a bullet. One can easily observe
that by the above strategy together with oracle Ω?, the pop-
ulation eventually reaches a configuration after which there
is always one fixed leader. However, the algorithm of [15]
requiresΩ(n3) steps to elect one leader in the worst case even
if oracle Ω? can immediately report to each agent whether
there is a leader in the population.

We drastically modify the above strategy of [15] for
the leader elimination part of PRL to decrease the number
of leaders to one within O(n2) steps. First, a shield never
moves in our algorithm. Only leaders have shields. A leader
sometimes generates a shield and sometimes breaks a shield.
Second, a leader does not always fire a bullet. Instead, a
leader fires a new bullet only after it detects that the last bullet
it fired reaches a (possibly different) leader. Leaders use
bullet-absence signals for the detection. Roughly speaking,

every leader always sends a bullet-absence signal to its left
neighbor and the signal propagates from right to left. On
the other hand, a bullets move from left to right, and a bullet
always deletes bullet-absence signals when it finds them.
Thus, a leader receives a bullet-absence signal only when its
last fired bullet reaches a (possibly different) leader. Third,
we have two kinds of bullets: live bullets and dummy bullets.
A live bullet kills a leader without a shield. However, a
dummy bullet does not have capability to kill a leader. When
a leader decides to fire a new bullet, the bullet becomes live
or dummywith the probability 1/2 each. When a leader fires
a live bullet, it simultaneously generates a shield (if it does
not have a shield). When a leader fires a dummy bullet, it
breaks the shield if it has a shield. Thus, roughly speaking,
each leader is shielded (i.e., has a shield)with probability 1/2
at each step. Therefore, when a live bullet reaches a leader,
the leader is killed with probability 1/2. This strategy is
well designed: not all leaders kill each other simultaneously
because a leader must be shielded if it fired a live bullet in
the last shot. As a result, the number of leaders eventually
decreases to one.

In what follows, we explain how we implement this
strategy. Each agent v maintains variables v.bullet ∈
{0,1,2}, v.shield ∈ {0,1}, and v.signal ∈ {0,1}. As
their names imply, v.bullet = 0 (resp. v.bullet = 1,
v.bullet = 2) indicates that v is now conveying no bullet
(resp. a dummy bullet, a live bullet), while v.shield = 1
indicates that v is shielded. Unlike the protocol of [15], we
ignore the value of v.shield for any follower v. A variable
signal is used by a leader to detect that the last bullet it
fired already disappeared. Specifically, v.signal = 1 indi-
cates that v is propagating a bullet-absence signal. A leader
always generates a bullet-absence signal in its left neighbor
when it interacts with its left neighbor (Line 16). This sig-
nal propagates from right to left (Line 16), while a bullet
moves from left to right (Lines 14 and 15). A bullet dis-
ables a bullet-absence signal regardless of whether it is live
or dummy, i.e., ui+1.signal is reset to 0 when two agents ui
and ui+1 such that ui .bullet > 0 and ui+1.signal = 1 have
an interaction (Lines 14 and 15). Thus, a bullet-absence
signal propagates to a leader only after the last bullet fired
by the leader disappears (Fig. 1).

When a leader ui receives a bullet-absence signal from
its right neighbor ui+1, ui waits for its next interaction to ex-
tract randomness from the uniformly random scheduler. At

Fig. 1 A bullet and bullet-absence signals. The gray and white circles
represent leaders and followers respectively. The gray (left) arrows represent
bullet-absence signals. Bullet-absence signalsmove from right to left, while
a bullet moves from left to right. A bullet deletes a bullet-absence signal
when it meets the signal. Thus, after a leader fires a bullet b, it will never
receives a bullet-absence signal before b disappears.

YOKOTA et al.: TIME-OPTIMAL SELF-STABILIZING LEADER ELECTION ON RINGS IN POPULATION PROTOCOLS
1679

Fig. 2 A shield and bullets. A black bullet represents a live bullet and
white one represents a dummy bullet. When a leader fires a live bullet, it
simultaneously generates a shield if it does not have a shield. When a leader
fires a dummy bullet, it breaks the shield if it has a shield.

the next interaction, by the definition of the uniformly ran-
dom scheduler, ui meets its right neighbor ui+1 with proba-
bility 1/2 and its left neighbor ui−1 with probability 1/2. In
the former case, ui fires a live bullet and becomes shielded
(Line 7). In the latter case, ui fires a dummy bullet and
becomes unshielded (Lines 9) (Fig. 2). In both cases, the
received signal is deleted (Lines 7 and 9). The fired bullet
moves from left to right each time the agent with the bullet,
say ui , interacts with its right neighbor ui+1 (Lines 14 and
15). However, the bullet disappears without moving to ui+1
if ui+1 already has another bullet at this time. Suppose that
the bullet now reaches a leader. If the bullet is live and
the leader is not shielded at that time, the leader is killed
by the bullet (Line 11). The bullet disappears at this time
regardless of whether the bullet is alive and/or the leader is
shielded (Line 12).

3.2 Leader Creation

The leader creation part is simple (Lines 1–5). Each agent
ui estimates dL(i) and stores the estimated value on variable
ui .distL ∈ {0,1, . . . ,N}. Specifically, at each interaction
(ui,ui+1), agents ui and ui+1 update their distL as follows
(Lines 1 and 2): (i) ui (resp. ui+1) resets its distL to zero if
ui (resp. ui+1) is a leader, and (ii) if ui+1 is not a leader and
does not have a bullet, min(l .distL+ 1,N) is substituted for
ui+1.distL. Thus, if there is no leader in the population,
some agent v eventually increases v.distL to N , and at
that time, the agent decides that there is no leader. Then,
this agent becomes a leader, executing v.leader ← 1 and
v.distL← 0 (Line 4). At the same time, v fires a live bullet,
generates a shield, and disables a bullet-absence signal (Line
5). This live bullet prevents the new leader from being killed
until it disappears. This is because (i) the leader is shielded
when it is created, (ii) it never receives a bullet-absence
signal before this live bullet disappears (Fig. 1), and (iii) the
leader fires a bullet again and becomes unshielded only when
it receives an bullet-absence signal.

As mentioned above, at interaction (ui,ui+1), the dis-
tance propagation does not occur if ui+1 is a leader. This
exception helps us to simplify the analysis of the conver-
gence time, i.e., we can easily get an upper bound on the ex-
pected number of steps before each bullet disappears. Note
that there are two cases that a bullet disappears: (i) when
it reaches a leader, and (ii) when it reaches another bul-
let. The first case includes an interaction (ui,ui+1) where
ui .distL ≥ N − 1 holds and ui+1 becomes a leader by
Line 4. Formally, at an interaction (ui,ui+1) such that

ui .bullet ≥ 1, we say that a bullet located at ui disappears
if ui+1.leader = 1, ui+1.bullet ≥ 1, or ui .distL ≥ N −1.
We have the following lemma thanks to the above exception.

Lemma 1. Every bullet disappears before it moves (from
left to right) N times.

We should note that the leader creation part may create
a leader even when there is one or more leaders, thus this
part may prevent the leader elimination part from decreasing
the number of leaders to one. Fortunately, as we will see
in Sect. 4, within O(nN) steps in expectation, the population
reaches a configuration after which no new leader is created.

4. Correctness and Time Complexity

In this section, we prove that PRL is a SS-LE protocol on
directed rings of any size n(≤ N) and that the expected
convergence time of PRL is O(nN). In Sect. 4.1, we define a
set SRL of configurations and prove that every configuration
in SRL is safe. In Sect. 4.2, we prove that the population
starting from any configuration reaches a configuration in
SRL within O(nN) steps in expectation.

4.1 Safe Configurations

In this paper, we use several functions whose return values
depend on a configuration, such as dL(i) and dR(i). When
a configuration should be specified, we explicitly write a
configuration as the first argument of those functions. For
example, we write dL(C, i) and dR(C, i) to denote dL(i) and
dR(i) in a configuration C, respectively.

In protocol PRL, leaders kill each other by firing live
bullets to decrease the number of leaders to one. However,
it is undesirable that all leaders are killed and the number
of leaders becomes zero. Therefore, a live bullet should not
kill a leader if it is the last leader (i.e., the unique leader) in
the population. We say that a live bullet located at agent ui
is peaceful when the following predicate holds:

Peaceful(i) def
≡

©«
ui−dL (i).shield = 1
∧ ∀ j = 0,1, . . . , dL(i) :

ui−j .signal = 0

ª®®¬ .
A peaceful bullet could kill some leader, but it never kills the
last leader in the population because its nearest left leader
is shielded. A peaceful bullet never becomes non-peaceful;
because letting ui be the agent at which the bullet is lo-
cated, the agents ui−dL (i),ui−dL (i)+1, . . . ,ui will never have a
bullet-absence signal thus ui−dL (i) never becomes unshielded
before the bullet disappears. At the beginning of an execu-
tion, there may be one or more non-peaceful live bullets.
However, every newly-fired live bullet is peaceful because
a leader becomes shielded and disables the bullet-absence
signal when it fires a live bullet. Thus, once the population
reaches a configuration where every live bullet is peaceful
and there is one or more leaders, the number of leaders never

1680
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.12 DECEMBER 2021

becomes zero. Formally, we define the set of such configu-
rations as follows:

CPB =

C ∈ Call

�������
∃ui ∈ V : C(ui).leader = 1

∧ ∀u j ∈ V :
(
C(u j).bullet = 2
⇒ Peaceful(C, j)

) .
The following lemma holds from the above discussion.

Lemma 2. CPB is closed.

Thus, once the population reaches a configuration in CPB,
there is always one or more leaders.

In protocol PRL, a new leader is created when distL
of some agent reaches N . We require this mechanism to
create a new leader when there is no leader. However, it is
undesirable that a new leader is created when there is already
one or more leaders. We say that an agent ui is secure when
the following predicate holds:

Secure(i) def
≡

{
ui .distL = 0 ui .leader = 1
ui .distL ≤ N − dR(i) otherwise.

One may think that no leader is created once the population
reaches a configuration in CPB such that all agents are secure.
Unfortunately, this does not hold. For example, consider the
case n = N = 100 and a configuration C ∈ CPB where

• only two agents u0 and u50 are leaders,
• u0.distL = u50.distL = 0,
• ui .distL = 100 − dR(i) for all i = 1,2, . . . ,49,51,

52, . . . ,100,
• u49 carries a live (and peaceful) bullet in C, i.e.,

u49.bullet = 2, and
• u50 is not shielded, i.e., u50.shield = 0.

Note that the above condition does not contradict the
assumption C ∈ CPB. In this configuration, all agents are
secure. However, starting from this configuration, the pop-
ulation may create a new leader even when another leader
exists. In configuration C, u49.distL = 99. If u49 and u50
have two interactions in a row, then u50 becomes a follower in
the first interaction, and u49.distL + 1 = 100 is substituted
for u50.distL and u50 becomes a leader again in the second
interaction (even though u0 is a leader during this period)
(Fig. 3).

We introduce the definition of modest bullets to clarify

Fig. 3 The example of an execution where a new leader is created from a
configuration in CPB in which all agents are secure. A gray circle represents
a leader, while a white circle represents a follower. An integer attached to
an agent represents the value of distL in the agent. At the first interaction,
the unshielded leader u50 is killed and becomes a follower. Note that this
interaction makes u49 insecure. At the second interaction, u49.distL+1 =
100 is substituted for u50.distL, which makes u50 a leader again.

the condition by which a new leader is no longer created.
A live bullet located at ui is said to be modest when the
following predicate holds:

Modest(i) def
≡ Peaceful(i) ∧

(
∀ j = 0,1, . . . , dL(i) :
ui−j .distL ≤ dL(i − j)

)
.

As we will see soon, a new leader is no longer created in
an execution starting from a configuration in CPB where all
agents are secure and all live bullets are modest. Note that
in the above example, a live bullet located at u49 in C is not
modest. We define a set CNI of configurations as follows:

CNI =

C ∈ CPB

�������
∀ui ∈ V : Secure(C, i)

∧

(
C(ui).bullet = 2
⇒ Modest(C, i)

) .
Lemma 3. A modest bullet never becomes non-modest.

Proof. LetC andC ′ be any configurations such thatC → C ′

and b be a modest bullet in C. Assume for contradiction
that b does not disappear and b becomes non-modest in
C → C ′. Let ui and ui′ be the agents at which b is located
in C and C ′, respectively (i′ ∈ {i, i + 1}). Since a peaceful
bullet never becomes non-peaceful, b is still peaceful in C ′.
By definition of a modest bullet, in C, agent ui−j satisfies
ui−j .distL ≤ dL(i − j) for all j = 0,1, . . . , dL(C, i). Thus,
none of ui,ui−1, . . . ,ui−dL (C ,i)+1 becomes a leader in C →
C ′, Moreover, ui−dL (C ,i) is shielded in C and thus never
becomes a follower in C → C ′. This yields that the nearest
left leader of b does not change inC → C ′, i.e., i−dL(C, i) =
i′ − dL(C ′, i′). Therefore, for all j = 0,1, . . . , dL(C, i), ui−j
still satisfies ui−j .distL ≤ dL(i − j) in C ′. Since b is not
modest in C ′, b must move ui to ui+1 in C → C ′, and
ui+1.distL > dL(C ′, i + 1) must hold in C ′. However, in
C → C ′, ui+1.distL is updated to ui .distL+1 ≤ dL(C, i)+
1 = dL(C ′, i + 1), a contradiction. �

Lemma 4. A newly-fired live bullet is modest.

Proof. Assume that a leader ui fires a live bullet b at interac-
tion (ui,ui+1) inC → C ′. Bullet b immediately disappears by
Lines 12 and 15 if ui+1 is a leader or has a bullet in C. Other-
wise, b moves to ui+1. Then, ui .shield = 1, ui .distL = 0,
ui+1.distL = 1, and ui .signal = ui+1.signal = 0 must
hold in C ′, which yields that b is modest in C ′. �

Lemma 5. Let C be any configuration where all live bullets
are modest and C ′ any configuration such that C → C ′.
Then, a secure agent ui becomes insecure in C → C ′ only if
ui interacts with ui−1 in C → C ′ and ui−1 is insecure in C.

Proof. Assume that ui becomes insecure in C → C ′. First,
consider the case that no leader becomes a follower in
C → C ′. Then, ui must change the value of ui .distL to
become insecure. If ui interacts with ui+1, ui .distL does
not change or becomes zero (Line 1). Thus, ui must inter-
act with ui−1 and increase ui .distL to a value greater than

YOKOTA et al.: TIME-OPTIMAL SELF-STABILIZING LEADER ELECTION ON RINGS IN POPULATION PROTOCOLS
1681

N −dR(C ′, i) ≥ N −dR(C, i−1)+1, hence ui−1 must be inse-
cure in C. Next, consider the case that a leader u j becomes a
follower in C → C ′. If u j , ui+dR (C ,i), dR(C, i) = dR(C ′, i)
and C(ui).distL = C ′(ui).distL hold, which violates the
assumption that ui becomes insecure. Thus, u j = ui+dR (C ,i)

holds. However, this means that a modest bullet is located at
ui,ui+1, . . . ,u j−1 in C. Thus, by definition of a modest bul-
let, C ′(ui).distL ≤ C(ui).distL ≤ dL(C, i) ≤ N −dR(C ′, i)
holds. Hence, ui is still secure in C ′, which violates the as-
sumption. To conclude, ui must interact with ui−1 inC → C ′

and ui−1 must be insecure in C. �

Lemma 6. CNI is closed.

Proof. Immediately follows fromLemmas 2, 3, 4, and 5. �

Lemma 7. No new leader is created in any execution start-
ing from any configuration in CNI.

Proof. Since CNI is closed by Lemma 6, every configuration
that appears in an execution starting from a configuration in
CNI is also in CNI. All agents are secure in a configuration
in CNI. Thus, ui .distL ≤ N − 1 holds for all ui ∈ V and
ui .distL = N − 1 holds only if ui+1 is a leader. Therefore,
in a configuration in CNI, no agent increases its distL to N ,
thus no new leader is created. �

Finally, we define SRL as the set of all configurations
included in CNI where there is exactly one leader.

Lemma 8. SRL is closed and includes only safe configura-
tions.

Proof. LetC be any configuration inSRL andC ′ any config-
uration such that C → C ′. Since CNI is closed by Lemma 6
and exactly one agent is a leader in C, it suffices to show that
no one changes its output (i.e., the value of variable leader)
in C → C ′. Since C ∈ CPB, the unique leader in C is never
killed in C → C ′. By Lemma 7, no other agent becomes
a leader in C → C ′. Thus, no agent changes its output in
C → C ′. �

4.2 Convergence

In this subsection, we prove that an execution of PRL starting
from any configuration in Call(PRL) reaches a configuration
in SRL within O(nN) steps in expectation. Formally, for any
C ∈ Call(PRL) andS ⊆ Call(PRL), we defineECT(C,S) as the
expected number of steps that execution ΞPRL (C,Γ) requires
to reach a configuration in S. The goal of this subsection
is to prove maxC∈Call(PRL) ECT(C,SRL) = O(nN). We give
this upper bound by showing maxC∈Call(PRL) ECT(C,CNI) =
O(nN) and maxC∈CNI ECT(C,SRL) = O(n2) in Lemmas 11
and 13, respectively.

In this subsection, we denote interaction (ui,ui+1) by
ei . In addition, for any two sequences of interactions s =
ek0, ek1, . . . , ekh and s′ = ek′0, ek′1, . . . , ek′j , we define s · s′ =
ek0, ek1, . . . , ekh , ek′0, ek′1, . . . , ek′j . That is, we use “·” for the

concatenation operator. For any sequence s of interactions
and integer i ≥ 1, we define si by induction: s1 = s and
si = s · si−1. For any i, j ∈ {0,1, . . . ,n − 1}, we define
seqR(i, j) = ei, ei+1, . . . , ej and seqL(i, j) = ei, ei−1, . . . , ej .

Definition 2. Let γ = ek1, ek2, . . . , ekh be a sequence of
interactions. We say that γ occurs within l steps when
ek1, ek2, . . . , ekh occurs in this order (not necessarily in a
row) within l steps. Formally, the event “γ occurs within l
steps from a time step t” is defined as the following event:
Γti = eki holds for all i = 1,2, . . . , h for some sequence of
integers t ≤ t1 < t2 < · · · < th ≤ t + l − 1. We say that from
step t, γ completes at step t + l if γ occurs within l steps but
does not occur within l − 1 steps. When t is clear from the
context, we write “γ occurs within l steps” and “γ completes
at step l”, for simplicity.

Lemma 9. From any time step, a sequence γ =

ek1, ek2, . . . , ekh with length h occurs within nh steps in ex-
pectation.

Proof. For any interaction ei , at each step, ei occurs with
probability 1/n. Thus, ei occurs within n steps in expecta-
tion. Therefore, γ occurs within nh steps in expectation. �

Lemma 10. LetC be a configuration where no leader exists.
In execution Ξ = ΞPRL (C,Γ), a leader is created within
O(nN) steps in expectation.

Proof. Let γ = (seqR(0,n − 1)) dN/ne+1. Since the length
of γ is at most N + 2n, γ occurs within 3nN or fewer steps
in expectation by Lemma 9. Thus, it suffices to show that
a leader is created before γ completes in Ξ. Assume for
contradiction that no leader is created before γ completes in
Ξ.

First, consider the case that there is at least one bullet
in C. Let B be the set of bullets that exist in C. Before
γ completes, all bullets in B disappear by Lemma 1, while
a bullet disappears only if it reaches a leader or another
bullet as mentioned in Sect. 3.2. Thus, at least one bullet in
B disappears by reaching a bullet not included in B, since
there is no leader during the period by the above assumption.
However, no bullet b < B exists during the period because a
follower never creates a new bullet. This is a contradiction.

Second, consider the case that there is no bullet in C.
Let ui be any agent with the minimum distL in C. Each
time seqR(i, i − 1) completes, ui .distL increases at least by
n unless a new leader is created. Since (seqR(i, i − 1)) dN/ne
completes earlier than γ = (seqR(0,n − 1)) dN/ne+1, a new
leader is created before γ completes, a contradiction. �

Lemma 11. maxC∈Call(PRL) ECT(C,CNI) = O(nN).

Proof. LetC0 be any configuration in Call(PRL) and consider
Ξ = ΞPRL (C0,Γ). All bullets that exist inC0 disappear before
γ = (seqR(0,n− 1)) dN/ne+1 completes by Lemma 1, while γ
occurswithinO(nN) steps in expectation byLemma 9. Thus,
by Lemmas 3, 4 and 10, withinO(nN) steps in expectation, Ξ
reaches a configuration C ′ where all live bullets are modest,

1682
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.12 DECEMBER 2021

there is at least one leader, and every leader ui satisfies
ui .distL = 0.

Let Ξ′ be the suffix of Ξ after Ξ reaches C ′. In the
rest of this proof, we show that Ξ′ reaches a configuration in
CNI within O(n2) steps. Since CPB is closed (Lemma 2) and
C ′ ∈ CPB, there is always at least one leader in Ξ′. Thus,
by Lemmas 3 and 4, it suffices to show that Ξ′ reaches a
configuration where all agents are secure within O(n2) steps
in expectation.

Here, we have the following two claims.

Claim 1. In Ξ′, once an agent ui becomes a leader, ui is
always secure thereafter (even after it becomes a follower).

Proof. Suppose that ui is a leader in some point ofΞ′. At this
time, ui .distL = 0 (Lines 1 and 2). As long as ui is a leader,
ui is secure. Agent ui becomes a follower only when a live
bullet reaches ui (Line 11). In Ξ′, all live bullets are modest.
This yields that, when ui becomes a follower, all agents
ui,ui−1, . . . ,ui−dL (i) are secure. Thus, letting u j = ui−dL (i),
agent ui is secure as long as u j is secure. Similarly, u j

is secure as long as u j is a leader. Even if u j becomes a
follower, there is a leader uk such that u j is secure as long
as uk is a leader, and so on. Therefore, ui never becomes
insecure. �

Claim 2. In Ξ′, an insecure agent ui becomes secure if it
interacts with ui−1 when ui−1 is secure.

Proof. Let C → C ′ be any transition (ui−1,ui) that appears
in Ξ such that ui−1 is secure in C. If ui−1 is a leader in C
(thus in C ′), C ′(ui).distL ≤ 1 ≤ N − dR(C ′, i). Otherwise,
dR(C ′, i) = dR(C ′, i − 1)+ 1 must hold. By Lemma 5, ui−1 is
still secure in C ′, hence C ′(ui).distL ≤ C ′(ui−1).distL +
1 ≤ N − dR(C ′, i − 1)+ 1 = N − dR(C ′, i). Thus, ui is secure
in C ′ in both cases. �

Let ui be a leader in C ′. By Lemma 5 and Claims 1 and
2, all agents are secure when seqR(i, i − 2) completes. This
requires O(n2) expected steps by Lemma 9. �

Lemma 12. Let C0 be a configuration in CNI where there
are at least two leaders. Let ui , u j , and uk be the leaders in
C0 such that i = j−dL(C0, j) and j = k−dL(C0, k), i.e., ui is
the nearest left leader of u j and u j is the nearest left leader
of uk in C0. (ui = uk may hold.) Let d1 = dL(C0, j) and
d2 = dL(C0, k). Then, in an execution Ξ = ΞPRL (C0,Γ) =
C0,C1, . . . , the event that one of the three leaders becomes a
follower occurs within O(n(d1 + d2)) steps in expectation.

Proof. Let Tdel be the minimum integer t such that ui , u j ,
or uk is a follower in Ct . Our goal is to prove E[Tdel] =
O(n(d1 + d2)). Let V ′ = {ui,ui+1, . . . ,uk}. Consider the
protocol, denoted by P′RL, that can be obtained by removing
Line 11 from PRL. No leader becomes a follower in any
execution of P′RL. Let Ξ′ = ΞP′RL

(C0,Γ) = D0,D1, Of
course, Ξ and Ξ′ can be different. However, each agent in
V ′ always has the same state both in Ξ and Ξ′ before ui , u j ,
or uk becomes a follower in Ξ. Formally, Ct (us) = Dt (us)

holds for all us ∈ V ′ and all t = 0,1, . . . ,Tdel − 1. Therefore,
we have Tdel ≤ T ′del, where T ′del is the minimum integer t
such that a live bullet reaches u j in Dt−1 → Dt and u j is
unshielded at this interaction, i.e., Dt−1(u j).shield = 0;
because if u j is still a leader in Ct , ui or uk must become
a follower in C0,C1, . . . ,Ct−1. Thus, it suffices to show that
T ′del = O(n(d1 + d2)).

Again, no leader becomes a follower in Ξ′. In addition,
no leader is created in Ξ′ by Lemma 7. Leader u j fires a
bullet at least once in Ξ′ before or when γ = seqR(j, k −
1) · seqL(k − 1, j) · ej completes. Thereafter, at any step,
u j is shielded with probability at least 1/2 for the following
reasons.

• Each time u j fires a bullet, it fires a live bullet and be-
comes shielded with probability 1/2, and fires a dummy
bullet and becomes unshielded with probability 1/2.

• Live bullets fired by u j reach uk not later than dummy
bullets fired by u j because live bullets are initially lo-
cated at u j+1 when they are fired by u j , while dummy
bullets are initially located at u j when they are fired by
u j .

After u j fires a bullet for the first time, ui fires a bullet at
least once and the bullet reaches vj in Ξ′ before or when
γ′ = seqR(i, j − 1) · seqL(j − 1, i) · seqR(i, j − 1) completes.
This bullet is a live one with probability 1/2, while u j is
unshielded at this time with probability at least 1/2, as men-
tioned above. Thus, each time γ · γ′ completes, the event
that a live bullet reaches u j at the time u j is shielded oc-
curs with probability at least 1/4. Since γ · γ′ occurs within
O(n(d1 + d2)) steps in expectation by Lemma 9, we can
conclude that E[T ′del] = O(n(d1 + s2)). �

Lemma 13. maxC∈CNI ECT(C,SRL) = O(n2).

Proof. Let C0 be any configuration in CNI and let Ξ =
ΞPRL (C0,Γ). By Lemmas 6 and 7, the number of leaders
is monotonically non-increasing and never becomes zero in
Ξ. For any real number x, define Lx as the set of configu-
rations where the number of leaders is at most x. First, we
prove the following claim.

Claim 3. Let α = 12/11. For any sufficiently large inte-
ger k = O(1), if C0 ∈ (Lαk+1 \ Lαk) ∩ CNI, execution Ξ
reaches a configuration in Lαk ∩ CNI within O(n2/αk) steps
in expectation.

Proof. Let l0, l1, . . . , ls−1 = uπ0,uπ1, . . . ,uπs−1 be the leaders
in C, where π0 < π1 < · · · < πs−1. We say that lj and
lj+1 mod s are neighboring leaders for each j = 0,1, . . . , s− 1.
Since there are s leaders in C0, there are at least 3s/4 leaders
li = uπi such that dL(πi+1 mod s) ≤ 4n/s. Thus, there are at
least n/2 leaders lj = uπj such that dL(πj+1 mod s) ≤ 4n/s
and dL(πj+2 mod s) ≤ 4n/s in C0. Let SL be the set of all
such leaders. For each lj ∈ SL , by Lemma 12 and Markov
inequality, lj , lj+1 mod s , or lj+2 mod s becomes a follower
within O(n2/s) steps with probability 1/2. Generally, if
X0,X1, . . . ,Xi are (possibly non-independent) events each of

YOKOTA et al.: TIME-OPTIMAL SELF-STABILIZING LEADER ELECTION ON RINGS IN POPULATION PROTOCOLS
1683

which occurs with probability at least 1/2, at least half of the
events occur with probability at least 1/2. Thus, with proba-
bility 1/2, for at least half of the leaders lj in SL , the event that
lj , lj+1 mod s , or lj+2 mod s becomes a follower occurs within
O(n2/s) steps. Thus, at least |SL | · (1/2) · (1/3) = s/12 lead-
ers become followers within O(n2/s) steps with probability
at least 1/2 = Ω(1). Repeating this analysis, we observe
that Ξ reaches a configuration inLαk ∩CNI within O(n2/αk)

steps in expectation. �

By Claim 3, for sufficiently large integer k = O(1), the
number of leaders becomes a constant (i.e., O(αk) = O(1))
within

∑ dlogα ne

i=k
O(n2/αi) = O(n2) steps in expectation in Ξ.

Thereafter, by Lemma 12, the number of leaders decreases
to one within O(n2) steps in expectation. �

Lemmas 8, 11, and 13 give the following main theorem.

Theorem 1. Given an integer N , PRL is a self-stabilizing
leader election protocol for any directed rings of any size
n ≤ N . The convergence time is O(nN). The number of
states is O(N).

5. Conclusion

We presented a self-stabilizing leader election protocol for
directed rings in population protocols, given an upper bound
N of the population size n. Specifically, an execution of
the protocol starting from any initial configuration elects a
unique leader within O(nN) steps in expectation, by using
O(N) states per agent. If a given knowledge N is asymptoti-
cally tight, i.e., N = O(n), this protocol is time-optimal.

References

[1] D.Yokota, Y. Sudo, andT.Masuzawa, “Time-optimal self-stabilizing
leader election on rings in population protocols,” Proc. 22nd Interna-
tional Symposium on Stabilizing, Safety, and Security of Distributed
Systems, pp.301–316, 2020.

[2] D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta,
“Computation in networks of passively mobile finite-state sensors,”
Distrib. Comput., vol.18, no.4, pp.235–253, 2006.

[3] D. Angluin, J. Aspnes, M.J. Fischer, and H. Jiang, “Self-stabilizing
population protocols,” ACM Trans. Auton. Adapt. Syst., vol.3, no.4,
pp.1–28, 2008.

[4] J. Beauquier, P. Blanchard, and J. Burman, “Self-stabilizing leader
election in population protocols over arbitrary communication
graphs,” International Conference on Principles of Distributed Sys-
tems, pp.38–52, 2013.

[5] D. Canepa and M.G. Potop-Butucaru, “Stabilizing leader election in
population protocols,” http://hal.inria.fr/inria-00166632, 2007.

[6] H.P. Chen and H.L. Chen, “Self-stabilizing leader election,” Proc.
38th ACM Symposium on Principles of Distributed Computing,
pp.53–59, 2019.

[7] G. Cordasco and L. Gargano, “Space-optimal proportion consensus
with population protocols,” International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems, pp.384–398, 2017.

[8] G.B. Mertzios, S.E. Nikoletseas, C.L. Raptopoulos, and P.G. Spi-
rakis, “Determining majority in networks with local interactions and
very small local memory,” International Colloquium on Automata,
Languages, and Programming, pp.871–882, 2014.

[9] Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa, “Loosely-
stabilizing leader election on arbitrary graphs in population proto-
cols,” International Conference on Principles of Distributed Systems,
pp.339–354, 2014.

[10] Y. Sudo, T. Masuzawa, A.K. Datta, and L.L. Larmore, “The same
speed timer in population protocols,” 36th IEEE International Con-
ference on Distributed Computing Systems, pp.252–261, 2016.

[11] Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa, “Loosely
stabilizing leader election on arbitrary graphs in population protocols
without identifiers or random numbers,” IEICE Trans. Inf. & Syst.,
vol.E103-D, no.3, pp.489–499, March 2020.

[12] Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, A.K. Datta,
and L.L. Larmore, “Loosely-stabilizing leader election for arbitrary
graphs in population protocol model,” IEEE Trans. Parallel Distrib.
Syst., vol.30, no.6, pp.1359–1373, 2018.

[13] E. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol.17, no.11, pp.643–644, 1974.

[14] S. Cai, T. Izumi, and K. Wada, “How to prove impossibility under
global fairness: On space complexity of self-stabilizing leader elec-
tion on a population protocol model,” Theory Comput. Syst., vol.50,
no.3, pp.433–445, 2012.

[15] M.J. Fischer and H. Jiang, “Self-stabilizing leader election in net-
works of finite-state anonymous agents,” International Conference
on Principles of Distributed Systems, pp.395–409, 2006.

[16] T. Izumi, “On space and time complexity of loosely-stabilizing leader
election,” International Colloquium on Structural Information and
Communication Complexity, pp.299–312, 2015.

[17] Y. Sudo, R. Eguchi, T. Izumi, and T. Masuzawa, “Time-optimal
loosely-stabilizing leader election in population protocols,” arXiv
preprint arXiv:2005.09944, 2020.

[18] Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, H. Kakugawa, and
T. Masuzawa, “Loosely-stabilizing leader election in a population
protocol model,” Theor. Comput. Sci., vol.444, pp.100–112, 2012.

[19] Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, A.K. Datta, and
L.L. Larmore, “Loosely-stabilizing leader electionwith polylogarith-
mic convergence time,” Theor. Comput. Sci., vol.806, pp.617–631,
2020.

[20] Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa, “The
power of global knowledge on self-stabilizing population protocols,”
International Colloquium on Structural Information and Communi-
cation Complexity, pp.237–254, 2020.

[21] D. Angluin, J. Aspnes, and D. Eisenstat, “Fast computation by pop-
ulation protocols with a leader,” Distrib. Comput., vol.21, no.3,
pp.183–199, 2008.

[22] J. Burman, D. Doty, T. Nowak, E.E. Severson, and C. Xu, “Effi-
cient self-stabilizing leader election in population protocols,” arXiv
preprint arXiv:1907.06068, 2019.

[23] H.P. Chen and H.L. Chen, “Self-stabilizing leader election in reg-
ular graphs,” Proc. 39th Symposium on Principles of Distributed
Computing, pp.210–217, 2020.

Daisuke Yokota received the B.E. degree
in computer science from Osaka University in
2020. He is now a master’s student at the Grad-
uate School of Information Science and Tech-
nology, Osaka University. His research interests
include distributed algorithms.

http://dx.doi.org/10.1007/978-3-030-64348-5_24
http://dx.doi.org/10.1007/978-3-030-64348-5_24
http://dx.doi.org/10.1007/978-3-030-64348-5_24
http://dx.doi.org/10.1007/978-3-030-64348-5_24
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1145/1452001.1452003
http://dx.doi.org/10.1145/1452001.1452003
http://dx.doi.org/10.1145/1452001.1452003
http://dx.doi.org/10.1007/978-3-319-03850-6_4
http://dx.doi.org/10.1007/978-3-319-03850-6_4
http://dx.doi.org/10.1007/978-3-319-03850-6_4
http://dx.doi.org/10.1007/978-3-319-03850-6_4
http://hal.inria.fr/inria-00166632
http://hal.inria.fr/inria-00166632
http://dx.doi.org/10.1145/3293611.3331616
http://dx.doi.org/10.1145/3293611.3331616
http://dx.doi.org/10.1145/3293611.3331616
http://dx.doi.org/10.1007/978-3-319-69084-1_28
http://dx.doi.org/10.1007/978-3-319-69084-1_28
http://dx.doi.org/10.1007/978-3-319-69084-1_28
http://dx.doi.org/10.1007/978-3-662-43948-7_72
http://dx.doi.org/10.1007/978-3-662-43948-7_72
http://dx.doi.org/10.1007/978-3-662-43948-7_72
http://dx.doi.org/10.1007/978-3-662-43948-7_72
http://dx.doi.org/10.1007/978-3-319-14472-6_23
http://dx.doi.org/10.1007/978-3-319-14472-6_23
http://dx.doi.org/10.1007/978-3-319-14472-6_23
http://dx.doi.org/10.1007/978-3-319-14472-6_23
http://dx.doi.org/10.1109/icdcs.2016.82
http://dx.doi.org/10.1109/icdcs.2016.82
http://dx.doi.org/10.1109/icdcs.2016.82
http://dx.doi.org/10.1587/transinf.2019fcp0003
http://dx.doi.org/10.1587/transinf.2019fcp0003
http://dx.doi.org/10.1587/transinf.2019fcp0003
http://dx.doi.org/10.1587/transinf.2019fcp0003
http://dx.doi.org/10.1109/tpds.2018.2881125
http://dx.doi.org/10.1109/tpds.2018.2881125
http://dx.doi.org/10.1109/tpds.2018.2881125
http://dx.doi.org/10.1109/tpds.2018.2881125
http://dx.doi.org/10.1145/361179.361202
http://dx.doi.org/10.1145/361179.361202
http://dx.doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/s00224-011-9313-z
http://dx.doi.org/10.1007/11945529_28
http://dx.doi.org/10.1007/11945529_28
http://dx.doi.org/10.1007/11945529_28
http://dx.doi.org/10.1007/978-3-319-25258-2_21
http://dx.doi.org/10.1007/978-3-319-25258-2_21
http://dx.doi.org/10.1007/978-3-319-25258-2_21
https://arxiv.org/abs/2005.09944
https://arxiv.org/abs/2005.09944
https://arxiv.org/abs/2005.09944
http://dx.doi.org/10.1016/j.tcs.2012.01.007
http://dx.doi.org/10.1016/j.tcs.2012.01.007
http://dx.doi.org/10.1016/j.tcs.2012.01.007
http://dx.doi.org/10.1016/j.tcs.2019.09.034
http://dx.doi.org/10.1016/j.tcs.2019.09.034
http://dx.doi.org/10.1016/j.tcs.2019.09.034
http://dx.doi.org/10.1016/j.tcs.2019.09.034
http://dx.doi.org/10.1007/978-3-030-54921-3_14
http://dx.doi.org/10.1007/978-3-030-54921-3_14
http://dx.doi.org/10.1007/978-3-030-54921-3_14
http://dx.doi.org/10.1007/978-3-030-54921-3_14
http://dx.doi.org/10.1007/s00446-008-0067-z
http://dx.doi.org/10.1007/s00446-008-0067-z
http://dx.doi.org/10.1007/s00446-008-0067-z
https://arxiv.org/abs/1907.06068
https://arxiv.org/abs/1907.06068
https://arxiv.org/abs/1907.06068
http://dx.doi.org/10.1145/3382734.3405733
http://dx.doi.org/10.1145/3382734.3405733
http://dx.doi.org/10.1145/3382734.3405733

1684
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.12 DECEMBER 2021

Yuichi Sudo received the B.E., M.E., and
Ph.D. degrees in information science and tech-
nology from Osaka University in 2009, 2011,
and 2015, respectively. He worked at NTT Cor-
poration andwas engaged in research on network
security during 2011–2017. He was an assis-
tant professor with the Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity, during 2017–2021. He has been an asso-
ciate professor at Faculty of Computer and Infor-
mation Sciences, Hosei University, since April

2021. His research interests include distributed algorithms and graph the-
ory. He is a member of IEEE and EATCS.

Toshimitsu Masuzawa received the B.E.,
M.E. and D.E. degrees in computer science from
Osaka University in 1982, 1984 and 1987. He
had worked at Osaka University during 1987–
1994, and was an associate professor of Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology (NAIST) during
1994–2000. He is now a professor of Gradu-
ate School of Information Science and Technol-
ogy, Osaka University. He was also a visiting
associate professor of Department of Computer

Science, Cornell University between 1993–1994. His research interests
include distributed algorithms, parallel algorithms and graph theory. He is
a member of ACM, IEEE, IEICE and IPSJ.

