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Scene Adaptive Exposure Time Control for Imaging and Apparent
Motion Sensor
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SUMMARY This paper reports the evolution and application potential
of image sensors with high-speed brightness gradient sensors. We propose
an adaptive exposure time control method using the apparent motion esti-
mated by this sensor, and evaluate results for the change in illuminance and
global / local motion.
key words: image sensor, exposure time control, apparent motion sensor,
moving object

1. Introduction

CMOS image sensors have been developed for surveillance
and industrial equipment cameras. In these applications, it
is important to capture images with clear details for image
recognition and object tracking. Since the exposure param-
eters (including exposure time, which is examined in this
paper) are not appropriate, overexposure and underexposure
may occur when the illuminance varies with artificial or nat-
ural light. Therefore, it is necessary to capture an image with
the exposure time that is adjusted to the illuminance level of
the scene. At the same time, motion blur must be suppressed
when the camera or subject is moving.

Many auto exposure algorithms adopt the average
brightness value of the scene to control the exposure time.
The method based on the brightness value in [1] adjust the
exposure time for the important object such as a moving ob-
ject. The weight of the segmented moving object is higher
through object tracking, and control the proper exposure
time for moving objects. However, this approach probably
cause motion blur When the moving subject is dark and ex-
posure time is set long.

Imaging with a short exposure time can suppress mo-
tion blur, and the exposure time can be estimated by using
motion estimation. High frame rate imaging is effective for
improving the accuracy of motion estimation [2], [3]. The
correlation between frames at high frame rate is so high that
the computational complexity of motion estimation is re-
duced. However, many frames are needed to output from the
image sensor to a signal processing circuit outside the sen-
sor, and imaging at high frame rate increases the data rate.
Several methods [4]–[7] mount a simple processing circuit
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for estimating motion on the sensor. Since it is unnecessary
to output many frames from the sensor, motion estimation
can be performed without excessively increasing the data
rate and motion estimation can be performed in real time.
Nose et al. [4] estimate the motion by extracting the moving
subject by the background subtraction method, and obtain-
ing the displacement of the center of gravity of the moving
subject between frames. They assume that the background
is fixed and therefore this method is not effective when the
camera or multiple subjects move.

In order to calculate motion vector for each pixel with
high accuracy, we developed an image sensor that has two
types of pixels, one type for acquiring images and the other
type for estimating motion [7]. It can estimate apparent mo-
tion while acquiring an image. Motion estimation uses a
photodiode voltage that outputs non-destructively over very
short time intervals like high frame rate imaging. After the
motion estimation is complete, a sufficiently accumulated
voltage is read out so that it is possible to acquire an image
with a high signal-to-noise ratio (SNR).

In this paper, we propose a method for controlling ex-
posure time for this image sensor by apparent motion [8].
Whether or not there is a moving subject is determined
based on the result of apparent motion. In static scenes there
is no moving object, exposure time is adjusted according to
the mean brightness value. In dynamic scenes, it is adjusted
the longest exposure time that makes moving objects appear
motionless using apparent motion.

2. Image Sensor with Apparent Motion Estimation

The image sensor [7] can estimate apparent motion while
acquiring an image. The architecture of the image sensor
and timing of reading start are shown in Figs. 1 and 2. The
image sensor has two types of pixels, one type for acquiring
images and the other type for estimating motion. The pix-
els for motion estimation are arranged in 2×2 cells. In cell
numbers 1, 2, and 3, the voltage of the photodiode is read
out non-destructively over very short time intervals, and ap-
parent motion is estimated by the temporal variation in the
voltage. After the motion estimation, the voltage of a pho-
todiode with sufficient stored charge is read out in the pixels
and cell number 4. Each readout timing is controlled by a
pixel / cell selector. Because the pixels and the cells have
photodiodes of different sizes, light sensitivity correction is
performed outside the sensor.

Motion estimation based on the gradient method was
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Fig. 1 Architecture of the image sensor with apparent motion estimation
[8]. The sensor consists of pixels and 2×2 cells. White cells and pixels are
used for imaging, and black cells are used for motion estimation.

Fig. 2 Timing of reading start. The cell can be read out multiple times
over short time interval T during pixel exposure period τ.

performed using temporal variation of the voltage in the 2×2
cells. Spatial and temporal gradients were calculated in the
analog domain, and motion vectors were estimated on the
FPGA (Field Programmable Gate Array) using these gra-
dients. We show how to calculate the spatial and temporal
gradients in Fig. 3. A frame that is read out at intervals of
T seconds in cells is called a sub-frame. The time varia-
tion ∆VPDn(k) of the photodiode (negative) voltage VPDn(k)
in cell n at sub-frame k is

∆VPDn(k) = VPDn(k − 1) − VPDn(k) (1)

and corresponds to the predicted value of illuminance. The
spatiotemporal gradient Ix(k), Iy(k), and It(k) are:

Ix(k) = ∆VPD2(k) − ∆VPD1(k), (2)
Iy(k) = ∆VPD3(k) − ∆VPD1(k), (3)
It(k) = ∆VPD1(k + 1) − ∆VPD1(k). (4)

Assuming that the speed of the motion between sub-frames
is constant and that the motion vector is sufficiently small,
the constraint equation [9] for the gradient method is:

Ix(k)u(k) + Iy(k)v(k) = −It(k) (5)

where u and v are horizontal and vertical velocity vectors

Fig. 3 Spatial and temporal gradients on cells. Ix(k) and Iy(k) are the
spatial gradients and It(k) is the temporal gradient.

Fig. 4 Local region Wi for motion estimation based on Lucas-Kanade
method [9]. Wi which is centered on the pixel of interest i includes the
neighborhood of six cells.

representing the number of pixels traversed between sub-
frames. The vectors are then uniquely estimated using the
Lucas–Kanade method [9], which assumes the neighbor-
hood of the pixel of interest also has the same motion vec-
tors. Figure 4 shows the local region Wi centered on the
pixel of interest i. The motion vectors ui and vi at pixel posi-
tion i are estimated by the least-squares method by the spa-
tial and temporal gradient as[
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vi

]
= −
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(6)

To reduce noise, let A(t) be the average motion vector of the
sub-frame sequence in frame t and it is given as

A(t) =
1
M

1
N

M∑
k=1

N∑
i=1

[
ui(k)
vi(k)

]
(7)

where N is the number of the pixel of interest, and M is the
total number of sub-frames in a single frame.

3. Adaptive Exposure Time Control

We controlled exposure time for illuminance and motion of
the scene using the apparent motion estimated by the sen-
sor. First, static and dynamic scenes were differentiated by
apparent motion. Next, in static scenes, the exposure time
was adjusted according to the mean brightness value, while
in dynamic scenes, the exposure time was adjusted accord-
ing to the apparent motion.
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In a static scene with ‖A(t − 1)‖ < α (α threshold of
magnitude), the camera and subject are static, and the illu-
minance changes between frames. Exposure time is con-
trolled based on the mean brightness value in the method
[10]. Let τ(t) be the exposure time at frame t. The mean
brightness value at frame t is pt, and the exposure time τ is
adjusted according to the previous frame:

τ(t) = τ(t − 1) ×
pm

pt−1
(8)

where pm represents the mid-tone value. If the illuminance
changes between frames, an exposure time adjusted accord-
ing to the previous frame is not appropriate. The absolute
error D is given as

Dt = |pm − pt | (9)

To compensate the image with the adjusted exposure time,
the previous and current frames are fused with the weight
given in Eq. (11). D is used as the weight for the other
frame so that the frame with the smaller error has the higher
weight. Yt is the output image.

Yt =

{
Xτ

t i f θ1 < pt < θ2
Xcomp

t otherwise (10)

Xcomp
t =

DtXτ
t−1 + Dt−1Xτ

t

Dt−1 + Dt
(11)

where θ1 and θ2 are the thresholds of the appropriate mean
brightness value (θ1 < pm < θ2), and Xτ

t is the image cap-
tured with the adjusted exposure time τ.

In a dynamic scene with ‖A(t − 1)‖ = α, we assume
that the camera or subject is moving. The exposure time is
adjusted to suppress motion blur by using the magnitude:

τ(t) =
T

‖A(t − 1)‖
(12)

4. Evaluation by Simulation

We simulated adjusting the exposure time for both static
and dynamic scenes. The cell readout interval T was set
to 1/1600 sec, and M, which is the total number of sub-
frames in a single frame, was set to 8. The exposure time is
within 1/1600–1/200 sec with an interval of 1/1600 sec. To
simulate the motion estimation, we reproduced 8-bit inter-
mediate images during exposure period and added random
noise with a standard deviation 3 to these images. In the
simulation, we assumed that noise was constant regardless
of brightness and shot noise was not considered. The in-
termediate images were 512×512 pixels, and one pixel of
the intermediate image corresponded to one cell in Fig. 1.
The motion estimation was calculated using the brightness
gradients of the intermediate images. The acquired image
were the intermediate image scaled down to 256×256 pix-
els by the area average method, however, in the 2×2 cell,

Fig. 5 Images X1/200
t captured at the longest exposure time 1/200 sec at

frame t when exposure time is not adjusted. The illuminance changes every
two frames.

Fig. 6 Imaging results after exposure time adjustment and compensa-
tion. Images Xτ

t captured with adjusted exposure time τ (top), the output
images Yt (bottom) at frame t, and the mean brightness value p. The p of
the output images was approximately the mid-tone value pm = 128.

the brightness value of only the 4th cell was extracted be-
cause the pixels for calculating the motion vector (cells 1–4)
have a different light sensitivity from the other pixels. The
threshold of magnitude α was 0.1, which corresponds to an
average motion of 0.1 pixel per sub-frame. The mid-tone
value pm was 128 and thresholds θ1 and θ2 were 78 and 179,
respectively. In this motion estimation method, the local re-
gion Wi included seven block cells, as shown in Fig. 4. The
number of the pixel of interest N was set to 128×128.

In a static scene, we evaluated the adjusted exposure
time based on the mean brightness value when the illumi-
nance changed every two frames. Figure 5 shows images
captured with the longest exposure time, 1/200 sec, at each
frame. Figure 6 shows images captured with the adjusted
exposure time, the output images, and the mean brightness
value p. At t = 4 with no change in the illuminance, p4 is
approximately 128 as shown in Fig. 6(b). That means the
exposure time control is appropriate. For t = 3, and t = 5
with the illuminance change, the difference between p and
128 is large as shown in Figs. 6(a) and (c). Thus, the ex-
posure time control is not appropriate. However, as shown
in Figs. 6(d) and (f), both p3 and p5 of the output images
are approximately 128. Therefore, these results showed that
we could properly control the exposure time and compen-
sate the brightness in a static scene with changing the illu-
minance. In terms of detail, the output image in Fig. 6(d)
lost the detail in the lower right region. The reason for the
loss of detail was that the weight of Fig. 6(a), which was
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Table 1 PSNR (dB) comparison for images captured with the different
exposure time when the camera is moving.

exposure time
shortest

(1/1600sec)
longest

(1/200sec)
adjusted

(1/533sec)
whole image 20.78 20.52 25.74

Fig. 7 Comparison of images captured with different exposure time τ
when the camera is moving. (c) contains less noise than (a), and less motion
blur than (b).

overexposed in the lower right region, was high when fus-
ing according to Eq. (11).

In dynamic scenes, we evaluated the quality of images
captured with the adjusted exposure time when the camera
or subject moves 0.8 pixels in 1/1600 sec. To simulate the
proposed method, we added motion blur to the images. We
simulated in the two type of the scenes, where the cam-
era moved as shown in Fig. 7 and where the train moved
as shown in Fig. 8. Figures 7(a)–(c) and 8(a)–(c) show im-
ages captured with the shortest, the longest, and the adjusted
exposure time. Figures 7(d) and 8(d) show the reference im-
age with noiseless and motionless. We corrected these im-
ages to the same brightness using the ratio of exposure time.
The PSNR values are shown in Tables 1 and 2. In Figs. 7(a)
and (c), the adjusted exposure time is longer than the short-
est exposure time. As a result, the amount of noise with the
adjusted exposure time is less. Also, in Figs. 7(b) and (c),
the displacement at the long exposure time is 6.4 px, while
that at the adjusted exposure time is 2.4 px. Thus, the im-
age with the adjusted exposure time has less motion blur.
In Table 1, the PSNR of the image with the adjusted expo-
sure time is the highest. Likewise, the adjusted exposure
time image has clear details in Fig. 8. In Table 2, although
the PSNR of the image with the adjusted and the longest
exposure time is almost same value, the adjusted exposure
time image is highest quality in the moving area. The main
reason is that the displacement at long exposure is 6.4 px,
while the displacement at adjusted exposure time is 3.2 px,
which suppresses motion blur. According to these results,
we were able to control the exposure time that was adaptive
to motion.

Table 2 PSNR (dB) comparison for images captured with the different
exposure time when the train is moving.

exposure time
shortest

(1/1600sec)
longest

(1/200sec)
adjusted

(1/400sec)
whole image 20.48 29.84 29.70
moving area 19.86 19.93 21.94

Fig. 8 Comparison of images captured with different exposure time τ
when the train is moving. (c) contains less noise than (a), and less motion
blur than (b).

5. Conclusion and Future Works

To improve the image quality in terms of exposure time of
an image sensor with motion estimation function, we pro-
posed a method to control exposure time to adjust to illu-
minance and motion. In static scenes, we controlled the ex-
posure time using the mean brightness value, and obtained
images with an appropriate brightness level. In dynamic
scenes, we used motion to control the exposure time, and
obtained images with less noise and less motion blur. We
evaluated the effectiveness of the proposed method by sim-
ulation. The proposed method was able to capture images
with clear details, which are useful for image recognition
and object tracking.

In the future, we will consider reconstruction process-
ing that improves image quality not only in moving subjects
but also in static areas. In addition, we will further improve
the accuracy of exposure time control by focusing on the
motion vector only in the local region when there is local
motion. We will also verify the proposed method in a dark
scene since it is assumed that shot noise reduce the accuracy
of motion estimation and affect exposure time control.
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