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Recent Advances in Video Action Recognition with 3D Convolutions

Kensho HARA†a), Member

SUMMARY The performance of video action recognition has im-
proved significantly in recent decades. Current recognition approaches
mainly utilize convolutional neural networks to acquire video feature rep-
resentations. In addition to the spatial information of video frames, tem-
poral information such as motions and changes is important for recogniz-
ing videos. Therefore, the use of convolutions in a spatiotemporal three-
dimensional (3D) space for representing spatiotemporal features has gar-
nered significant attention. Herein, we introduce recent advances in 3D
convolutions for video action recognition.
key words: video recognition, action recognition, 3D convolutions, survey

1. Introduction

The use of deep convolutional neural networks (CNNs) in
the field of computer vision has expanded significantly in
recent years. ImageNet [1], which includes more than a mil-
lion images, and other large-scale image datasets have con-
tributed substantially to the creation of successful vision-
based algorithms because the use of large-scale datasets is
extremely important when using deep CNNs, which involve
a large number of parameters. In addition to such large-scale
datasets, a large number of algorithms, such as those for
batch normalization [2] and residual learning [3], have been
used to improve image classification performance. Feature
representations acquired using very deep CNNs trained on
large-scale datasets offer high generalization performance.
Using such a feature representation, can significantly im-
prove the performance of several other tasks, including ob-
ject detection [4], segmentation [5], and image caption-
ing [6].

The performance of video action recognition, which is
a task to recognize human actions in videos, has improved
significantly by the development of deep CNNs for videos.
Similar to image recognition, CNNs with two-dimensional
(2D) convolutions pretrained on ImageNet were initially
used. A two-stream architecture, which is a popular ap-
proach for CNN-based action recognition [7], uses RGB and
stacked optical flow frames as appearance and motion in-
formation, respectively; it demonstrates that combining two
streams improves action recognition accuracy. Numerous
methods based on two-stream CNNs have been proposed to
achieve further improvements by introducing the advantage

Manuscript received June 30, 2020.
Manuscript revised October 18, 2020.
Manuscript publicized December 7, 2020.
†The author is with the National Instutite of Advanced Indus-

trial Science and Technology, Tsukuba-shi, 305-8560 Japan.
a) E-mail: kensho.hara@aist.go.jp

DOI: 10.1587/transfun.2020IMP0012

of handcrafted features [8], different combining methods of
two streams [9]–[11], and modeling of long-range temporal
structures [12]. Wang et al. attempted to achieve good prac-
tice for the training of very deep two-stream 2D CNNs [13].

Recently, CNNs with spatio–temporal three-
dimensional (3D) convolutional CNNs (3D CNNs) have
been shown to be more effective than CNNs with 2D kernels
in action recognition [14]. Although 3D CNNs have been
investigated for action recognition several years ago [15],
they do not exhibit the advantages of two-stream 2D-based
CNNs [16]. This is primarily due to the relatively small
data scale of video datasets that are available for optimizing
the immense number of parameters in 3D CNNs, which are
much larger than those of 2D CNNs. In addition, 3D CNNs
can only be trained on video datasets, whereas 2D CNNs
can be pretrained on ImageNet. Recently, however, Car-
reira and Zisserman achieved a significant breakthrough us-
ing the Kinetics dataset, which includes large-scale videos.
They also introduced an inflation of 2D kernels pretrained
on ImageNet into 3D ones [14]. Following these studies,
3D convolutions are mainly adopted in action recognition
methods.

Herein, we introduce recent advances in 3D convolu-
tions for video action recognition. Action recognition ap-
proaches by handcrafted methods and early methods of deep
learning have been summarized by Aggarwal and Ryoo [17]
and Herath et al. [18]. In contrast to these surveys, we focus
on 3D convolutions herein. Section 2 explains the basics
of 2D and 3D convolutions for action recognition, whereas
Sect. 3 describes various network architectures with 3D con-
volutions. We explain various state-of-the-art advances in
Sect. 4 and introduce video datasets for training and evalu-
ation in action recognition in Sect. 5. Finally, Sect. 6 con-
cludes this paper.

2. Convolutions for Video Action Recognition

We explain the convolutions used for video action recog-
nition. As described in the previous section, many studies
utilized 2D convolutions for videos a few years ago, sim-
ilar to image recognition. Recently, 3D convolutions have
been mainly used in action recognition tasks because of the
release of large-scale video datasets. Furthermore, (2+1)D
convolutions, which are extended versions of 3D convolu-
tions, contributed to high recognition performances. Fig-
ure 1 shows an overview of the convolutions. In the follow-
ing paragraphs, we introduce each convolution.

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Convolutions for video action recognition. W, H, and T are width, height, and number of
frames of the feature maps, respectively. 2D and 3D convolutions apply 1 × Ks × Ks and Kt × Ks × Ks
convolutional kernels, respectively. (2+1)D convolutions apply a 1 × Ks × Ks kernel at first, and then
apply a Kt × 1 × 1 kernel separately. Note that this figure does not show the number of feature maps.

When applying a 2D Ks × Ks convolutional kernel into
a video, i.e., a spatiotemporal 3D feature map, we applied
it for each frame separately. This process is equivalent to
directly applying a 1×Ks×Ks kernel to a 3D feature map, as
shown in Fig. 1(a). When applying 1×Ks×Ks convolutional
kernels with N channels into a T × H × W input feature
map with M channels, the computational cost and number of
parameters are T HWMK2

s N and MK2
s N, respectively. Some

studies utilized a video as a feature map with 3 (RGB) ×T
(the number of frames) channels [7], [8], [13].

The size of a 3D convolutional kernel in the time di-
mension differs from that of a 2D one, as shown in Fig. 1(b).
When applying Kt × Ks × Ks convolutional kernels with N
channels into a T × H ×W input feature map with M chan-
nels, the computational cost and number of parameters are
T HWMK2

s KtN and MK2
s KtN, respectively. Compared with

2D convolutions, the computational cost and number of pa-
rameters are increased by Kt.

A (2+1)D convolution is a pseudo 3D convolution
and comprises a spatial 2D convolution and a temporal 1D
convolution, as shown in Fig. 1(c). The separated convo-
lutions reduce the computational cost and number of pa-
rameters while facilitating the training of deep neural net-
works. When applying 1 × Ks × Ks and Kt × 1 × 1
convolutional kernels with Ns and Nt channels, respec-
tively, into a T × H × W input feature map with M chan-
nels, the computational cost and number of parameters are

T HWMK2
s Ns + T HWNsKtNt = T HW(MK2

s Ns + NsKtNt)
and MK2

s Ns + NsKtNt, respectively. When Nt = N and
Ns = (MK2

s KtN)/(MK2
s + NKt), the computational cost and

number of parameters are the same as those of 3D convo-
lutions. Tran et al. demonstrated that (2+1)D convolutions
outperformed 3D convolutions in action recognition when
the number of parameters of (2+1)D convolutions was the
same as that of 3D convolutions [19].

3. Network Architectures with 3D Convolutions

In this section, we introduce 3D CNN architectures for ac-
tion recognition. In the tables presented, the input sizes of
the network architectures listed are based on original publi-
cations.

3.1 C3D

C3D proposed by Tran et al. [20] is a popular 3D CNN ar-
chitecture. Table 1 shows the network architecture of C3D.
The architecture of C3D is based on VGG-11 [21] proposed
for image classification; 2D convolutions with 3 × 3 ker-
nels in VGG-11 are replaced with 3D convolutions with
3×3×3 kernels in C3D. All activation functions of C3D are
ReLU [22]. The best kernel temporal depth demonstrated by
Tran et al. was three. This value has been used in subsequent
architectures.
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Table 1 Network architecture of C3D. C is the number of classes. conv,
maxpool, and fc are the convolutional, max pooling, and fully connected
layers, respectively.

Layer Output Size Kernel size Stride

input 3 × 16 × 112 × 112

conv 64 × 16 × 112 × 112 3 × 3 × 3 1, 1, 1

maxpool 64 × 16 × 56 × 56 1 × 2 × 2 1, 2, 2

conv 128 × 16 × 56 × 56 3 × 3 × 3 1, 1, 1

maxpool 128 × 8 × 28 × 28 2 × 2 × 2 2, 2, 2

conv ×2 256 × 8 × 28 × 28 3 × 3 × 3 1, 1, 1

maxpool 256 × 4 × 14 × 14 2 × 2 × 2 2, 2, 2

conv ×2 512 × 4 × 14 × 14 3 × 3 × 3 1, 1, 1

maxpool 512 × 2 × 7 × 7 2 × 2 × 2 2, 2, 2

conv ×2 512 × 2 × 7 × 7 3 × 3 × 3 1, 1, 1

maxpool 512 × 1 × 4 × 4 2 × 2 × 2 2, 2, 2

fc 4096

fc 4096

fc C

C3D is expected to yield spatio–temporal feature rep-
resentations because it utilizes spatio–temporal 3D convo-
lutions. However, similar to 2D CNNs, the two-stream en-
sembling of RGB frames and stacked optical flows improve
the recognition performance of C3D [16]. Such results have
been reported in other 3D architectures [14], [19], [23] as
well.

3.2 I3D

An inflated 3D CNN (I3D) [14] is a 3D convolutional net-
work architecture based on GoogLeNet (inception-v1) [24].
Table 2 shows the architecture of an I3D, and Fig. 2 shows
the inception module, which is proposed to efficiently com-
pute wider and deeper networks in GoogLeNet. The output
of an I3D based on a video clip includes the class proba-
bilities of multiple frames. The average probability of the
frames should be calculated to acquire the class probabili-
ties of the video clip.

An important point in an I3D is inflation, i.e., the con-
version of successful 2D classification models into 3D ones.
The inflation operation repeats the weights of 2D kernels N
times along the time dimension and rescales them by divid-
ing by N. Carreira and Zisserman demonstrated that the 3D
inflated models of 2D GoogLeNet pretrained on ImageNet
achieved better performances compared with non-inflated
models [14].

One of the techniques to extend 2D GoogLeNet to 3D
I3D is by configuring the kernel temporal depths and strides
of the max pooling layers. The depths and strides of the first
and second max pooling layers are not three, which is the
value of the spatial dimensions, but one. Carreira and Zis-
serman described that they configured the depths and strides
to grow the receptive field gradually in time and to avoid
conflating edges from different objects, which can hinder
early feature detection [14].

Table 2 Network Architecture of I3D. C is the number of classes; conv,
maxpool, and avgpool denote the convolutional, max pooling, and average
pooling layers, respectively. Inception indicates the inception module, as
shown in Fig. 2.

Layer Output Size Kernel size Stride

input 3 × 64 × 224 × 224

conv 64 × 32 × 112 × 112 7 × 7 × 7 2, 2, 2

maxpool 64 × 32 × 56 × 56 1 × 3 × 3 1, 2, 2

conv 64 × 32 × 56 × 56 1 × 1 × 1 1, 1, 1

conv 192 × 32 × 56 × 56 3 × 3 × 3 1, 1, 1

maxpool 192 × 32 × 28 × 28 1 × 3 × 3 1, 2, 2

inception ×2 480 × 32 × 28 × 28

maxpool 480 × 16 × 14 × 14 3 × 3 × 3 2, 2, 2

inception ×5 832 × 16 × 14 × 14

maxpool 832 × 8 × 7 × 7 3 × 3 × 3 2, 2, 2

inception ×2 1024 × 8 × 7 × 7

avgpool 1024 × 8 × 1 × 1 2 × 7 × 7 1, 1, 1

conv C × 8 1, 1, 1 1, 1, 1

Fig. 2 3D inception module. This 3D inception module replaces the 5×5
convolutional layer of the 2D inception module [24] with not a 5 × 5 × 5
layer but a 3 × 3 × 3 layer.

Fig. 3 3D bottleneck residual module.

3.3 3D ResNet

3D ResNet [25]–[27], also known as R3D [19], is a 3D ver-
sion of the 2D residual network (ResNet) [3]. ResNet pro-
vides shortcut connections that allow a signal to bypass one
layer and move to the next layer in a sequence, as shown
in Fig. 3. Because these connections pass through the net-
work’s gradient flows from the latter layers to the early lay-
ers, they can facilitate the training of very deep networks.
Table 3 shows the architecture of 3D ResNet-50.

The recognition performances of deeper 3D ResNets
trained on a large-scale video dataset, such as Kinetics [28],
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Table 3 Network Architecture of 3D ResNet-50. C is the number of
classes; conv, maxpool, avgpool, and fc denote the convolutional, max
pooling, average pooling, and fully connected layers, respectively. Resid-
ual indicates the residual module shown in Fig. 3.

Layer Output Size Kernel size Stride

input 3 × 16 × 112 × 112

conv 64 × 16 × 56 × 56 7 × 7 × 7 1, 2, 2

maxpool 64 × 8 × 28 × 28 3 × 3 × 3 2, 2, 2

residual ×3 256 × 8 × 28 × 28


1 × 1 × 1, 64

3 × 3 × 3, 64

1 × 1 × 1, 256

 1, 1, 1

residual ×4 512 × 4 × 14 × 14


1 × 1 × 1, 128

3 × 3 × 3, 128

1 × 1 × 1, 512

 2, 2, 2

residual ×6 1024 × 2 × 7 × 7


1 × 1 × 1, 256

3 × 3 × 3, 256

1 × 1 × 1, 1024

 2, 2, 2

residual ×3 2048 × 1 × 4 × 4


1 × 1 × 1, 512

3 × 3 × 3, 512

1 × 1 × 1, 2048

 2, 2, 2

avgpool 2048 × 1 × 1 × 1 1 × 7 × 7 1, 1, 1

fc C

are better than those of shallower models, similar to the im-
age recognition performance of 2D ResNets [3]. Hara et al.
demonstrated that improvements using deeper models con-
tinued until a depth of 152 was reached [26]. Extended ver-
sions of ResNets, such as pre-activation ResNet [29], wide
ResNet [30], and ResNeXt [31], have also been investigated,
in which ResNeXt-101 achieved the best performance [26].

3.4 P3D, R(2+1)D, and S3D

P3D [32], R(2+1)D [19], and S3D [23] utilize pseudo 3D
convolutions; currently, they are often known as (2+1)D
convolutions, as described in Sect. 2. (2+1)D convolutions
apply spatial 2D convolutions, followed by temporal 1D
convolutions. The same idea has been introduced in fac-
torized spatio–temporal convolutional networks [33]. The
network architectures of P3D and R(2+1)D are based on the
3D ResNet, and S3D is an I3D-based architecture. These
models replace 3D convolutions with (2+1)D convolutions.

P3D introduces different designs of the pseudo 3D con-
volutions. P3D-A adopts the same design as (2+1)D convo-
lutions.

y = ft( fs(x)), (1)

where x and y are the input and output of the convolution; fs
and ft are functions that apply 2D spatial and 1D temporal
convolutions, respectively. P3D-B applies both spatial 2D
and temporal 1D kernels in different pathways in a parallel
manner and then accumulates both pathways into the final
output.

y = fs(x) + ft(x). (2)

Fig. 4 Non-local module.

P3D-C utilizes a design combining those of P3D-A and
P3D-B.

y = ft( fs(x)) + fs(x). (3)

All designs are used with skip connections, similar to the
residual module in P3D. Qiu et al. demonstrated that com-
bining the three designs in the network yielded the best per-
formance [32].

Xie et al. investigated top-heavy and bottom-heavy
S3Ds, which utilize (2+1)D convolutions in some layers and
2D convolutions in the remaining ones [23]. They demon-
strated that a model that maintained the top two layers as
(2+1)D convolutions, and the remaining as 2D convolu-
tions yielded a good speed-accuracy tradeoff, and that using
(2+1)D convolutions in all layers yielded the best accuracy.
Furthermore, they also proposed S3D-G, which introduces
a self-attention mechanism after each temporal convolutions
in S3D. Its attention mechanism improved the recognition
performance.

3.5 Non-Local Neural Networks

Non-local neural networks utilize non-local operations to
capture long-term dependencies of actions [34]. Non-local
operations compute the response at a position as a weighted
sum of the features at all positions in the input feature maps,
as shown in Fig. 4.

yi =
1∑

∀ j f (xi, x j)

∑
∀ j

f (xi, x j)g(x j), (4)

f (xi, x j) = eθ(xi)φ(x j), (5)

where i is the index of an output spatio-temporal position; j
is the index that enumerates all possible positions; g, θ, and
φ are embedded representations. Because the operation con-
siders all spatio-temporal positions, the operation can cap-
ture long-term dependencies, which are difficult to capture
by convolutions.

Wang et al. used 3D ResNet-50 based non-local net-
work architectures [34], where non-local blocks were in-
serted into the third and fourth residual blocks of the 3D
ResNet-50. They discovered that the non-local 3D ResNet-
50 achieved better performances than 3D ResNet-101 with-
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Table 4 Network Architecture of SlowFast 3D ResNet-50. C is the number of classes. conv, max-
pool, avgpool, and fc mean convolutional, max pooling, average pooling, and fully-connected layers,
respectively. concat concatenates the outputs of slow and fast pathways.

Layer
Slow pathway Fast pathway

Output Size Kernel size Stride Output Size Kernel size Stride

input 3 × 4 × 224 × 224 3 × 32 × 224 × 224

conv 64 × 4 × 112 × 112 1 × 7 × 7 1, 2, 2 8 × 32 × 112 × 112 5 × 7 × 7 1, 2, 2

maxpool 64 × 4 × 56 × 56 1 × 3 × 3 1, 2, 2 8 × 32 × 56 × 56 1 × 3 × 3 1, 2, 2

residual ×3 256 × 4 × 56 × 56


1 × 1 × 1, 64

1 × 3 × 3, 64

1 × 1 × 1, 256

 1, 1, 1 32 × 32 × 56 × 56


3 × 1 × 1, 8

1 × 3 × 3, 8

1 × 1 × 1, 32

 1, 1, 1

residual ×4 512 × 4 × 28 × 28


1 × 1 × 1, 128

1 × 3 × 3, 128

1 × 1 × 1, 512

 1, 2, 2 64 × 32 × 28 × 28


3 × 1 × 1, 16

1 × 3 × 3, 16

1 × 1 × 1, 64

 1, 2, 2

residual ×6 1024 × 4 × 14 × 14


3 × 1 × 1, 256

1 × 3 × 3, 256

1 × 1 × 1, 1024

 1, 2, 2 128 × 32 × 14 × 14


3 × 1 × 1, 32

1 × 3 × 3, 32

1 × 1 × 1, 128

 1, 2, 2

residual ×3 2048 × 4 × 7 × 7


3 × 1 × 1, 512

1 × 3 × 3, 512

1 × 1 × 1, 2048

 1, 2, 2 256 × 32 × 7 × 7


3 × 1 × 1, 64

1 × 3 × 3, 64

1 × 1 × 1, 256

 1, 2, 2

avgpool 2048 × 1 × 1 × 1 4 × 7 × 7 1, 1, 1 256 × 1 × 1 × 1 32 × 7 × 7 1, 1, 1

concat (2048 + 256) × 1 × 1 × 1

fc C C

out non-local blocks, even though the numbers of parame-
ters and layers of the non-local 3D ResNet-50 were smaller.

3.6 SlowFast Networks

SlowFast networks [35] comprises two pathways that are de-
signed based on biological studies. One pathway, known as
the slow pathway, captures spatial semantics at a low frame
rate, whereas the other one, known as the fast pathway, cap-
tures motion at a fine temporal resolution. Table 4 shows the
architecture of the SlowFast network. The temporal sizes of
the inputs of both pathways are based on the frame rate of
the input video instead of its duration. The network only uti-
lizes pure 3D convolutions in the first convolution of the fast
pathway. The other convolutions are 2D spatial or 1D tem-
poral convolutions. The slow pathway uses temporal convo-
lutions only in the third and fourth residual blocks because
using temporal convolutions in the early layers degrades the
accuracy [35]. The fast pathway has a smaller number of
feature maps compared with the slow pathway for an effi-
cient computation. Such a thinner architecture of the fast
pathway degrades the performance only slightly. The frame
rates of the slow and fast pathways used are 1/16 and 1/2 of
the original videos, respectively. The SlowFast network in-
cludes lateral connections between the two pathways to fuse
information, similar to two-stream architectures [9]–[11].

3.7 X3D

X3D is an efficient network architecture for video action
recognition [36]. The architecture is based on a 2D ResNet
structure and the Fast pathway design of SlowFast networks.
Feichtenhofer discovered the most efficient architecture by
progressively expanding a small base 2D architecture across
the following axes: temporal duration, frame rate, spatial
resolution, network width, bottleneck width, and depth. One
of the architectures, known as X3D-M, is shown in Ta-
ble 5. X3D-M is expanded across the bottleneck width,
temporal resolution, spatial resolution, depth, temporal du-
ration, temporal resolution, temporal duration, and spatial
resolution, in that order. These progressive expansions in-
dicate that networks with thin channel dimensions and high
spatiotemporal resolution can be effective for video action
recognition. Larger X3D-XL achieved performances simi-
lar to those of a method combining SlowFast and non-local
networks whereas the combined method requires 4.8 times
larger multiply–add computations compared with the X3D-
XL. The performance of X3D-M is slightly worse than that
of X3D-XL although its multiply–add computations are 7.8
times fewer.

3.8 Summary

As above-mentioned, various 3D CNN architectures have
been proposed. ResNets, described in Sect. 3.3, were often
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Table 5 Network Architecture of X3D-M. C is the number of classes;
conv, avgpool, and fc denote the convolutional, average pooling, and fully
connected layers, respectively. Subsample subsamples the input videos in
the time dimension.

Layer Output Size Kernel size Stride

input 3 × 80 × 224 × 224

subsample 3 × 16 × 224 × 224 5, 1, 1

conv 24 × 16 × 112 × 112 1 × 3 × 3, 3 × 1 × 1 1, 2, 2

residual ×3 24 × 16 × 56 × 56


1 × 1 × 1, 54

3 × 3 × 3, 54

1 × 1 × 1, 24

 1, 2, 2

residual ×5 48 × 16 × 28 × 28


1 × 1 × 1, 108

3 × 3 × 3, 108

1 × 1 × 1, 48

 1, 2, 2

residual ×11 96 × 16 × 14 × 14


1 × 1 × 1, 216

3 × 3 × 3, 216

1 × 1 × 1, 96

 1, 2, 2

residual ×7 192 × 16 × 7 × 7


1 × 1 × 1, 432

3 × 3 × 3, 432

1 × 1 × 1, 192

 1, 2, 2

conv 432 × 16 × 7 × 7 1 × 1 × 1 1, 1, 1

avgpool 432 × 1 × 1 × 1 16 × 7 × 7 1, 1, 1

fc 2048 × 1 × 1 × 1

fc C

used in recent studies as a backbone architecture because
they contains various depth configurations, such as ResNet-
18, -34, -50, -101, -152, and -200. We can select the depth
configuration based on speed-accuracy tradeoff. Instead of
3D convolutions, (2+1)D convolutions (i.e. R(2+1)D), de-
scribed in Sect. 3.4, were also often used and improved the
recognition accuracy whereas using (2+1)D convolutions
sometimes increases memory requirements in the training
steps as the number of layers increases by two times (2D and
1D convolutions). Adding non-local operations, SlowFast
pathways, and optical flow stream helps further improve-
ments of the recognition accuracy.

4. Analyses and Improvements of 3D CNNs

4.1 Analyses of 3D CNNs

3D CNNs are analyzed from various aspects. We classify
some analyses and explain them in this section.

4.1.1 Input Sizes

Varol et al. analyzed the temporal duration of the input to
3D CNNs [16]. They indicated that the temporal duration
of C3D (= 16 frames) was insufficient to capture spatio–
temporal structures of the actions. They investigated the ef-
fect of the temporal duration on the recognition accuracy
by varying the durations. Their results indicated that longer
durations resulted in higher accuracies. Similar results have
also been reported in [26], [34], [36].

In addition to the temporal duration, spatial and tempo-
ral resolutions affect the recognition performance. Higher
spatio–temporal resolutions yielded higher recognition ac-
curacies, and the contribution was significant, as described
in Sect. 3.7. However, a tradeoff exists between recogni-
tion accuracy and computational costs. A study has been
conducted to improve the tradeoff in training, which will be
described later in Sect. 4.3.

4.1.2 Motion Information

Ensembling with RGB frames (appearance) and optical
flows (motion) improves recognition performance even
when using 3D CNNs [14], [16], [19], which can theoret-
ically acquire spatio–temporal representations. This indi-
cates that 3D CNNs cannot utilize motion information when
classifying videos. In this regard, Huang et al. tested a
model trained with full-length videos on a single subsam-
pled frame (i.e., without motion information) [37]. How-
ever, they observed that subsampling resulted in a distri-
bution shift in the temporal dimension, and that subsam-
pling occasionally removed important frames for recogniz-
ing the action. To avoid artifacts, they proposed two meth-
ods that compensate for the distribution gap and selected the
appropriate frames without including any motion informa-
tion. Their experimental results indicated that when using
their proposed methods, the recognition accuracy decreased
by only 5% from the 47% accuracy on the Kinetics dataset
when evaluating tighter upper bounds without motion infor-
mation. It is considered likely that their result also indicates
that 3D CNNs did not focus on motion information in clas-
sification of the videos of Kinetics. Motivated by these re-
sults, some studies have been conducted to improve motion
representation of 3D CNNs, as described in Sect. 4.2.

4.1.3 Training Data

The scale of training data is important for training 3D
CNNs. Kay et al. demonstrated that C3D achieved slightly
better performances compared with 2D ResNet-50 when
the model was trained on a large-scale Kinetics dataset, al-
though the accuracy of C3D trained on the relatively small
UCF-101 dataset was low [28]. Kataoka et al. compared the
performance of models pretrained on various datasets [38],
such as Kinetics-700 [39] and Moments in Time [40]. Their
results indicated that Kinetics-700 pretrained on 3D ResNet-
50 achieved the best performance compared with the model
pretrained on the other datasets. In addition, to increase the
amount of training data using public datasets, they concate-
nated the Kinetics-700 and Moments in Time datasets from
650K videos/700 and 1M videos/339 categories, respec-
tively, into 1.65M videos/1,039 categories and pretrained 3D
ResNet-50 on the concatenated dataset. Their experiment
demonstrated that pretraining on the concatenated dataset
further improved the accuracy. Ghadiyaram et al. trained
3D CNNs on 65 million videos obtained from a social media
website [41]. The video labels were annotated based on the
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hash tags of videos, which often include noise. They demon-
strated that pretraining on such large-scale videos with noisy
labels significantly improved the recognition performance,
and that the performance of R(2+1)D-34 improved log-
linearly with training data size.

Data augmentation methods for 3D CNNs have been
discussed as well. Hara et al. compared various strategies
for cropping video clips [42]. Their results indicated that
spatio–temporal crop positions should be selected randomly,
and that the spatial scale of the cropping should be random
but the temporal scale should be fixed.

4.2 Improvements in Motion Representation

Recently, studies have been conducted to improve motion
representation. As described in Sect. 4.1.2, some problems
are encountered in the motion representation of 3D CNNs.
One of the solutions is to use optical flows, but the compu-
tational cost of calculating optical flows is high. Inspired
by the TV-L1 algorithm [43], which is an optical flow esti-
mation method, Piergiovanni et al. proposed a CNN layer to
compute feature flows [44]. Their proposed representation
flow layer unrolls the iteration computations of TV-L1 and
implements similar computations as a differentiable layer
with learnable parameters. Therefore, the representation
flow layer can be optimized for action recognition. They
applied their layer on lower-resolution feature maps for an
efficient computation. Their experimental results showed
that 3D and (2+1)D ResNet-18 with representation layers
achieved higher accuracies than those without the layers. In-
spired by the correlation layer of FlowNet [45], Wang et al.
proposed a correlation operator [46], which is similar to
the representation flow. The correlation operator computes
the correlations between every pair of adjacent frames in
the feature maps. Motion information is acquired based on
frame-wise correlations (i.e., similarities). The correlation
operator is differentiable and implemented with learnable
parameters. They inserted their correlation operators into
the first, second, and third residual blocks of R(2+1)D-26.
Their network involving correlation operators and not re-
quiring optical flows, known as CorrNet, achieved perfor-
mances similar to those of two-stream backbone models.
Zhu et al. used optimized optical flows for action recog-
nition by introducing a hidden two-stream architecture that
included an optical flow estimation module [47].

Stroud et al. attempted another approach involving dis-
tillation [48]. They trained a network that recognizes ac-
tions using optical flows as a teacher network and distills
knowledge from a teacher to a student network that uses
RGB frames. Because optical flows are only used by the
teacher network, which is only used in training, the infer-
ence step is efficiently executed without computing flows.
Their proposed D3D yielded performances that were com-
parable with the two-stream approach, without requiring
an optical flow in inference. Similarly, ActionFlowNet in-
volves multitask learning that optimizes action recognition
and optical flow estimation simultaneously [49], instead of

distillation.
Several studies have been conducted to acquire motion

information using 2D-based architectures [50]–[54].

4.3 Efficient Training/Inference

It is important to ensure efficient training and inference
with 3D CNNs, which can achieve high performances while
maintaining a low computational cost. Wu et al. pro-
posed an efficient training method using variable mini-batch
shapes with different spatio–temporal resolutions [67]. As
described in Sect. 4.1.1, spatio–temporal resolutions (input
sizes) relate to the tradeoff between computational costs and
recognition accuracies. Training with larger resolutions im-
proves recognition accuracies as well as increases the train-
ing time. Their proposed method varies the resolutions from
coarse to fine during training. Training SlowFast ResNet-
50 using their method slightly improved the accuracy and
decreased the training time by 4.5 times. SCSampler, pro-
posed by Korbar et al., reduced the computational cost of
action recognition [68]. SCSampler samples a reduced set
of salient clips from a video. Recognizing actions using
only salient clips is extremely efficient. SCSampler effi-
ciently samples salient clips by directly using compressed
videos without MPEG-4 and H.264 decodings, similar to
compressed action recognition [69]. Their experimental re-
sults demonstrated that using SCSampler not only improved
the accuracy, but also significantly reduced the computa-
tional cost.

Another approach has been proposed that uses
group convolutions [31] and depthwise convolutions [70],
which are more efficient than standard convolutions.
Luo and Yuille proposed an architecture using group convo-
lutions [71]. They decomposed a 3D 3×3×3, F convolution
into 2D 1×3×3, (1−α)F and 3D 3×3×3, αF based on group
convolutions. In addition to the efficient computation based
on group convolutions, decomposition encourages the chan-
nels in each group to concentrate on static semantic features
and dynamic motion features separately, thereby affording
an easier training. Their proposed method enabled an effi-
cient action recognition without decreasing the recognition
accuracy. Tran et al. introduced depthwise convolutions into
a 3D ResNet [72]. They replaced the 3 × 3 × 3 convolution
of a bottleneck block with a 1×1×1 traditional convolution
and a 3 × 3 × 3 depthwise convolution. They demonstrated
that using deeper architectures, such as those with 101 layers
and combined with such depthwise convolutions, a slightly
better performance was achieved compared with that of the
traditional 3D ResNet, with three times fewer FLOPs.

5. Video Datasets

In this section, we introduce popular video datasets for ac-
tion recognition. We summarize the statistics of the video
datasets in Table 6. Although many video datasets exist for
other video recognition tasks, such as spatio–temporal ac-
tion detection [73], action segmentation [74], video caption-
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Table 6 Statistics of video datasets for action recognition. Year shows not released years of the cited
publications but the actual years of releasing datasets. YouTube* in the row of Moments in Time means
YouTube and other internet video sources, such as Flickr, Vine, and Vimeo.

Dataset Year Source
Trimmed/

Temporal
annotations

Number of
classes

Number of
videos/instances

HMDB-51 [55] 2011 Movies/YouTube Yes 51 6,766

UCF-101 [56] 2012 YouTube Yes 101 13,320

Sports-1M [57] 2014 YouTube No 487 1,133,158

ActivityNet [58] 2015 YouTube Yes 200 28,108

Charades [59] 2016 Crowdsorcing Yes 157 66,500

YouTube-8M [60] 2016 YouTube No 4,800 8,264,650

Kinetics-400 [28] 2017 YouTube Yes 400 306,245

Something-Something [61] 2017 Crowdsorcing Yes 174 108,499

Moments in Time [40] 2018 YouTube* Yes 339 1,000,000

STAIR-Actions [62] 2018 YouTube/Crowdsorcing Yes 100 109,478

Kinetics-600 [63] 2018 YouTube Yes 600 495,547

Something-Something-v2 [64] 2018 Crowdsorcing Yes 174 220,847

Kinetics-700 [39] 2019 YouTube Yes 700 650,317

HACS Clips [65] 2019 YouTube Yes 200 1,500,000

HACS Segments [65] 2019 YouTube Yes 200 139,000

FineGym [66] 2020 YouTube Yes 530 32,697

ing [75], learning text-video embeddings [76], and under-
standing human–object relationships [77], we only discuss
datasets used for action recognition.

5.1 Trimmed Video Datasets

Most video datasets contain videos that are temporally
trimmed to remove non-action frames. The duration of each
video ranges from several seconds to approximately 10 s.
These datasets are used for action recognition, in which a
video is used as an input and an action label is output.

UCF-101 [56] and HMDB-51 [55] are popular datasets
for action recognition. Most videos are collected from
YouTube except the videos from movies in HMDB-51.
These datasets were released as large-scale video datasets in
2011 and 2012, respectively, and are used as popular bench-
mark datasets even in 2020. Nevertheless, studies that do
not include the performances of the two datasets will in-
crease gradually because the accuracies on the datasets were
almost saturated.

Kinetics datasets are the most frequently used video
datasets in 2020. Kinetics-400, which contains videos clas-
sified into 400 action classes, was released in 2017 [28];
subsequently, the dataset was extended to Kinetics-600 and
-700 [39], [63], which have a higher number of classes.
The videos in these datasets were collected from YouTube
and annotated by crowd workers. Because Kinetics datasets
include hundreds of thousands of videos, which are suffi-
cient for training deep 3D CNNs [26], Kinetics pretrained
on CNNs are used as base models in various tasks. Similar
to Kinetics, Moments in Time, which include a larger num-

ber of action instances and a smaller number of classes than
Kinetics, has been released [40]. HACS Clips [65] consists
of 1.5M annotated clips sampled from 504K untrimmed
videos. Zhao et al. demonstrated that recognition mod-
els pretrained on HACS Clips achieved better performances
compared with the models pretrained on Kinetics-600, Mo-
ments in Time, and Sports1M datasets [65]. FineGym fo-
cuses on fine-grained action recognition in gymnastic videos
and provides class labels in a three-level semantic hierarchy.

In addition to the datasets above, which were collected
primarily from YouTube, datasets that include videos cap-
tured by crowd workers exist as well. Whereas YouTube-
based datasets comprise actions in various domains, most
crowdsourced datasets focus on daily activities. STAIR-
Actions [62] includes daily actions at home, whereas
Something-Something comprises daily object manipula-
tions. Because Something-Something [61], [64] includes
action pairs, which are difficult to classify without tempo-
ral information such as pull something and push something,
it is used in studies discussing temporal feature representa-
tion [78], [79].

5.2 Untrimmed Video Datasets with Temporal Annota-
tions

In addition to the datasets mentioned in the previous sec-
tion, video datasets that contain untrimmed videos involv-
ing multiple actions exist. Charades [59] is a video dataset
collected by crowd workers and focuses on daily activities.
One video in the dataset includes approximately 6.8 actions
on the average. Temporal annotations that indicate the start
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and end positions in time for each action are annotated. Sim-
ilar to Charades, ActivityNet [58] is an untrimmed YouTube
video dataset in various domains. One video in Activi-
tyNet includes approximately 1.4 actions on the average.
Recently, larger untrimmmed datset known as HACS Seg-
ments, which contains 139K action segments densely anno-
tated in 50K untrimmed videos spanning 200 action cate-
gories, is released [65].

These datasets can be used not only for action recog-
nition by trimming videos based on temporal annotations,
but also for temporal action localization, which estimates
begin and end positions in the time of actions, as well as
for untrimmed action recognition, which classify actions in
videos that include non-action frames.

5.3 Untrimmed Video Datasets with Video-Level Labels

Instead of detailed annotations, large-scale video datasets
with video-level labels have been released. Sports-1M [57]
includes one million videos in the sports domain. YouTube-
8M [60] includes eight million videos in various domains.
A video in both datasets has one/multiple labels without be-
ginning and end positions in time.

Although few studies have used these datasets because
they are extremely large to be utilized easily and include
noisy labels, some studies have used these datasets as large-
scale video data for training deep models [20], [80].

6. Conclusion

We introduced various 3D convolutional network architec-
tures and presented their analyses and improvements in
video action recognition. Video action recognition has de-
veloped rapidly in recent years, whereas numerous methods
and large-scale video datasets have been proposed. Mod-
els and datasets become larger every year; consequently, the
computational resources required for video research has in-
creased. Meanwhile, efficient training and inference meth-
ods have been developed recently (although some of them
require significant resources to develop their algorithms).
Improving motion representation of 3D CNNs is also inter-
esting topic. Future studies will be conducted to address
these current shortcomings.
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