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Efficiency and Accuracy Improvements of Secure Floating-Point
Addition over Secret Sharing∗
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SUMMARY In secure multiparty computation (MPC), floating-point
numbers should be handled in many potential applications, but these are
basically expensive. In particular, for MPC based on secret sharing (SS),
the floating-point addition takes many communication rounds though the
addition is the most fundamental operation. In this paper, we propose an
SS-based two-party protocol for floating-point addition with 13 rounds (for
single/double precision numbers), which is much fewer than the milestone
work of Aliasgari et al. in NDSS 2013 (34 and 36 rounds, respectively) and
also fewer than the state of the art in the literature. Moreover, in contrast to
the existing SS-based protocols which are all based on “roundTowardZero”
rounding mode in the IEEE 754 standard, we propose another protocol with
15 rounds which is the first result realizing more accurate “roundTiesTo-
Even” rounding mode. We also discuss possible applications of the latter
protocol to secure Validated Numerics (a.k.a. Rigorous Computation) by
implementing a simple example.
key words: secure multiparty computation, floating-point numbers, secret
sharing

1. Introduction

Secure multiparty computation (MPC) is a cryptographic
technology enabling two or more parties to compute func-
tions on their individual inputs in a way that each party’s
input is kept secret during the computation. Besides the
interest from cryptology, MPC is also important in other ar-
eas as a core technology in privacy-preserving data mining,
which is expected by the increasing social demands for both
big-data utilization and sensitive data protection.

Major underlying cryptographic primitives in recent
studies for MPC are garbled circuit (GC), homomorphic
encryption (HE), and secret sharing (SS). Each of them has
its own advantages and disadvantages, and there are studies
for developing general and efficient MPC protocols by com-
bining these different primitives (e.g., [10], [11]). On the
other hand, studying MPC based on a single primitive is still
important by at least the following two reasons. First, such
protocols can fully benefit from the advantages specific to the
primitive. For example, SS (with ideally generated random-
ness) is the only primitive among those listed above that can
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achieve information-theoretic security. Secondly, improve-
ments of building-block protocols based on each primitive
can also potentially contribute to better performances of the
mixed-primitive type MPC mentioned above. From such
viewpoints, in this paper we focus on SS-based MPC.

In SS-basedMPC, efficient constructions of three-party
computation (3PC), i.e., with three computing parties, have
been studied well (e.g., [4], [5], [26]). On the other hand, SS-
based two-party computation (2PC) also has an advantage
that it requires less hardware resources (e.g., fewer com-
puting servers) than 3PC. This paper focuses on the latter,
SS-based 2PC. In both 2PC and 3PC, a recent trend is to
divide the whole computation into the input-independent
offline (pre-computation) phase and the input-dependent on-
line phase and to make the online phase more efficient. We
also follow this strategy. Moreover, a major disadvantage
of SS-based MPC is that it requires many communication
rounds, which is frequently dominant among the whole run-
ning time due to the unavoidable network latency for each
communication round, especially over Wide Area Network
(WAN) with larger latency. Hence, reducing the number of
communication rounds is particularly important in SS-based
MPC.

1.1 Secure Computation for Floating-Point Numbers

There are studies of MPC for various kinds of applications
where floating-point numbers are required (e.g., [2], [12],
[16], [23]). A milestone in SS-based MPC for floating-
point numbers is the work by Aliasgari et al. [3], where 3PC
protocols for basic arithmetic addition and multiplication
(note that subtraction is immediately obtained from addition
by flipping the sign of the second input) as well as for some
advanced operations such as square root and logarithm are
proposed. Their high-level protocol constructions are also
applied to the 2PC case in [1] (but the underlying primitive
in [1] is HE instead of SS.)

However, there is a typical difficulty in SS-based MPC
for floating-point numbers. For the cases of integers or fixed-
point numbers, usually the addition is almost for free, i.e.,
executable locally at each party without communication. In
contrast, for floating-point numbers, the addition requires
complicated operations (e.g., alignment of the significands
according to the difference of exponents) and therefore is
much expensive (withmore than 27 rounds in [3]), evenmore
than the multiplication (11 rounds in [3]). As the addition is
the most fundamental operation, it is undoubtedly important
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Table 1 Comparison of the SS-based floating-point addition protocols. (*) The encoding format is
not compatible with [3]. (**) Changing probabilistically. (***) Depending on the signs of inputs (see
the main text). (†) Assuming the trusted initializer model for pre-computation (see the main text).

Protocol # of Rounding # of rounds Bit length Security
parties direction binary32 binary64 of encoding

[3] 3 Truncation 34 36 2l + 1 statistical
[7](∗) 3 Truncation 15 15 l + 1 statistical
[8] 3 unstable(∗∗) 19 19 l + 2 statistical
[9] 3 unstable(∗∗) 16 16 l + 2 statistical
[17] 2(†) unstable(∗∗∗) N/A N/A l + 2 perfect

Ours (trunc) 2(†) Truncation 13 13 l + 2 perfect
Ours (even) 2(†) Round-to-Even 15 15 l + 4 perfect

to improve the efficiency of the addition protocol. There
are studies of improving MPC for floating-point arithmetic
(including the addition) by combining SS with GC (e.g.,
[14], [22]). In this paper, we focus on SS-based (without
GC) 2PC for the floating-point addition; only few studies for
this topic exist in the literature (see Sect. 1.2).

1.2 Our Contributions

In this paper, we propose an improvement of SS-based secure
floating-point addition (and subtraction) with two computing
parties in the semi-honest model. For the binary64 format
in the IEEE 754 standard [15] (with 53-bit significand), our
proposed 2PC protocol requires only 13 rounds in the on-
line phase, which is approximately 36% of the number of
communication rounds (36 rounds) in [3] (the latter takes
log2 l + log2 log2 l + 27 rounds as shown in Table 1 of [3]
and we have dlog2 53+ log2 log2 53+27e = 36). Some com-
parisons with the existing results are summarized in Table 1;
see the text below for the details.

Asmentioned in Sect. 1.1, the 3PCprotocol in [3] can be
converted into 2PC by replacing the subprotocols with those
executable by 2PC. Instead of the aforementioned HE-based
ones in [1], here we use the round-efficient SS-based 2PC
protocols in a recent paper [20]. (The combination of our
construction with other kinds of round-efficient protocols
such as in [6] will be a future research topic.) However,
we emphasize that our protocol is not just a straightforward
combination of [20] with [3], as explained below.

In [3], each l-bit significand is encoded as a (2l + 1)-bit
(or larger) integer and the alignment of significands is done
by left-shift (toy example: treating 1.101 × 23 + 1.010 × 21

as (110.100 + 1.010) × 21). However, by this method, even
a binary32 (resp. binary64) number with l = 24 (resp. 53)
cannot be implemented by 32-bit (resp. 64-bit) integers. This
is not only inconvenient in implementation, but also a source
of inefficiency in a way that the efficiency of the subprotocols
in [20] depends largely on the bit length of integers, therefore
it is better to avoid unnecessarily large integers. Instead of
the left-shift alignment, here we adopt the opposite, right-
shift alignment for this purpose. However, we should also
take care of the fact that a naive use of right-shift may make
the direction of rounding unstable depending on the signs of
inputs. We explain it by toy examples. When 1.110 × 24 +
1.100 × 21 is treated as (1.110 + 0.001100) × 24, the exact

result 1.111100 × 24 is rounded down to 1.111 × 24. On the
other hand, when 1.110×24−1.100×21 is treated as (1.110−
0.001100) × 24, the exact result 1.100100 × 24 is rounded
up to 1.101 × 24. (This kind of error in fact happens in the
protocol of [17].) We avoid this issue by carefully combining
the left-shift and the right-shift, obtaining a correct protocol
with the significands encoded by just (l+2)-bit integers. See
Sect. 4.2 for details.

We note also that among the various rounding-direction
attributes in the IEEE 754 standard, the existing SS-based
floating-point addition protocols support roundTowardZero
only (i.e., the absolute value of the precise result is rounded
down). For simplicity, we call it Truncation mode in this
paper. On the other hand, our protocol (with two addi-
tional communication rounds) also supports roundTiesTo-
Even, which rounds the precise result to the nearest floating-
point number; we call it Round-to-Even mode in this paper.
In other words, our protocol newly supports the most accu-
rate mode for floating-point addition. See Sect. 4.3 for de-
tails. This would be useful in potential applications of MPC
where the accuracy is very important, e.g., secure numerical
simulations using expensive experimental data held by pri-
vate companies. As a toy example, based on our protocol
with Round-to-Even mode, we implemented a 2PC protocol
for error-free transformation for the sumof two floating-point
numbers (see e.g., [24]), which is a simple kind of Validated
Numerics (a.k.a. Rigorous Computation) in the area of nu-
merical analysis. See Sect. 6 for details. Our future research
topics include extension of our proposed protocol to other
arithmetic operations for floating-point numbers (i.e., multi-
plication and division).

We summarize comparison results of our proposed pro-
tocols with the existing SS-based MPC for floating-point
addition in Table 1 (we also note about other protocols in
[16], [21] where the number of communication rounds is
not clear and the improvement relative to [3] seems not very
large). We show the numbers of communication rounds in
the online phase for binary32 and binary64 formats. The
“Bit length of encoding” column shows the bit length of in-
tegers to which the l-bit significands are encoded during each
protocol. The “Security” column shows whether each pro-
tocol (assuming ideally generated randomness) is perfectly
secure or only statistically secure. In [7], the encoding for-
mat of floating-point numbers is slightly different from [3];
the signed significand is encoded as a single signed integer,
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while the sign bit and the unsigned significand are separated
in [3], therefore the protocol in [7] does not have compatibil-
ity with those in [3]. In [8], [9], some subprotocol inside the
whole protocol performs rounding probabilistically towards
one of the two directions. The protocols in [3], [7]–[9] use
imperfect random masking in some subprotocol and there-
fore have only statistical security. In [17], the number of
communication rounds is not clear, and its rounding direc-
tion is not stable as mentioned above. By Table 1, our 2PC
protocol (in Truncation mode) has round complexity even
smaller than the best known (accurate) 3PC protocol [7].
We note that our protocols (as well as the protocols in [20])
require somewhat complicated correlated randomness and
therefore the use of the so-called trusted initializer model,
such as the client-aided model (e.g., [18], [19]), in the offline
phase suits well.

1.3 Publication Information

A conference version of this work has been published in Pro-
ceedings of IWSEC 2020 [25]. Compared to the conference
version, we added more detailed explanations of correctness
of the main proposed protocols (such as Theorem 1) and of
some subprotocol (as Proposition 1), added more explana-
tion about client-aided secure multiplication (as Sect. 2.1.2),
and performed editorial improvements such as changing the
notation for shares for the sake of readability.

2. Preliminaries

2.1 Secure Multiparty Computation over Secret Sharing

2.1.1 Additive Secret Sharing and Secure Addition

This paper deals with two-party computation (2PC) based on
the following 2-out-of-2 additive secret sharing (SS) scheme
(Share,Reconst) over a ring M = Z/2nZ. For a plain-
text m ∈ M, the algorithm Share(m) chooses s0 ← M

uniformly at random, sets s1 ← m − s0, and outputs
〈m〉 = (〈m〉0, 〈m〉1) ← (s0, s1). Each 〈m〉i is called a share
of m for i-th party, and by abusing the terminology, the pair
〈m〉 is also called a share of m. On the other hand, for a
share 〈m〉 = (〈m〉0, 〈m〉1), the algorithm Reconst(〈m〉) out-
puts a plaintext 〈m〉0+ 〈m〉1. We note that the reconstruction
of the plaintext requires one communication round between
the two parties to send each party’s share to the other party.
When n = 1 and a plaintext is regarded as a bit, each share is
called a Boolean share and denoted by putting a superscript
‘B’ like 〈m〉B. Otherwise, each share is called an Arithmetic
share and denoted by putting a superscript ‘A’ like 〈m〉A.

Given twoArithmetic shares 〈m1〉
A and 〈m2〉

A (with the
same bit length n), addition of plaintexts is executable locally
(without communication) by adding each party’s shares;
〈m1 + m2〉

A
i ← 〈m1〉

A
i + 〈m2〉

A
i (i = 0,1). We write this pro-

tocol simply as 〈m1〉
A + 〈m2〉

A. Subtraction 〈m1〉
A − 〈m2〉

A

and scalar multiplication c · 〈m〉A can be locally executed in a
similar way. Addition by constant 〈m〉A + c can be also done

by using 〈c〉A = (c,0). By replacing + with ⊕, exclusive OR
(XOR) for Boolean shares 〈b1〉

B ⊕ 〈b2〉
B are obtained. Then

NOT operation is given by 〈b〉
B
= ¬〈b〉B = 〈b〉B ⊕ 1.

2.1.2 Client-Aided Secure Multiplication

Multiplication of plaintexts over the additive SS, denoted
by 〈m1 · m2〉

A = 〈m1〉
A · 〈m2〉

A, can be executed with one
communication round sending one share to each other,
by using auxiliary inputs (〈a〉A, 〈b〉A, 〈c〉A) called Beaver
Triple (BT) where a, b ∈ M are uniformly random and
not known by any party and we have c = ab. See e.g.,
[20] for the concrete protocol construction. Boolean AND
〈b1 ∧ b2〉

B = 〈b1〉
B ∧ 〈b2〉

B can be computed similarly
(with one round sending one bit each), and Boolean OR
〈b1 ∨ b2〉

B = 〈b1〉
B ∨ 〈b2〉

B can be computed as well with
the same communication complexity (by combiningBoolean
AND with locally executable Boolean NOT).

In this paper, we assume that any auxiliary input such as
BT is ideally generated in the offline phase. For example, this
may be realized by adopting client-aided model [18], [19] for
SS-basedMPC (which is a kind of so-called trusted initializer
model) where some trusted party other than the computing
parties is supposed to be active only at the offline phase and
to generate and send the necessary auxiliary inputs to the
computing parties.

2.1.3 Security Notion

Here we explain the security notion for MPC specialized to
the two-party case, as we only deal with 2PC in this paper.
Suppose that two parties P0 and P1 compute functionality
f (x0, x1) = ( fi(x0, x1))

1
i=0 with input xi for Pi . Let the view

Viewi(x0, x1) for Party Pi during a protocol be the chrono-
logical list of all messages sent from the other party to Pi

together with the local input xi and the internal random-
ness for Pi used in the protocol. Let Out(x0, x1) denote the
pair of the two parties’ outputs at the end of the protocol.
Then we say that a protocol is secure (in the semi-honest
model) against Pi if there is a probabilistic polynomial-time
algorithm Si satisfying that the probability distribution of
the pair (Si(xi, fi(x0, x1)), f (x0, x1)) is indistinguishable from
the probability distribution of (Viewi(x0, x1),Out(x0, x1)); see
e.g., Definition 7.5.1 of [13]. In particular, when the two
distributions above are identical (resp. statistically indistin-
guishable), the protocol is said to be perfectly (resp. statisti-
cally) secure.

The Composition Theorem (Theorem 7.5.7 of [13])
states, roughly speaking, that if a protocol Π(g1 ,...,gL ) us-
ing oracles computing functionalities g1, . . . , gL is secure
and each gj can be computed securely, then the protocol ob-
tained by replacing each oracle call for gj in Π(g1 ,...,gL ) with
the secure protocol computing gj is also secure. Now we
note that, in any protocol proposed in this paper, the subpro-
tocols used in the protocol are known to be secure, while the
protocol assuming ideal subprotocols is trivially secure as
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the parties send data to each other only during some subpro-
tocol; as a result, the whole protocol is proven secure due to
the Composition Theorem. According to this fact, in the rest
of this paper we safely omit discussions about the security
of our proposed protocols.

2.2 Floating-Point Numbers

2.2.1 Floating-Point Representation

The floating-point numbers are the most common way of
representing in computers an approximation to real numbers.
Here, we explain the details of binary floating-point formats.

The set of all floating-point numbers consists of fi-
nite numbers (including normalized numbers, unnormalized
numbers, and zero), infinities, and NaN (not-a-number). For
simplicity we only treat normalized numbers and zero.

Following the format in [3], a floating-point number x
is defined as a tuple ( f , e, s, z), where f ∈ [2l−1,2l − 1] ∪ {0}
is the unsigned, normalized significand, e ∈ Z/2kZ is the
biased exponent, s is the sign bit which is set to 1 when the
value is negative, and z is the zero-test bit which is set to 1
if and only if x = 0. The value of the number is

x = (1 − 2s) · (1 − z) · 2−l+1 f · 2e−bias ,

where bias = 2k−1 − 1. We note that both f and e are set to
0 when x is zero.

The parameters l, k are not secret and determine the pre-
cision and range of the numbers, and these parameters affect
the numbers of communication rounds and the computa-
tional complexity of the protocols. In this paper, we focus
on (l, k) = (24,8) which corresponds to IEEE 754 single
precision, and (l, k) = (53,11) which corresponds to IEEE
754 double precision [15]. For example, if (l, k) = (24,8),
then the value x = 1.0 is represented as

f = 10 · · · 0︸  ︷︷  ︸
24

, e = 0 + (28−1 − 1) = 127 , s = 0 , z = 0 .

2.2.2 Floating-Point Addition/Subtraction and Rounding
Mode

The floating-point addition/subtraction is executed as fol-
lows:

1. Compare the absolute values of the two numbers.

2. Shift the smaller absolute value to the right until its
exponent would match the larger exponent.

3. Add or subtract the significands.

4. Normalize the result, either shifting right and incre-
menting the exponent or shifting left and decrementing
the exponent.

5. Round the significand to the appropriate number of bits.

6. Check if the result is still normalized or not. If the result

is not normalized, normalize the result again.

In this paper, we assume for simplicity that no overflow or
underflow occurs in addition/subtraction. We note that there
are no SS-based protocols for floating-point arithmetic in the
literature that handle overflow or underflow. An extension of
our result to handling overflow/underflow detection as well
is left as a future research topic.

IEEE 754 standard defines five rounding rules;
roundTiesToEven, roundTies-ToAway, roundTowardPosi-
tive, roundTowardNegative, and roundTowardZero. The first
two rules round to a nearest value, the others are called di-
rected roudings. In this paper, we use roundTiesToEven (we
call it Round-to-Even mode) and roundTowardZero (we call
it Truncation mode).

Round-to-Even mode rounds to the nearest value. With
this mode, if two candidate values with equal distance exist,
the number is rounded to the one with the least significant bit
being 0. This mode is the most commonly used. Truncation
mode is a direct rounding towards zero. Note that we have
to check once that the intermediate result is normalized after
rounding with Round-to-Even mode, but we do not need this
check in Truncation mode.

2.2.3 Extra Bits to Obtain Accurate Result

To get the same result as if the intermediate result were calcu-
lated with infinite precision and then rounded, the following
bits are defined for determining the magnitude lower than
the units in the last place (ulp); guard bit has weight 1/2
ulp, round bit has weight 1/4 ulp, and sticky bit is the OR
of all bits with weight 1/8 ulp or lower. With these three
extra bits, we can obtain accurate result with Round-to-Even
mode. By almost the same idea, we can obtain accurate
result with Truncation mode using one extra bit, which is set
whenever there is some nonzero bit to the right of ulp.

3. The Previous Works

3.1 Secure Floating-Point Operations

In [3], SS-based protocols to compute fundamental arith-
metic operations (including the addition) and some advanced
functions for floating-point numbers are proposed. In their
protocols, the two components f , e in the format described
in Sect. 2.2.1 are treated as Arithmetic shares and the other
two components s, z are treated as Boolean shares.

In the addition protocol of [3], first the two input num-
bers are sorted with respect to their significands (which re-
quires secure comparison protocol) for the ease of the re-
maining steps. Then, in contrast to the addition algorithm
for plain (non-secret) inputs explained in Sect. 2.2.2, the pro-
tocol in [3] aligns the significands by using left-shift instead
of right-shift (see also an explanation in Sect. 1.2); this is
convenient to ensure the accuracy of the resulting value,
while this requires (almost) twice the bit length of integers
to hold the intermediate significand. After that, the most
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Table 2 Numbers of communication rounds for the subprotocols in [20] (upper part) and our sub-
protocols in Sect. 4.1 (lower part); here Arithmetic shares are n-bit integers. (*) β j = 1 if and only if
b j = 1 and bk = 0 for any k > j. (**) b = 1 if and only if (〈x 〉A0 mod 2k ) + (〈x 〉A1 mod 2k ) ≥ 2k .
(***) Here x = (xn−1 · · · x1x0)2 in binary.

Protocol Functionality # of communication rounds
(n = 8) (n ∈ {16, 32, 64})

〈z 〉 ← N -Mult((〈x j 〉)Nj=1) z = x1 · · · xN 1 1

〈b〉B ← Equality(〈x 〉A , 〈y〉A) b = (x
?
= y) 1 2

(〈β j 〉
B)N−1

j=0 ← MSNZB((〈b j 〉
B)N−1

j=0 ) (*) 1 2
〈b〉B ← Overflow(〈x 〉A , k) (**) 1 2

〈b〉B ← Comparison(〈x 〉A , 〈y〉A) b = (x
?
< y) 2 3

〈z 〉A ← B2A(〈b〉B) z = b 1 1
〈z 〉A ← 〈b〉B × 〈x 〉A z = b · x 1 1
〈z 〉A ← 〈b〉B × 〈c〉B z = b · c 1 1

〈z 〉A ← 〈b〉B × 〈c〉B × 〈x 〉A z = b · c · x 1 1

〈b〉B ← Modeq(〈x 〉A , k) b = (x mod 2k ?
= 0) 1 2

〈b〉B ← Extractbit(〈x 〉A , k) b = xk (***) 1 2
(〈b[j]〉B)n−1

j=0 ← Bitdec(〈x 〉A) b[j] = x j (***) 1 2

significant non-zero bit of the intermediate significand is
searched (which requires secure bit extraction protocol) and
the intermediate significand is normalized by an appropriate
shift. The protocol also includes procedures to handle some
exceptional case (e.g., one of the two inputs is zero) and to
maintain the bits s and z correctly. Here we omit the details
of their protocol (see the original paper [3]), but we note that
it is a three-party computation (3PC) protocol and it (with
l-bit significands for inputs) takes log2 l + log2 log2 l + 27
rounds. This becomes 34 and 36 rounds for binary32 and
binary 64 inputs with l = 24 and 53, respectively.

3.2 Round-Efficient Protocols over Secret Sharing

In our proposed protocols, we use the 2PC protocols in [20]
as subprotocols. We omit their concrete constructions here
and only refer to [20]. Their functionalities and numbers of
communication rounds are listed in the upper part of Table 2.

We note that in [20], the N-fan-in multiplication (N-
Mult) for N > 2 (and similarly, N-fan-inAND/OR) is realized
with one round by introducing an extension of Beaver Triple
(BT) called Beaver Triple Extension (BTE). The fan-in num-
ber N can in principle be arbitrary, but the computational and
the communication costs grow exponentially in N , therefore
the choice of N is limited as N ≤ 9 in [20]. For the Equality
protocol, roughly speaking, the computation is reduced to
the computation of OR for at most n significant bits of the
input; by using N-OR’s for N ≤ 9, it takes two rounds when
n ∈ {16,32,64} as described in [20], while it can be done
simply with one round for n = 8. The situation is similar for
themost significant non-zero bit search protocolMSNZB, the
overflow detection protocolOverflow, and the less-than com-
parison protocol Comparison, where the number of rounds
for n = 8 is fewer than those for n ∈ {16,32,64} by one.
On the other hand, the Boolean-to-Arithmetic conversion
protocol B2A and the multiplication protocols for Boolean
and Arithmetic inputs (regarded as Arithmetic values) are

executable with one round for any n ∈ {8,16,32,64}.
We note that, in our proposed protocols in this paper, we

only need N-Mult for N ≤ 5 (with atmost (25−1)n = 31n bits
of BTE) and N-AND/OR for N ≤ 9 (with atmost 29−1 = 511
bits of BTE), therefore the communication complexity of our
protocol in the offline phase is not too large.

4. Our Proposed Protocols

4.1 Some More Subprotocols

Here we present some more subprotocols to be used in our
proposed protocols. Their functionalities and numbers of
communication rounds are listed in the lower part of Table 2.

4.1.1 Modeq

A protocol Modeq(〈x〉A, k) outputs 〈b〉B, where b = 1 if
and only if (x mod 2k) = 0. By almost the same idea as
Equality, we can construct this protocol with the same num-
ber of communication rounds as Equality owing to the rela-
tion x mod 2k = (〈x〉A0 mod 2k) + (〈x〉A1 mod 2k) in Z/2kZ.

4.1.2 Extractbit

A protocol Extractbit(〈x〉A, k) outputs 〈b〉B, where b = xk
is the (k + 1)-th least significant bit of (binary expanded)
x = (xn−1 · · · x1x0)2. Using Overflow, we can construct
Extractbit with the same number of communication rounds
as follows, where Overflow(〈x〉A, k) is a protocol to output
a share 〈b〉B with the property that b = 1 if and only if
(〈x〉A0 mod 2k) + (〈x〉A1 mod 2k) ≥ 2k :

1. Pi (i ∈ {0,1}) locally extend 〈x〉Ai to binary and obtain
a bit string (〈t[n − 1]〉Bi , · · · , 〈t[0]〉

B
i ), then set 〈v〉Bi =

〈t[k]〉Bi . Pi also compute 〈w〉B ← Overflow(〈x〉A, k).
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2. Pi compute 〈z〉B = 〈v〉B ⊕ 〈w〉B.

Proposition 1. The protocol above correctly computes the
functionality of Extractbit.

Proof. By noting that the (k + 1)-th least significant bit of
〈x〉Ai is now denoted by 〈t[k]〉Bi , if an overflow from the
lower bit in the binary addition of 〈x〉A0 + 〈x〉

A
1 does not

occur, then the (k + 1)-th least significant bit of x is equal
to 〈t[k]〉B0 + 〈t[k]〉

B
1 mod 2 = 〈v〉B0 ⊕ 〈v〉

B
1 = v. On the other

hand, if an overflow from the lower bit occurs, then the
(k + 1)-th least significant bit of x is the negation of the v.
As the occurrence of the overflow is detected by the bit w,
the claim holds. �

4.1.3 Bitdec

Abit decomposition protocolBitdec(〈x〉A) outputs aBoolean
share vector 〈b〉B = (〈b[n − 1]〉B, · · · , 〈b[0]〉B), where
b[k] = xk is the (k + 1)-th least significant bit of (binary
expanded) x. We can construct Bitdec by parallelly execut-
ing Extractbit n times.

4.2 Addition/Subtraction in Truncation Mode

Here we show our proposed floating-point addition protocol
in Truncation mode (Algorithm 1). We abuse some nota-
tions; for example, we write 〈b〉B × 〈x〉A protocol simply as
〈b〉B〈x〉A. In the algorithm, the numbers at the right sidewith
symbols ‘.’ denote the numbers of communication rounds
required for each step; for example, Step 1 takes three rounds
where Comparison to compute 〈c〉B is dominant among the
parallel processes. We note that, for example, the formula
to compute 〈 f ′min〉

A in Step 4 seems to require two consecu-
tive multiplications, but this description is just for clarifying
the structure of the formula, and the actual computation is
performed with its expanded form

l∑
j=0
〈t[ j]〉B〈t ′[ j]〉A − 2

l∑
j=0
〈s2〉

B〈t[ j]〉B〈t ′[ j]〉A

which requires only one round. Similar conventions for
descriptions of functions are also adopted in several places.
Summarizing, the total number of communication rounds is
13 for both binary32 and binary64 floating-point numbers.

Theorem 1. Algorithm 1 correctly computes the functional-
ity of floating-point addition in Truncation mode.

Proof. In our encoding rule, the zero value xi = 0 is repre-
sented by ( fi, ei, si, zi) = (0,0,0,1). First we discuss excep-
tional cases where at least one of the input values is zero.

• We suppose that x0 = 0, i.e., ( f0, e0, s0, z0) = (0,0,0,1).
As z0 = 0, in Step 5 we have z2 = z3 = 0. Therefore, in
Step 6 we have f = f1 and e = e1. On the other hand, in
Step 1we have s2 = s1, and in Step 2we have s = a∧s1⊕

b∧c∧s1 and z = b∧b′∧s1⊕ z1. Now if x1 = 0, then we
have ( f1, e1, s1, z1) = (0,0,0,1), therefore s = 0 ⊕ 0 = 0
and z = 0 ⊕ 1 = 1. Hence ( f , e, s, z) = (0,0,0,1), which
corresponds to the property x0 + x1 = 0. On the other
hand, if x1 , 0, then we have e1 > 0 and z1 = 0. This
implies that a = 1 and b = 0, therefore s = s1 ⊕ 0 = s1
and z = 0 ⊕ z1 = z1. Hence ( f , e, s, z) = ( f1, e1, s1, z1),
which corresponds to the property x0 + x1 = x1.

• We suppose that x1 = 0, i.e., ( f1, e1, s1, z1) = (0,0,0,1),
and x0 , 0, i.e., e0 > 0 and z0 = 0 (note that the case
x0 = x1 = 0 has been considered above). By a similar
argument, in Step 5 we have z2 = z3 = 0, and in Step 6
we have f = f0 and e = e0. Moreover, in Steps 1 and
2, we have a = b = 0, s = 0 ⊕ 0 ⊕ s0 ⊕ 0 ⊕ 0 = s0,
and z = 0 ⊕ z0 = z0. Hence ( f , e, s, z) = ( f0, e0, s0, z0),
which corresponds to the property x0 + x1 = x0.

From now, we consider the other case where x0 , 0
and x1 , 0, i.e., z0 = z1 = 0. Then by Step 2, we have
z = 1 if and only if b = b′ = s2 = 1, i.e., (e0, f0) = (e1, f1)
and s0 , s1. The latter means that x0 and x1 have the same
absolute value and different signs, which is equivalent to
x0 + x1 = 0. Hence the value of z is correct.

During Steps 1 and 2, the algorithm swaps the inputs
(x0, x1) to (xmax, xmin) so that they are ordered by magnitude,
and computes the corresponding significands and exponents,
denoted by fmax, fmin, emax, emin, respectively. These steps
also compute the sign bit s for the output of this protocol.
The algorithm also computes e∆ = emax − emin and s2 =
s0 ⊕ s1. Here s2 determines whether to perform addition
or subtraction of the significands; if s2 = 0 (the signs of
inputs are the same), the values are being added; otherwise
they are being subtracted. We explain the correctness of the
behaviors of Steps 1 and 2 by case-by-case analysis:

• If e0 < e1 (i.e., a = 1 and b = 0), then (regardless of
the values of c and b′) we have emax = e1, emin = e0,
fmax = f1, fmin = f0, and s = s1. This corresponds to
the property that the absolute value of x1 is dominant
among the two inputs.

• If e0 > e1 (i.e., a = b = 0), then (regardless of the
values of c and b′) we have emax = e0, emin = e1,
fmax = f0, fmin = f1, and s = s0. This corresponds to
the property that the absolute value of x0 is dominant
among the two inputs.

• If e0 = e1 (i.e., a = 0 and b = 1), then we have
emax = e0 = e1 = emin,

fmax = c · f1 + c · f0 , fmin = c · f0 + c · f1 .

Hence we have (emax, fmax, emin, fmin) = (e1, f1, e0, f0)
if f0 < f1 (i.e., c = 1), and (emax, fmax, emin, fmin) =
(e0, f0, e1, f1) if f1 ≥ f0 (i.e., c = 0). This is the desired
behavior. Moreover:

– If f0 < f1, i.e., the absolute value of x1 is dom-
inant, then we have c = 1 and b′ = 0, therefore
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Algorithm 1 FLADDtrunc
Functionality: 〈x 〉 ← FLADDtrunc(〈x0 〉, 〈x1 〉)
Ensure: 〈x 〉, where x = x0 + x1.
1: Pi (i ∈ {0, 1}) parallelly compute . 3

〈a〉B ← Comparison(〈e0 〉
A , 〈e1 〉

A),
〈b〉B ← Equality(〈e0 〉

A , 〈e1 〉
A),

〈c〉B ← Comparison(〈 f0 〉A , 〈 f1 〉A),
〈b′〉B ← Equality(〈 f0 〉A , 〈 f1 〉A),

and then locally compute
〈s2 〉

B ← 〈s0 〉
B ⊕ 〈s1 〉

B.
2: Pi parallelly compute . 1

〈emax 〉A ← 〈a〉B 〈e1 〉
A + 〈a〉

B
〈e0 〉

A,
〈emin 〉A ← 〈a〉B 〈e0 〉

A + 〈a〉
B
〈e1 〉

A,
〈 fmax 〉A ← 〈a〉B 〈 f1 〉

A + 〈b〉B 〈c〉B 〈 f1 〉
A + 〈a〉

B
〈b〉

B
〈 f0 〉

A + 〈b〉B 〈c〉
B
〈 f0 〉

A,
〈 fmin 〉A ← 〈a〉B 〈 f0 〉

A + 〈b〉B 〈c〉B 〈 f0 〉
A + 〈a〉

B
〈b〉

B
〈 f1 〉

A + 〈b〉B 〈c〉
B
〈 f1 〉

A,
〈s〉B ← 〈a〉B 〈s1 〉

B ⊕ 〈b〉B 〈c〉B 〈s1 〉
B ⊕ 〈a〉

B
〈b〉

B
〈s0 〉

B ⊕ 〈b〉B 〈c〉
B
〈b′〉

B
〈s0 〉

B ⊕ 〈b〉B 〈b′〉B 〈s2 〉
B
〈s0 〉

B,
〈z 〉B ← 〈b〉B 〈b′〉B 〈s2 〉

B ⊕ 〈z0 〉
B 〈z1 〉

B,
and then locally compute

〈e∆ 〉
A ← 〈emax 〉A − 〈emin 〉A.

3: For j = 0, 1, · · · , l, Pi parallelly compute . 3
〈t[j]〉B ← Equality(〈e∆ 〉A , j),
〈t′[j]〉A ← Rightshift(2〈 fmin 〉A , j),
〈t′′[j]〉A ← B2A(¬Modeq(2〈 fmin 〉A , j)),

and then locally compute
〈c1 〉

B ← ¬
⊕l

j=0 〈t[j]〉
B.

4: Pi parallelly compute . 1
〈 f ′min 〉

A ← (1 − 2〈s2 〉
B)

∑l
j=0 〈t[j]〉

B 〈t′[j]〉A,
〈δ 〉A ← −〈s2 〉

B(〈c1 〉
B +

∑l
j=0 〈t[j]〉

B 〈t′′[j]〉A),
and then locally compute

〈 f2 〉
A ← 2〈 fmax 〉A + 〈 f ′min 〉

A + 〈δ 〉A.
5: Pi compute . 4

〈d〉B ← Bitdec(〈 f2 〉A),
and then compute

〈d′〉B ← MSNZB(〈d〉B).
Parallelly, Pi compute

〈 f [j]〉A ← 2l− j−1 〈 f2 〉
A for j ∈ {0, · · · , l − 1},

〈 f [j]〉A ← Rightshift(〈 f2 〉A , j − l + 1) for j ∈ {l, l + 1},
〈z2 〉

B ← 〈z0 〉
B
〈z1 〉

B
.

〈z3 〉
B ← 〈z 〉

B
〈z0 〉

B
〈z1 〉

B
.

6: Pi parallelly compute . 1
〈 f 〉A ← 〈z2 〉

B ∑l+1
j=0 〈d

′[j]〉B 〈 f [j]〉A + 〈z1 〉
B 〈 f0 〉

A + 〈z0 〉
B 〈 f1 〉

A,
〈e〉A ← 〈z3 〉

B(〈emax 〉A +
∑l+1

j=0(j − l)〈d
′[j]〉B) + 〈z1 〉

B 〈e0 〉
A + 〈z0 〉

B 〈e1 〉
A.

7: return (〈 f 〉A , 〈e〉A , 〈s〉B, 〈z 〉B).

s = 0 ⊕ s1 ⊕ 0 ⊕ 0 ⊕ 0 = s1, as desired.
– If f0 > f1, i.e., the absolute value of x0 is

dominant, then we have c = b′ = 0, therefore
s = 0 ⊕ 0 ⊕ 0 ⊕ s0 ⊕ 0 = s0, as desired.

– If f0 = f1, i.e., |x0 | = |x1 |, then we have c = 0 and
b′ = 1, therefore

s = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ s2 · s0 = s2 · s0 .

If s0 = s1 (i.e., x0 = x1), then we have s2 = 0
and s = s0, which corresponds to the property
x0 + x1 = 2x0. On the other hand, if s0 , s1 (i.e.,
x0 = −x1), then we have s2 = 1 and s = 0, which
corresponds to the property x0 + x1 = 0.

Therefore Steps 1 and 2 behave as described above.
In Steps 3 and 4, we implement the addition/subtraction

of the significands (depending on either s2 = 0 or s2 =
1); we compute f2 = 2 fmax ± (2 fmin � e∆) + δ. In the
addition/subtraction of the significands, we execute 1-bit left-
shift for both of the significands (see below for the reason
of the left-shift) and then execute right-shift alignment using
e∆. δ is a correction term; δ = −1 if subtraction is performed
and there is any bit 1 in the least e∆ bits of 2 fmin (in this case,
2 fmax−(2 fmin � e∆) is the rounding up of the exact value and
hence it should be further subtracted by one to be rounded
down), and δ = 0 otherwise. By this method, we can get
the intermediate result f2 needed for accurate rounding in
Truncation mode. Note that f2 is at most (l + 2)-bit integer.

Note for the left-shift: For addition, or subtraction with
e∆ = 0, no accuracy loss occurs here. We consider sub-
traction with e∆ > 0. If e∆ ≥ 2, then at most 1-bit loss of
accuracy may happen, and the 1-bit left-shift is sufficient for
preventing the accuracy loss. On the other hand, if e∆ = 1,
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Algorithm 2 FLADDeven
Functionality: 〈x 〉 ← FLADDeven(〈x0 〉, 〈x1 〉)
Ensure: 〈x 〉, where x = x0 + x1.
1: Pi (i ∈ {0, 1}) parallelly compute . 3

〈a〉B ← Comparison(〈e0 〉
A , 〈e1 〉

A),
〈b〉B ← Equality(〈e0 〉

A , 〈e1 〉
A),

〈c〉B ← Comparison(〈 f0 〉A , 〈 f1 〉A),
〈b′〉B ← Equality(〈 f0 〉A , 〈 f1 〉A),

and locally compute
〈s2 〉

B ← 〈s0 〉
B ⊕ 〈s1 〉

B.
2: Pi parallelly compute . 1

〈emax 〉A ← 〈a〉B 〈e1 〉
A + 〈a〉

B
〈e0 〉

A,
〈emin 〉A ← 〈a〉B 〈e0 〉

A + 〈a〉
B
〈e1 〉

A,
〈 fmax 〉A ← 〈a〉B 〈 f1 〉

A + 〈b〉B 〈c〉B 〈 f1 〉
A + 〈a〉

B
〈b〉

B
〈 f0 〉

A + 〈b〉B 〈c〉
B
〈 f0 〉

A,
〈 fmin 〉A ← 〈a〉B 〈 f0 〉

A + 〈b〉B 〈c〉B 〈 f0 〉
A + 〈a〉

B
〈b〉

B
〈 f1 〉

A + 〈b〉B 〈c〉
B
〈 f1 〉

A,
〈s〉B ← 〈a〉B 〈s1 〉

B ⊕ 〈b〉B 〈c〉B 〈s1 〉
B ⊕ 〈a〉

B
〈b〉

B
〈s0 〉

B ⊕ 〈b〉B 〈c〉
B
〈b′〉

B
〈s0 〉

B ⊕ 〈b〉B 〈b′〉B 〈s2 〉
B
〈s0 〉

B,
〈z 〉B ← 〈b〉B 〈b′〉B 〈s2 〉

B ⊕ 〈z0 〉
B 〈z1 〉

B,
and then locally compute

〈e∆ 〉
A ← 〈emax 〉A − 〈emin 〉A.

3: For j = 0, 1, · · · , l + 1, Pi parallelly compute . 3
〈t[j]〉B ← Equality(〈e∆ 〉A , j),
〈t′[j]〉A ← Rightshift(4〈 fmin 〉A , j),
〈t′′[j]〉A ← B2A(¬Modeq(4〈 fmin 〉A , j)),

and then locally compute
〈c1 〉

B ← ¬
⊕l+1

j=0 〈t[j]〉
B.

4: Pi parallelly compute . 1
〈 f ′min 〉

A ← (1 − 2〈s2 〉
B)

∑l+1
j=0 〈t[j]〉

B 〈t′[j]〉A,
〈δ 〉A ← (1 − 2〈s2 〉

B)(〈c1 〉
B +

∑l+1
j=0 〈t[j]〉

B 〈t′′[j]〉A),
and then locally compute

〈 f2 〉
A ← 8〈 fmax 〉A + 2〈 f ′min 〉

A + 〈δ 〉A.
5: Pi parallelly compute . 6

〈d〉B ← Bitdec(〈 f2 〉A), 〈S〉B ← ¬Modeq(〈 f2 〉A , 2),
and then compute

〈d′〉B ← MSNZB(〈d〉B),
〈r[l + 3]〉A ← 〈d[3]〉B 〈d[2]〉B ⊕ 〈d[3]〉B 〈d[2]〉

B
〈S〉B ⊕ 〈d[4]〉B 〈d[3]〉B 〈d[2]〉

B
〈S〉

B
,

〈r[l + 2]〉A ← 〈d[2]〉B 〈d[1]〉B ⊕ 〈d[2]〉B 〈d[1]〉
B
〈d[0]〉B ⊕ 〈d[3]〉B 〈d[2]〉B 〈d[1]〉

B
〈d[0]〉

B
,

〈r[l + 1]〉A ← 〈d[1]〉B 〈d[0]〉B ⊕ 〈d[2]〉B 〈d[1]〉B 〈d[0]〉
B
.

Parallelly, Pi compute
〈 f [j]〉A ← 2l− j−1 〈 f2 〉

A for j ∈ {2, · · · , l − 1},
〈 f [j]〉A ← Rightshift(〈 f2 〉A , j − l + 1) for j ∈ {l, · · · , l + 3},

then locally compute
〈 f [j]〉A ← 〈 f [j]〉A + 〈r[j]〉A for j ∈ {l + 1, l + 2, l + 3},

then compute
〈of[j]〉B ← Equality(〈 f [j]〉A , 2l ) for j ∈ {l + 1, l + 2, l + 3}.

6: Pi parallelly compute . 1
〈 f 〉A ←

∑l
j=2 〈d

′[j]〉B 〈 f [j]〉A +
∑l+3

j=l+1 〈d
′[j]〉B(〈of[j]〉

B
〈 f [j]〉A + 〈of[j]〉B2l−1),

〈e〉A ← 〈z 〉
B
〈emax 〉A +

∑l
j=2(j − l − 2)〈d′[j]〉B +

∑l+3
j=l+1(j − l − 2 + 〈of[j]〉B)〈d′[j]〉B.

7: return (〈 f 〉A , 〈e〉A , 〈s〉B, 〈z 〉B).

then the 1-bit left-shift can keep all the bits of fmin even
after the e∆ ( = 1)-bit right-shift, therefore no accuracy loss
happens as well. Hence the accuracy is kept in any case.

In Steps 5 and 6, we normalize the significand. We
compute the most significant non-zero bit (MSNZB) of f2
and rounds f2 to l-bit integer by either right-shift (when
MSNZB is at the l-th or (l + 1)-th least bit) or left-shift
(otherwise). We also adjust the exponent of xmax to obtain
the resulting exponent according to the position of MSNZB.
This gives the correct output. �

4.3 Addition/Subtraction in Round-to-Even Mode

Here we show our proposed floating-point addition protocol
in Round-to-Even mode (Algorithm 2). The notations and
conventions are the same as the case of Truncation mode,
and the total number of communication rounds is 15 for both
binary32 and binary64 floating-point numbers.

Theorem 2. Algorithm 2 correctly computes the functional-
ity of floating-point addition in Round-to-Even mode.

Proof. We note that Steps 1 and 2 of Algorithm 2 are ex-
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actly the same as Steps 1 and 2 of Algorithm 1 (Truncation
mode), therefore the argument to Algorithm 1 is also appli-
cable. The processes during Steps 3 and 4 are also almost the
same as Truncation mode, except that now we perform 3-bit
(instead of 1-bit) left-shift to keep the information on the
guard bit, the round bit, and the sticky bit (see Sect. 2.2.3 for
the terminology). More precisely, fmin is 2-bit left-shifted
first to keep the guard bit and the round bit, and then 1-bit
left-shifted later to reserve the space for the sticky bit. On
the other hand, the correction bit δ now plays the role of the
sticky bit for fmin. Note that now the intermediate significand
f2 is at most (l + 4)-bit integer.

In Step 5, which is the main modification from the
case of Truncation mode, we decide whether f2 has to be
rounded up or rounded down. We divide the argument into
the following cases depending on the place of the MSNZB
of f2.

• When MSNZB is the (l + 3)-th least bit: now the guard
bit G is d[3], the round bit R is d[2], and the sticky bit
is S = d[1] ∨ d[0]. If G = 0, then it should be rounded
down, which is represented by setting r[l + 3] = 0.
From now, we consider the other case G = 1. If R =
1 or S = 1, then it should be rounded up, which is
represented by setting r[l + 3] = 1. In the other case
where R = S = 0, it should be rounded up if and only
if d[4] = 1 due to the rounding rule in Round-to-Even
mode. This is correctly expressed by the formula of
r[l + 3] in the algorithm.

• When MSNZB is the (l + 2)-th or (l + 1)-th least bit:
now the argument is similar to the previous case; in fact,
the case of (l + 1)-th least bit is even simpler because
now the sticky bit is always zero.

• Otherwise: by the same argument as the case of Trun-
cation mode, such a large move of the place of MSNZB

Table 3 Experimental results on our proposed 2PC protocols for floating-point addition over simulated
WAN with 10MB/s bandwidth and 40ms RTT latency.

Offline Online
Batch Comp. Comm. Comp. Comm. Data trans. Comm. Total
size time (s) size (bit) time (s) size (bit) time (ms) latency (s) time (s)

Truncation mode (binary32)
1 0.163 352, 565 0.065 74, 373 0.930 0.520 0.586
10 1.538 3, 525, 650 0.079 743, 730 9.297 0.608
100 13.697 35, 256, 500 0.175 7, 437, 300 92.966 0.788
1000 145.553 352, 565, 000 1.758 74, 373, 000 929.663 3.208

Truncation mode (binary64)
1 1.075 2, 506, 416 0.131 324, 617 4.058 0.520 0.655
10 15.739 25, 064, 160 0.223 3, 246, 170 40.577 0.784
100 160.971 250, 641, 600 1.405 32, 461, 700 405.771 2.331

Round-to-Even mode (binary32)
1 0.185 298, 923 0.077 64, 095 0.801 0.600 0.678
10 1.639 2, 989, 230 0.089 640, 950 8.012 0.697
100 14.408 29, 892, 300 0.177 6, 409, 500 80.119 0.857
1000 141.476 298, 923, 000 1.526 64, 095, 000 801.188 2.927

Round-to-Even mode (binary64)
1 1.718 2, 265, 310 0.135 270, 835 3.385 0.600 0.738
10 16.038 22, 653, 100 0.227 2, 708, 350 33.854 0.861
100 162.959 226, 531, 000 1.329 27, 083, 500 338.544 2.268

(which was originally at the (l + 3)-th least bit) can oc-
cur only when e∆ ≤ 1. In such a case, the least two bits
d[1] and d[0] are always zero due to the 3-bit left-shift,
therefore all the necessary information is involved in the
bits d[l], d[l − 1], . . . , d[2] and only the normalization
(without any rounding) is sufficient.

These arguments show that the direction of rounding is cor-
rectly chosen in the algorithm. However, we have another
possibility to concern, which was not necessary in Trunca-
tion mode. That is, in the new case of rounding up, the bit
length of the significand may be increased from l to l + 1.
This happens only in the case 11 · · · 1 7→ 100 · · · 0; in the al-
gorithm, this possibility is checked by using the bits “of[ j]”,
and the resulting output is adjusted according to the values
of of[ j]’s. This gives the correct output. �

5. Experimental Results

We implemented our proposed protocols and performed ex-
periments for the addition of two floating-point numbers.
The results are summarized in Table 3.

In our experiments, the computation (Comp.) times
(sec) assuming the client-aided model and the communica-
tion (Comm.) sizes (bit) for each party were measured for
the offline and the online phases separately; the offline com-
municationmeans communication sending the pre-generated
BTs/BTEs from the client to each computing party. The com-
putation times shown in the table are averages of 10 trials for
each parameter setting. To calculate the data transfer (trans.)
time (msec) and the communication latency in total for the
online phase, we did not use a real network and, instead,
adopted the following simulated WAN environment setting
which is the same as [20]: 10MB/sec (= 80000 bit/msec)
bandwidth and 40 ,msec round-trip time (RTT) latency. Our
protocols were implemented on a single laptop computer
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with Intel Core i7-820HQ 2.9GHz and 16.0GB RAM, and
with Python3.7 and Numpy v1.16.3.

For inputs with binary32 formats, we performed the ex-
periments for the cases of 1/10/100/1000 batches; the compu-
tation and the data transfer times grow as the batch numbers
increase, while the communication latency depends only on
the number of communication rounds (13 rounds) and is in-
dependent of the batch numbers. For the case of binary64
inputs (with 15 rounds), we performed the experiments sim-
ilarly for the cases of 1/10/100 batches; the larger batches
could not be performed due to memory error.

Our experimental results show that in the online phase,
the communication latency is dominant among the total exe-
cution time especially for small batches (e.g., ≤ 100 batches
for binary32 and ≤ 10 batches for binary64). In such cases,
our improvement in reducing the communication rounds in
this paper has given significant effects to reduce the total on-
line execution time. On the other hand, for the offline phase,
the computation time might be reducible by just improving
the implementation, while improvements of protocol designs
are needed to reduce the communication size further, which
is an important future research topic.

Algorithm 4 swap
Functionality: (〈y0 〉, 〈y1 〉) ← swap(〈x0 〉, 〈x1 〉)
Ensure: {y0, y1 } = {x0, x1 } and |y0 | ≥ |y1 |.
1: Pi (i ∈ {0, 1}) parallelly compute . 3

〈a〉B ← Comparison(〈e0 〉
A , 〈e1 〉

A),
〈b〉B ← Equality(〈e0 〉

A , 〈e1 〉
A),

〈c〉B ← Comparison(〈 f0 〉A , 〈 f1 〉A).
2: Pi parallelly compute . 1

〈emax 〉A ← 〈a〉B 〈e1 〉
A + 〈a〉

B
〈e0 〉

A,
〈emin 〉A ← 〈a〉B 〈e0 〉

A + 〈a〉
B
〈e1 〉

A,
〈 fmax 〉A ← 〈a〉B 〈 f1 〉

A + 〈b〉B 〈c〉B 〈 f1 〉
A + 〈a〉

B
〈b〉

B
〈 f0 〉

A + 〈b〉B 〈c〉
B
〈 f0 〉

A,
〈 fmin 〉A ← 〈a〉B 〈 f0 〉

A + 〈b〉B 〈c〉B 〈 f0 〉
A + 〈a〉

B
〈b〉

B
〈 f1 〉

A + 〈b〉B 〈c〉
B
〈 f1 〉

A,
〈smax 〉B ← 〈a〉B 〈s1 〉

B ⊕ 〈b〉B 〈c〉B 〈s1 〉
B ⊕ 〈a〉

B
〈b〉

B
〈s0 〉

B ⊕ 〈b〉B 〈c〉
B
〈s0 〉

B,
〈smin 〉B ← 〈a〉B 〈s0 〉

B ⊕ 〈b〉B 〈c〉B 〈s0 〉
B ⊕ 〈a〉

B
〈b〉

B
〈s1 〉

B ⊕ 〈b〉B 〈c〉
B
〈s1 〉

B,
〈zmax 〉B ← 〈a〉B 〈z1 〉

B ⊕ 〈b〉B 〈c〉B 〈z1 〉
B ⊕ 〈a〉

B
〈b〉

B
〈z0 〉

B ⊕ 〈b〉B 〈c〉
B
〈z0 〉

B,
〈zmin 〉B ← 〈a〉B 〈z0 〉

B ⊕ 〈b〉B 〈c〉B 〈z0 〉
B ⊕ 〈a〉

B
〈b〉

B
〈z1 〉

B ⊕ 〈b〉B 〈c〉
B
〈z1 〉

B.
3: return (〈 fmax 〉A , 〈emax 〉A , 〈smax 〉B, 〈zmax 〉B), (〈 fmin 〉A , 〈emin 〉A , 〈smin 〉B, 〈zmin 〉B).

6. Application: Error-Free Transformation

Herewe show a privacy-preserving error-free transformation
protocol for the sum of two floating-point numbers; that is,
we transform any pair of floating-point numbers (a, b) into
a new pair (x, y) with x = fl(a + b) and x + y = a + b.
Here fl(·) denotes that the expression inside the parenthesis
is calculated in floating-point. According to Dekker’s algo-
rithm in [24], we can construct privacy-preserving error-free
transformation with 45 communication rounds as in Algo-
rithm 3 using our protocol FLADDeven. In this algorithm,
we use swap (Algorithm 4) as a subprotocol so that the in-
put is ordered by magnitude. We performed experiments
for inputs with binary32 and binary64 where the computer
and the (simulated) network environments are the same as

Algorithm 3 FastTwoSum
Functionality: (〈x 〉, 〈y〉) ← FastTwoSum(〈a〉, 〈b〉)
Ensure: x = fl(a + b) and x + y = a + b.
1: Pi (i ∈ {0, 1}) parallelly compute . 15

〈x 〉 ← FLADDeven(〈a〉, 〈b〉),
(〈a′〉, 〈b′〉) ← swap(〈a〉, 〈b〉).

2: Pi compute 〈q〉 ← FLADDeven(〈x 〉, −〈a′〉). . 15
3: Pi compute 〈y〉 ← FLADDeven(〈b′〉, −〈q〉). . 15
4: return (〈x 〉, 〈y〉).

Table 4 Experimental results on our proposed 2PC protocols for error-free transformation over sim-
ulated WAN with 10MB/s bandwidth and 40ms RTT latency.

Offline Online
Batch Comp. Comm. Comp. Comm. Data trans. Comm. Total
size time (s) size (bit) time (s) size (bit) time (ms) latency (s) time (s)

binary32
1 0.536 922, 170 0.233 199, 743 2.497 1.800 2.035
10 4.259 9, 221, 700 0.242 1, 997, 430 24.968 2.067
100 40.848 92, 217, 000 0.538 19, 974, 300 249.679 2.588
1000 427.950 922, 170, 000 4.498 199, 743, 000 2396.788 8.795

binary64
1 4.916 6, 867, 189 0.426 823, 005 10.288 1.800 2.236
10 46.952 68, 671, 890 0.715 8, 230, 050 102.876 2.618
100 475.751 686, 718, 900 3.984 82, 300, 500 1028.756 6.813
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Sect. 5. The experimental results are as in Table 4. Our
protocol FLADDeven rounds the precise result to the nearest
floating-point number, so we can obtain accurate result via
Algorithm 3.
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