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INVITED SURVEY PAPER
A Survey of Quantum Error Correction

Ryutaroh MATSUMOTO † ,††a), Senior Member and Manabu HAGIWARA†††, Member

SUMMARY This paper surveys development of quantum error cor-
rection. With the familiarity with conventional coding theory and tensor
product in multi-linear algebra, this paper can be read in a self-contained
manner.
key words: error correction, quantum information

1. Introduction

Recently, quantum computation has attracted renewed at-
tention, as several larger scale quantum computers have
been reported, e.g. [1]. Fault-tolerant quantum computa-
tion (FTQC) [2] is considered indispensable with realization
of large-scale quantum computers. FTQC performs com-
putation on codewords in a quantum error-correcting code
(QECC)without decoding them to their original information.

The quantum error correction can be divided into two
major categories, one is transmission of classical information
(sequence of bits) and the other is that of quantum informa-
tion. FTQC relies on the latter, as memory of a quantum
computer consists of quantum information. This review also
focuses on the latter. We assume that the readers are fa-
miliar with the theory of conventional error correction and
elementary algebra. In particular, knowledge on the tensor
products is assumed. With that familiarity, this can be read
in a self-contained manner. Although a minimum review of
quantum information is included in this survey, we can still
recommend [3] as a good introductory textbook on quantum
information.

The conventional error-correcting code corrects errors
on classical information by adding redundancy to the origi-
nal. Such addition of redundancy was thought to be impos-
sible by the quantum no-cloning theorem [4], neither does
the quantum error correction. However, Shor disproved that
naive belief by explicitly providing an example of QECC
[5], which sparked much research attention on QECC, and
many constructions of QECC were proposed at that time.
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Among them, the important classes of QECC are so-called
Calderbank-Shor-Steane (CSS) code [6], [7] and the stabi-
lizer code [8]–[10]. CSS code is a special case of the stabi-
lizer code. This review focuses mainly on the stabilizer code.
An important contribution in [8], [9] is translation between
QECC and linear spaces over finite fields, which enables use
of research results in the conventional ECC. Those results
were later extended to nonbinary QECC [11]–[13].

Quantum teleportation reproduce the quantum informa-
tion possessed by a sender at receiver’s place, just by trans-
mission of classical information, while the original quantum
information at the sender’s place is destroyed when the tele-
portation succeeds [14]. The trick enabling the quantum
teleportation is sharing of so-called quantum entanglement
between the sender and the receiver. Quantum teleporta-
tion can be interpreted as transmission of quantum informa-
tion at the cost of shared quantum entanglement. Actually,
later it was shown that shared quantum entanglement can
be converted to transmission of quantum information [15].
Along this line, the entanglement-assisted quantum error-
correcting code (EAQECC) was proposed [16], [17], which
enable transmission of more quantum information at the cost
of shared quantum entanglement. We will review the con-
nections between EAQECCs and linear spaces over finite
fields along the line in [18].

Sparse representations have influenced a wide range of
academic fields, including signal processing [19], astronomy
[20], mathematics [21], brain science [22], etc. Of course,
quantum error-correcting codes are also being influenced to
be no exception. Sparsity has been introduced in coding
theory since the 1960s and is known as low-density [23].
It was in 1999 that low-density (sparsity) was introduced to
quantum error-correcting codes [24].

Quantum error-correcting codes also appear in cryp-
tography. They were used as a tool to prove the security of
quantum key distribution (QKD) [25]. It was also used as
an instance of quantum secret sharing protocol [26], [27].
As the number of variations of quantum error-correcting
codes increases and the number of correctable error models
increases, we can expect new applications, including cryp-
tography, to expand.

This paper is organized as follows: Section 2 introduces
necessary notations and concepts. Section 3 introduces a
general framework of quantum error correction not limited
the stabilizer codes. Section 4 introduces the stabilizer codes.
Section 5 reveals the connection between the stabilizer and
linear spaces over finite fields. Section 6 covers entangle-
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ment assistance and asymmetric quantum errors. Section 7
provides further connections between quantum error correc-
tion and conventional error correction. Section 8 is devoted
to quantum low-density parity check (LDPC) codes that are
codes constructed from a view point of sparsity. Section 9
introduces quantum deletion errors, a related open problem
and a conjecture.

2. Preliminaries

2.1 Quantum States

By a quantum system, we mean some physical object
on which we can make (at least theoretically) a measure-
ment. In quantum physics, a Hilbert space H is associ-
ated with a quantum system. In this paper we always as-
sume dimH < ∞, which implies that H is isometric to the
(dimH)-dimentional complex linear space. We identify H
with the underlying quantum system. A state of H is ex-
pressed by a density matrix ρ on H , where ρ is a complex
Hermitian matrix with nonnegative eigenvalues and trρ = 1.
We denote the set of density matrices on H by S(H). A
state ρ ∈ S(H) is called of level ` if dimH = `. In par-
ticular, the state is called a qubit if it is of level 2. When
rankρ = 1, the state ρ has a vectorial expression ρ = |ϕ〉〈ϕ|,
where |ϕ〉 is a complex column vector of length one in H .
and 〈ϕ| its complex conjugate (row vector). |ϕ〉 is called
ket-phi and a unique way of expressing a column vector. 〈ϕ|
is bra-phi. A quantum state that can be expressed by a vector
|ϕ〉 is called a pure state, otherwise it is called a mixed state.
In this paper, we mostly use the pure state.

2.2 Evolution of Quantum States

A quantum system H ’s evolution without measurements or
interactions with its surrounding environment is expressed
by a unitary matrix U on H . A mixed state ρ evolves to
UρU∗ by U, where U∗ denotes the conjugate transpose of
U. A pure state |ϕ〉 evolves to U |ϕ〉 by U. In this survey,
a unitary matrix U often corresponds to decoding operation
or an error caused by a quantum communication channel.

2.3 Projective Measurement

In this paper, we focus on a special kind of quantum mea-
surement, which can be expressed as an orthogonal decom-
position of H , or a Hermitian matrix A on H . We call A
observable on H . Let λi be an eigenvalue of A with multi-
plicity, and Pi the projection onto the eigenspace belonging
to λi . Note that rankPi = the multiplicity of λi . The spectral
decomposition A is given by

A =
∑
i

λiPi .

When a quantum measurement is expressed by A, each out-
come is mapped to λi (or i). When a state if |ϕ〉 before

measuring A, the probability of getting a measurement out-
come λi is ‖Pi |ϕ〉‖

2, and the state changes to Pi |ϕ〉/‖Pi |ϕ〉‖.

2.4 Composite System Consisting of Multiple Quantum
Systems

Suppose that there are m quantum systems H1, . . . , Hm.
When the state of Hi is |ϕi〉 for i = 1, . . . , m, the state of
composite system is expressed by the tensor product |ϕ1〉 ⊗
|ϕ2〉 ⊗ · · · ⊗ |ϕm〉. The Hilbert space corresponding to the
composite system isH1 ⊗ · · · ⊗ Hm.

When we apply some manipulations on Hi expressed
by unitary matrices Ui (i = 1, . . . , m), the manipulation
on the composite system is expressed by the tensor product
U1 ⊗ · · · ⊗ Um.

Whenwemeasure observables Ai onHi , the observable
the composite system is expressed by the tensor product
A1 ⊗ · · · ⊗ Am.

A quantum state |ϕ〉 in H1 ⊗ · · · ⊗ Hm is said to be
entangled if |ϕ〉 cannot be written as |ϕ1〉 ⊗ · · · ⊗ |ϕm〉 for
any |ϕi〉 ∈ Hi for i = 1, . . . , m.

2.5 Mathematical Model of a Quantum Communication
Channel

When we know that a quantum system is in state |ϕi〉 with a
probability pi (i = 1, . . . , m), the state is expressed as

p1 |ϕ1〉〈ϕ1 | + · · · + pm |ϕm〉〈ϕm |,

which is a density matrix. Outputs from a conventional
communication channel is probabilistic and random, and
is typically expressed as a probability distribution, and a
conventional communication channel is typically modeled
by a conditional probability distribution. On the other hand,
a density matrix can capture the above kind of probabilistic
outputs. Because of that, a quantum communication channel
is typically modeled as a mapping Γ from density matrices
to density matrices. It is known that Γ corresponds to a
quantum communication channel if and only if Γ preserves
traces of matrices and is completely positive.

When we have a quantum channel from H to K and
use it n times, the state change is generally expressed by a
mapping from S(H ⊗n) to S(K ⊗n). But under some mild
assumption (e.g. each channel use interacts with an indepen-
dent surrounding environment), the mapping has the form
Γ⊗ : S(H ⊗n) → S(K ⊗n), where Γ : S(H) → S(K). In
such a case the quantum channel is said to be memoryless.
In the following, we always assume that quantum channels
are memoryless.

3. General Quantum Error Correction

3.1 Basic Framework

Information transmission over quantum channels can
roughly be divided in two categories: One is transmission
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of quantum information, and the other is that of classical
information (bits). In this paper we focus on the former.
Transmission of quantum information includes that of quan-
tum entanglement and mixed states. But they can be reduced
to the problem of transmitting pure states [28]. So we con-
sider transmission of pure states.

LetH` be a `-dimensional complex linear space with an
orthonormal basis {|0〉, |1〉, . . . , |` − 1〉}. We will consider
encoding a pure state in H ⊗k

`
to a pure state in H ⊗n

`
. Such

a quantum error-correcting code (quantum code) is called
an [[n, k]]` code. It corresponds to an [n, k]` code in the
conventional coding theory.

3.2 Fidelity

When we transmit digital information, decoded message can
be either the same as the original or different. The differ-
ence between the decoded message and the original one is
considered to be a decoding failure.

On the other hand, if quantum information |ϕ〉 is sent,
and the decoded information |ψ〉 is close to |ϕ〉, then the
probability distributions of measurement outcomes of |ϕ〉
and |ψ〉 are similar. Therefore, it is reasonable to consider
the closeness of |ϕ〉 and |ψ〉, and to regard decoded |ψ〉 close
to the original |ϕ〉 as decoding success.

The fidelity between |ϕ〉 and |ψ〉 is defined as 〈ϕ|ψ〉. It
takes values between 0 and 1. The fidelity is the probabil-
ity of recognizing |ψ〉 as |ϕ〉 by measuring the observable
|ϕ〉〈ϕ|, where outcome 1 corresponds to |ϕ〉.

Recall that probabilistic change of quantum state can
be expressed as a mixed state ρ (density matrix). When the
decoded state is ρ, its fidelity with the original |ϕ〉 is defined
as 〈ϕ|ρ|ϕ〉. It is also the probability of recognizing ρ as
|ϕ〉 by measuring the observable |ϕ〉〈ϕ|. Clearly, the higher
fidelity is better.

3.3 Finite Set of Quantum Errors

Even for a single quantum system H` , there are the infinite
number of possible quantum errors, because the number of
unitary matrices onH` is infinite. This is contrasting to the
fact that there are only ` − 1 additive errors on {0, 1, . . . ,
` − 1}, which corresponds toH` .

However, if a certain finite set of unitary matrices can
be corrected as quantum errors, then the fidelity of quantum
error correction over a memoryless quantum channel is en-
sured to be high [29]. We will not dig into the detail of this
discretization of quantum errors. The finite set of unitary
matrices to be corrected will be shown in the next section.

4. Stabilizer Formalism

4.1 Codebooks Defined by a Stabilizer

Let ω be a complex number such that ω` = 1 and ω0, ω1,
. . . , ω`−1 are different, e.g. exp(2π

√
−1/`). We define two

unitary matrices changing |i〉 as X` |i〉 = |i + 1 mod `〉 and

Zω |i〉 = ωi |i〉 for i = 0, . . . , `−1. Thesematrices X` and Zω
are called Pauli matrices. By straightforward computation
we can see X`

`
= Z`ω = I`×` , where I`×` denotes the ` × `

identity matrix.

Example 1: Consider ` = 2. Then ω = −1 and

X2 =

(
0 1
1 0

)
, Z−1 =

(
1 0
0 −1

)
.

Consider a set E of unitary matrices consisting of
ωiXa1

`
Zb1
ω ⊗ · · · ⊗ Xan

`
Zbn
ω for i, aj , bj ∈ {0, . . . , ` − 1}

for j = 1, . . . , n. E is a non-commutative finite group
with matrix multiplication as its group operation. The non-
commutativity of matrices in E will play an important role
in the development of quantum error correction. It will be
shown as Corollary 3.

Lemma 2:

(Xa
` Zb

ω)(X
a′

` Zb′

ω ) = ω
a′b−ab′(Xa′

` Zb′

ω )(X
a
` Zb

ω).

Proof. We have

(Xa
` Zb

ω)(X
a′

` Zb′

ω )|i〉 = ωib′+(i+a′)b |i + a + a′ mod `〉,
(Xa′

` Zb′

ω )(X
a
` Zb

ω)|i〉 = ωib+(i+a)b′ |i + a + a′ mod `〉.

Comparing the above two equations shows the lemma. �
Wewill consider the non-commutative relation between

two matrices in E . To do this, we need to introduce so-
called the symplectic inner product in Zn

`
, where Z` = {0, 1,

. . . , ` − 1} whose addition, subtraction, multiplication and
division are considered modulo `. Z` is a finite commutative
ring. For ®a = (a1, . . . , an), ®b = (b1, . . . , bn) ∈ Zn

`
, by (®a| ®b)

we denote (a1, . . . , an, b1, . . . , bn) ∈ Z2n
`
. The symplectic

inner product between (®a| ®b), ( ®a′ | ®b′) ∈ Z2n
`

is defined by

〈(®a| ®b), ( ®a′ | ®b′)〉s = 〈®a, ®b′〉E − 〈 ®a′, ®b〉E,

where 〈·, ·〉E denotes the standard Euclidean inner product.
The symplectic inner product is alternative in the sense that

〈(®a| ®b), ( ®a′ | ®b′)〉s = −〈( ®a′ | ®b′), (®a| ®b)〉s,

which means

〈(®a| ®b), (®a| ®b)〉s = 0

all (®a| ®b) ∈ Z2n
`
.

For ®a, ®b ∈ Zn
`
define X`(®a) = Xa1

`
⊗ · · · ⊗ Xan

`
and

Zω(®b) = Zb1
ω ⊗ · · · ⊗ Zbn

ω . This means X`(®a)Zω(®b) =
Xa1
`

Zb1
ω ⊗ · · · ⊗ Xan

`
Zbn
ω .

By using those notations and Lemma 2, we can easily
see

Corollary 3:

X`(®a)Zω(®b)X`( ®a′)Zω( ®b′)

= ω−〈( ®a |
®b),( ®a′ | ®b′)〉s X`( ®a′)Zω( ®b′)X`(®a)Zω(®b).
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This characterizes the non-commutative relationship in E .
Let S be a commutative subgroup of E . We call a

commutative subgroup of E as stabilizer.

Example 4: For ` = n = 2, we have E = {±Xa1
2 Zb1

−1 ⊗

Xa2
2 Zb2

−1 | i, a1, a2, b1, b2 ∈ {0,1}}. A commutative subgroup
S can be S = {I2×2⊗I2×2, X2⊗X2, Z−1⊗Z−1, X2Z−1⊗X2Z−1}.

We will consider a simultaneous (or joint) eigenspace
of all matrices in S. Let |ϕ〉 ∈ H ⊗n

`
be an eigenvector

belonging to eigenvalues λM for all M ∈ E . For an indexed
set Λ = {λM | M ∈ E}, we can define an eigenspace
belonging to Λ, as {|ϕ〉 | |ϕ〉 is an eigenvector belonging to
eigenvalues λM for M ∈ S}.

Example 5: Continued from the last example. Non-
identity matrices in S has two eigenvalues ±1. There are
four possible combinations of eigenvalues of 4 matrices
in S, namely, (λI2×2⊗I2×2 , λX2⊗X2 , λZ−1⊗Z−1 , λX2Z−1⊗X2Z−1 )

can be one of (1,1,1,1), (1,−1,1,−1), (1,1,−1,−1) and
(1,−1,−1,1). Since H ⊗2

2 has dimension 4, each eigenspace
has dimension 1 = 4/4. The tuple (1,1,1,1) of eigenval-
ues has (|00〉 + |11〉)/

√
2 as its eigenvector, (1,−1,1,−1) has

(|00〉 − |11〉)/
√

2, (1,1,−1,−1) has (|01〉 + |10〉)/
√

2, and
(1,−1,−1,1) has (|01〉 − |10〉)/

√
2.

By an eigenspace of a stabilizer S, we mean a simultane-
ous eigenspace as seen in the last example. We will use an
eigenspace as a codebook for protecting quantum informa-
tion.

4.2 Dimension of Codebooks

The dimension of a codebook determines how much quan-
tum information can be encoded into a codebook. So we
would like to choose the eigenspace with the largest dimen-
sion. We will shortly see that every eigenspace has the same
dimension by Proposition 6.

From the last example, we see that every eigenspace has
the same dimension. We will show that this property always
holds.

Proposition 6: LetQ1 andQ2 be eigenspaces of a stabilizer
S. Then there always exists a unitary matrix M such that
MQ1 = Q2, which implies dim Q1 = dim Q2.

Proof is given in Appendix A.2.
We would like to know the dimension of eigenspaces.

Since all of them have the same dimension and eigenspaces
of a unitary matrix in E orthogonally decompose the entire
space H ⊗n

`
, the desired dimension can be computed if we

can count the number of eigenspaces defined by S. To count
them, the next example gives a hint.

Example 7: Continued from the last example. The
eigenspace belonging to (λI2×2⊗I2×2 , λX2⊗X2 , λZ−1⊗Z−1 ,
λX2Z−1⊗X2Z−1 ) = (1,1,1,1) is moved to that to (1,1,−1,−1)
by X2 ⊗ I2×2, that to (1,−1,1,−1) by Z−1 ⊗ I2×2, and that to
(1,−1,−1,1) by X2Z−1⊗ I2×2. This demonstrates Proposition
6.

On the other hand, X2⊗X2, Z−1⊗Z−1 or X2Z−1⊗X2Z−1
does not exchange eigenspaces. We will show a necessary
and sufficient condition for a matrix M ∈ E does not move
an eigenspace of S to another one.

The last example indicates that some matrices in E moves an
eigenspace to another one, while other matrices in E keep it.
We will see which matrices in E move eigenspaces.

Lemma 8: For M ∈ E and an eigenspace Q of S, MQ is
also an eigenspace of S. Let S′ = {M ∈ E | MN = N M
for all N ∈ S}. For an eigenspace Q of a stabilizer S and a
matrix M ∈ E , MQ = Q if and only if M ∈ S′.

Proof is given in Appendix A.1.

Example 9: For S = {X2 ⊗ X2, Z−1 ⊗ Z−1, X2Z−1 ⊗ X2Z−1,
I2×2 ⊗ I2×2}, S′ is {±X2 ⊗ X2, ±Z−1 ⊗ Z−1, ±X2Z−1 ⊗ X2Z−1,
±I2×2 ⊗ I2×2}. Note that −I2×2 ⊗ I2×2 changes every vector in
H ⊗2

2 , but does not move an eigenspace of S to another one.
In general, a matrix M ∈ S′ may change vectors inH ⊗n

`
.

Fix an eigenspace Q of S. Then, by Proposition 6, the
set of all eigenspace of S is {MQ | M ∈ E}. By Lemma
8, the number of spaces in {MQ | M ∈ E} is equal to the
number of cosets in E/S′. Therefore,

Proposition 10: Every eigenspace of S has dimension

`n

|E/S′ |
.

By Proposition 10, in terms of the amount of quantum
information in a codebook, every eigenspace of S is equally
useful. On the other hand, we have not examined their error
correction/detection capabilities. We will see it in the next
subsections.

4.3 Detectable Errors

We consider to detect and correct errors in E . Since {MQ |
M ∈ E} is an orthogonal decomposition of H ⊗n

`
, we can

make a projective quantum measurement corresponding to
the decomposition. By making such a measurement on a
received quantum codeword, the quantum state after this
measurement belongs to one of spaces in {MQ | M ∈ E},
and the receiver knows which space contains the quantum
state from the measurement outcome. A receiver detects
an error if the eigenspace containing the received state is
different from the original eigenspace used by a sender. By
Lemma 8, we immediately obtain:

Proposition 11: An error M ∈ E can be detected by the
above procedure if and only if M < S′.

In the rest of this survey, by S we denote the commuta-
tive subgroup of E generated by ωI⊗n

`×`
and S.

Example 12: Previous examples of the stabilizer is unsuit-
able for illustrating error detection/correction procedures.
Let n = 2, ` = 2 and S = {I2×2 ⊗ I2×2, Z−1 ⊗ Z−1}. Then
S = {±I2×2 ⊗ I2×2, ±Z−1 ⊗ Z−1}, and S′ = S∪ {±Z−1 ⊗ I2×2,
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±I2×2 ⊗ Z−1, ±X2 ⊗ X2, ±X2Z−1 ⊗ X2, ±X2 ⊗ X2Z−1,
±X2Z−1⊗ X2Z−1}. |E/S′ | = 2 and there are two eigenspaces
whose dimensions are dimH ⊗2

2 /|E/S
′ | = 2 by Proposition

10. Call those eigenspaces by Q1 and Q2. Orthonormal
bases of Q1 and Q2 can be {|00〉, |11〉}, and {|01〉, |10〉}, re-
spectively. A codeword inQ1 can bewritten asα |00〉+β |11〉.

We have E \ S′ = {±X2 ⊗ I2×2, ±I2×2 ⊗ X2}, which can
be detectable by Q1 and Q2. Since X2 |0〉 = |1〉, X2 |1〉 = |0〉,
this quantum code can be viewed as a quantum version of the
conventional [2,1] repetition code {00, 11} that can detect
single error.

4.4 Correctable Errors

We will investigate correctable errors. Fix an eigenspace Q
of a stabilizer S and its quantum codeword |ϕ〉 ∈ Q. For
any M ∈ S, since |ϕ〉 is an eigenvector of M , |ϕ〉 and M |ϕ〉
correspond to the same quantum state.

4.4.1 Set of Errors with No Effect

For any M ∈ S, since |ϕ〉 is an eigenvector of M , |ϕ〉 and
M |ϕ〉 correspond to the same quantum state. Any errors in
S have no effect and there is no need for correcting them.
We need to clarify which errors have no effect.

Proposition 13: For a stabilizer S and its eigenspace Q, a
unitary matrix M has no effect on every quantum codeword
|ϕ〉 ∈ Q if and only if M ∈ S.

Proof is given in Appendix A.3.

4.4.2 Error Correction Procedure

In order to discuss the set of correctable errors, we need to fix
a decoding procedure. We consider the following procedure
that extends our previously described detection procedure.
Fix a stabilizer S and its codebook Q ⊂ H ⊗n

`
. Firstly the

decoder makes a projective measurement corresponding to
the orthogonal decomposition {MQ | M ∈ E} of H ⊗n

`
.

After this measurement, the quantum state belongs to one
of eigenspaces in {MQ | M ∈ E}, and the decoder knows
which eigenspace contains the state. Let MeQ contains the
quantum state after this measurement. The decoder’s job is
to select M ′ ∈ E suitably and to apply M ′ to the quantum
state. Wewill consider how to select M ′ suitably. ByLemma
8, Any error M in the coset Me + S′ = {M + N | N ∈ S′}
sends Q to MeQ. Let MML be the most likely error in the
coset Me + S′. Then we should select M ′ as M−1

ML = M∗ML.
What is most likely depends on the statistical property of the
channel. Let P be a probability distribution on {Xa

`
Zb
ω | a, b

∈ {0, 1, . . . , ` − 1}}. Since we assume the quantum channel
is memoryless, for ®a = (a1, . . . , an), ®b = (b1, . . . , bn) ∈ {0,
. . . , ` − 1}n, the probability of X`(®a)Zω(®b) can be written as
P(Xa1

`
Zb1
ω )×· · ·×P(Xan

`
Zbn
ω ). Any M ∈ E can be written as

amultiple of X`(®a)Zω(®b) for some ®a, ®b ∈ {0, . . . , `−1}n, and
we define the weight w(M) of M as ]{ j | (aj, bj) , (0,0)}.

If the probability P(I`×`) of no error is relatively larger than
any other probabilities P(Xa

`
Zb
ω) with (a, b) , (0,0), then

we have w(M1) < w(M2) ⇒ P(M1) > P(M2). Therefore,
MML can be selected such that w(MML) ≤ w(M) for all M ∈
Me + S′. We have a decoding rule similar to the minimum
distance decoding in the conventional coding theory.

4.4.3 Correctable Errors and the Minimum Distance

We define the minimum distance of a stabilizer S by

d = min{w(M) | M ∈ S′ \ S}.

Example 14: Continued from Example 12. We have S′ \
S = {±Z−1 ⊗ I2×2, ±I2×2 ⊗ Z−1, ±X2 ⊗ X2, ±X2Z−1 ⊗ X2,
±X2 ⊗ X2Z−1, ±X2Z−1 ⊗ X2Z−1}. Therefore we see that its
minimum distance is 1.

Suppose that a quantum codeword was sent and an error
M occurred. If w(M) < d/2, then we have either M ∈ S or
M < S′. If M ∈ S, then M has no effect on every codeword.
Our quantum error correction/detection recognizes that the
received quantum state belongs to the original codebook,
and declares “no error”.

If M < S′, then by Proposition 11 our decoder recog-
nizes that a received state does not belong to the original
codebook and existence of error. Then our decoder searches
MML such that MML ∈ M + S′ and w(MML) ≤ w(M ′) for
all M ′ ∈ M + S′. By the assumption w(M) < d/2, MML
must be a multiple of M and applying M−1

ML = M∗ML to the
received quantum state restores the originally sent quantum
codeword.

Therefore, we have

Proposition 15: If an error has weight less than half the
minimum distance, it can be corrected by the described de-
coding procedure.

Suppose that ]E/S′ = `n−k , then every eigenspace of
the stabilizer S has dimension `k , every codeword belongs
to H ⊗n

`
. Such a quantum code is called an [[n, k, d]]` code,

similar to the notation [n, k, d]` code in the conventional
coding theory.

5. Description of Stabilizer Codes by Finite Fields

5.1 Prime Dimension

The conventional theory of error-correcting codes is built
by linear spaces over finite fields. On the other hand, our
explanation uses complex linear spaces, and research results
of the conventional coding theory cannot be directly applied.
In this section, we explain ways to describe the stabilizers
by finite fields. We assume that ` is equal to some prime
number p. Let Fp be the finite field with p elements.

For M = ωiX`(®a)Zω(®b) ∈ E with some ®a, ®b ∈ Fn
p ,

define a mapping f (M) from E to F2n
p by f (M) = (®a| ®b),

where (®a| ®b) denotes a concatenated vector of ®a and ®b.
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Let C ⊆ F2n
p be an Fp-linear space. Let S = f −1(C) ⊂

E . By construction we have S = S.
For C, we denote by C⊥s the symplectic orthogonal

space of C, as

C⊥s = {(®a| ®b) | 〈(®a| ®b), (®c | ®d)〉s = 0,∀(®c | ®d) ∈ C}.

Then S′ = f −1(C⊥s) by Corollary 3, and S is commutative
if and only if C ⊂ C⊥s.

For (®a| ®b) = (a1, . . . , an |b1, . . . , bn) ∈ F2n
p , define the

symplectic weight ws(®a| ®b) = ]{i | (ai , bi) , (0,0)}. Then,
the minimum weight of S′ \ S is equal to ws(C⊥s \ C).

E/S′ is isomorphic to F2n
p /C

⊥s as commutative groups,
and if dim C = n − k then dim F2n

p /C
⊥s = n − k and the

dimension of every eigenspace of the stabilizer is pk , and C
gives an [[n, k, ws(C⊥s \ C)]]p quantum code.

5.2 Prime Power Dimension

In the last subsection, we have considered the case where
dimH` is a prime number p. In this subsection we will
consider the casewhere dimH` is a prime power pm (m ≥ 1).

SinceHpm is isometric toH ⊗mp , we can just regard an
[[n, k]]pm quantum code as an [[nm, km]]p quantum code
and use linear spaces in F2mn

p . With such an approach we
need to modify the definition of weight. So we will explain
another approach.

Let {β1, . . . , βm} be an Fp-basis of Fpm . For β ∈ Fpm ,
we define the trace map from Fpm to Fp by Tr(β) = β+ βp +
· · · + βp

m−1 . Let {γ1, . . . , γm} be the dual basis of {β1, . . . ,
βm} with respect to Tr, that is,

Tr(βiγj) = δi, j,

where δi, j is the Kronecker’s delta. Since the mapping
(x, y) ∈ F2

pm to Tr(xy) ∈ Fp is an Fp-bilinear nondegen-
erate form, it is well known in algebra that a dual basis
always exists.

Example 16: We can choose an F2-basis of F4 as β1 = 1,
β2 = α, where α2 + α + 1 = 0. Then its dual basis with
respect to the trace is γ1 = α

2, γ2 = 1.

Let (®a| ®b) = (a1, . . . , am |b1, . . . , bm), (®c | ®d) = (c1,
. . . , cm |d1, . . . , dm)∈ F2m

p , A = a1β1 + · · · + amβm, B =
b1γ1+ · · ·+ bmγm, C = c1β1+ · · ·+ cmβm, D = d1γ1+ · · ·+
dmγm∈ Fpm . We have

〈(®a| ®b), (®c | ®d)〉s (1)

=

n∑
i=1

aidi − bici (2)

=

n∑
i=1

aidiTr(βiγi) − biciTr(βiγi) (3)

=

n∑
i=1

n∑
j=1

aidjTr(βiγj) − bicjTr(βiγj) (4)

= Tr(
n∑
i=1

aiβi
n∑
j=1

djγj) − Tr(
n∑
i=1

biβi
n∑
j=1

cjγj) (5)

= Tr(
n∑
i=1

aiβi
n∑
j=1

djγj −

n∑
i=1

biβi
n∑
j=1

cjγj) (6)

= Tr(AD − BC). (7)

For (®a| ®b) = (a1, . . . , an |b1, . . . , bn), (®c | ®d) = (c1, . . . ,
cn |d1, . . . , dn)∈ F2n

pm , by expanding each component of ®a and
®c by β1, . . . , βm and each component of ®b and ®d by γ1, . . . ,
γm, we obtain ( ®a′ | ®b′) = (a′1,1, . . . , a′n,m |b

′
1,1, . . . , b′n,m),

( ®c′ | ®d ′) = (c′1,1, . . . , c′n,m |d
′
1,1, . . . , d ′n,m) ∈ F2mn

p , where
ai = ai,1β1 + · · · + ai,mβm and bi = bi,1γ1 + · · · + bi,mγm.
By Eq. (7), We have

Tr(〈(®a| ®b), (®c | ®d)〉s) = 〈( ®a′ | ®b′), ( ®c′ | ®d ′)〉s

Define the left hand side as the trace inner product
〈(®a| ®b), (®c | ®d)〉tr, which is a nondegenerate symplectic form.
Let C⊥tr be the orthogonal space of C with respect to the
above trace inner product. We can see that if C is Fpm -linear
then C⊥tr = C⊥s.

Proposition 17: For C ⊂ F2n
pm with dim C = n − k, if

C ⊂ C⊥s, then we have an [[n, k, ws(C⊥s \ C)]]pm quantum
code by expanding vectors in F2n

pm by {β1, . . . , βm} and {γ1,
. . . , γm}

A large drawback in the quantum stabilizer codes is
that linear spaces must be self-orthogonal with respect to the
trace or symplectic inner product. Removal of this restriction
is discussed in the next section.

6. Entanglement Assistance and Asymmetric Errors

Due to the page limitation, proofs in Sects. 6 and 7 cannot
be given. Please refer to [18].

6.1 Entanglement Assisted Quantum-Error Correcting
Codes

As the quantum teleportation, it is well-known that shared
entanglement allows error-free transmission of quantum
states. In a similar context, the entanglement-assisted quan-
tum error-correcting code (EAQECC) allows more encoded
quantum states by the cost of shared entanglement. Another
large advantage of EAQECC is that it can be constructed
from any subspace of F2n

q , where q is an arbitrarily fixed
prime or prime power. An EAQECC is said to have the min-
imum distance d if it can detect all errors whose weight less
than d. An EAQECC with minimum distance d can correct
(d − 1)/2 errors. The following is known. For the definition
of maximally entangled quantum states, please refer to [3].

Proposition 18: Let C ⊆ F2n
q be an (n − k)-dimensional

Fq-linear space and H = (HX |HZ ) a matrix whose row
space is C. Let C ′ ⊆ F2(n+c)

q be an Fq-linear space such
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that its projection to the coordinates 1,2, . . . ,n,n+ c + 1,n+
c + 2, . . . ,2n + c equals C and C ′ ⊆ (C ′)⊥s, where c is the
minimum required number of maximally entangled quantum
states inHq ⊗ Hq . Then,

2c = rank
(
HXHT

Z − HZHT
X

)
= dimFq C − dimFq

(
C ∩ C⊥s) .

The encoding quantum circuit is constructed from C ′, and
it encodes k + c logical qudits in H ⊗k+cq into n physical
qudits using c maximally entangled pairs. The minimum
distance is d := ws

(
C⊥s \ (C ∩ C⊥s)

)
. In sum, C provides

an [[n, k + c, d; c]]q EAQECC over the field Fq .

By the notation [[n, k + c, d; c]]q , c denotes the number of
maximally entangled pairs inH ⊗2

q shared between the sender
and the receiver.

Also note that when C ⊆ C⊥s, then we can choose
C ′ = C and the construction reduces to that of the quantum
stabilizer code. For details of EAQECC, please refer to [18].

6.2 Asymmetric Errors

When ` = p = q = 2, X2 corresponds to the quantum
bit error and Z−1 does to the quantum phase error. It is
argued that under some situation, the probabilities of the
quantum bit and phase errors are much different [30], [31].
In such a case, it is reasonable to consider asymmetric error
detection/correction capability.

Definition 19: For an error M = ωiX`(®a)Zω(®b)∈ E , define
the bit error weight wx(M) = wH (®a) and the phase error
weight wz(M) = wH (®b), where wH denotes the usual Ham-
ming weight.

Proposition 20: [32] Notations are the same as Proposi-
tion 18. Let dx = min{wH (®a) | (®a| ®b) ∈ C⊥s \ C}, and
dz = min{wH (®b) | (®a| ®b) ∈ C⊥s\C}. Then theEAQECCcon-
structed by C can detect every error whose bit error weight
is < dx and phase error weight < dz , and can correct ev-
ery error whose bit error weight is < dx/2 and phase error
weight < dz/2.

We will not mention the asymmetric errors elsewhere, but
all the results can be easily modified to cover asymmetric
error detection/correction.

7. Reduction of the Code Construction to the Conven-
tional Coding Theory

7.1 Hermitian Inner Product

Until now, every code construction involves the symplectic or
the trace inner product in some form. They are inconvenient
when we use the conventional coding theory for quantum
code construction. We will introduce the Hermitian inner
product in Fq2 , which is somewhat similar to the standard
Euclidean inner product. For ®x = (x1, . . . , xn) ∈ Fn

q2 , ®xq

denotes (xq1 , . . . , xqn ). For ®x, ®y ∈ Fn
q2 , we define their

Hermitian inner product as

〈®x, ®y〉h = 〈®xq, ®y〉E,

where 〈®xq, ®y〉E denotes the Euclidean inner product. Let
{λ,λq} be a normal basis of Fq2 over Fq . It is well-known
that such a basis always exists.

For (®a| ®b), (®c | ®d) ∈ F2n
q , let ι(®a| ®b) = λ®a + λq ®b ∈ Fn

q2 ,
then we have

〈ι(®a| ®b), ι(®c | ®d)〉h − 〈ι(®c | ®d), ι(®a| ®b)〉h
= (λ2q − λ2)〈(®a| ®b), (®c | ®d)〉s

Therefore, we have 〈(®a| ®b), (®c | ®d)〉s = 0 if and only if
〈ι(®a| ®b), ι(®c | ®d)〉h − 〈ι(®c | ®d), ι(®a| ®b)〉h = 0. This implies that
for ®x, ®y ∈ Fn

q2 , 〈®x, ®y〉h = 0⇒ 〈ι−1(®x), ι−1(®y)〉s = 0.
By the relation between the Hermitian and the symplec-

tic inner products, Proposition 18 implies

Proposition 21: Let C ⊆ Fn
q2 be an (n − k)/2-dimensional

code over Fq2 , for suitable integers n and k. Denote by H

its generator matrix. Let C ′ ⊆ F(n+c)
q2 be an Fq2 -linear space

whose projection to the coordinates 1,2, . . . ,n equals C and
satisfies C ′ ⊆ (C ′)⊥h, where c is the minimum required
number of maximally entangled quantum states in Cq ⊗Cq .
Then,

c = rank (HH∗) = dimF
q2 C − dimF

q2

(
C ∩ C⊥h

)
.

The encoding quantum circuit is constructed from C ′, and it
encodes k+c logical qudits in Cq ⊗ · · · (k+c times) · · · ⊗Cq

into n physical qudits using cmaximally entangled pairs. The
minimum distance is d := dH

(
C⊥h \ (C ∩ C⊥h)

)
, where dH

is defined as the minimum Hamming weight of the vectors
in the set C⊥h \

(
C ∩ C⊥h) . In sum, C provides an [[n, k +

c, d; c]]q EAQECC over the field Fq .

7.2 Euclidean Inner Product

Let C1, C2 ⊆ Fn
q , then C1 ⊗ C2 = {(®a| ®b) | ®a ∈ C1, ®b ∈ C2}

⊂ F2n
q . (C1 ⊗ C2)

⊥s = C⊥E
2 ⊗ C⊥E

1 , where C⊥E
1 is the or-

thogonal space of C1 with respect to the standard Euclidean
product, and the equality can be seen from comparing their
dimentions as linear spaces. By using this relation, Proposi-
tion 18 implies

Proposition 22: Let C1 and C2 be two linear codes over
Fq included in Fn

q with respective dimensions k1 and k2
and generator matrices H1 and H2. Then, the code C0 =
C1 × C2 ⊆ F2n

q gives rise to an EAQECC which encodes
n− k1 − k2 + c logical qudits into n physical qudits using the
minimum required of maximally entangled pairs c, which is

c = rank(H1HT
2 ) = dimFq C1 − dimFq (C1 ∩ C⊥2 ).

The minimum distance of the entanglement-assisted quan-
tum code is larger than or equal to
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d := min
{
dH

(
C⊥1 \ (C2 ∩ C⊥1 )

)
, dH

(
C⊥2 \ (C1 ∩ C⊥2 )

)}
.

In sum, one gets an [[n,n − k1 − k2 + c, d; c]]q EAQECC.

8. Quantum LDPC Codes

The history of quantum low-density parity-check (LDPC)
codes is well documented in [33], which summarized the
results up to 2015, but sufficiently covers the main milestone
at the time of writing. It classifies quantum LDPC codes
into four classes. These are “Dual-containing CSS codes,”
“Non-dual-containing CSS codes,” “Non-CSS codes,” and
“Entanglement-assisted (EA) codes.” Among these, “Non-
dual-containing CSS codes” and “EA codes” are the classes
in which codes with high error correction performance have
been discovered. In the former, it is mentioned that spa-
tially coupled quasi-cyclic low-density parity-check (SCQC-
LDPC) codes [34] and non-binary QC-LDPC code [35],
which are subclasses of the former, show performance close
to the Hashing bound 1−H(p), where H(p) is the entropy of
the probability distribution p = (1−pX−pY−pZ, pX, pY , pZ )

and pX, pY and pZ are the error-probabilities of X,Y and Z .
In other words, the communication channel is assumed as a
Pauli channel. Codes in [34] and [35] are derived from [36].
In the latter case, it is shown that the performance is close to
conventional LDPC codes [37]. It is worth mentioning that
the first authors of four references [34]–[37] are Japanese
researchers.

In this section, we will assume the level of the quantum
state to ` := 2. First, we define a quantum LDPC code using
the stabilizer formalism. In otherwords, we define a quantum
code Q as the eigenspace of a stabilizer (i.e. commutative
subgroup) S of the group E . Any element of E can be
represented in the form of ±X(®a)Z(®b), where ®a, ®b ∈ Fn

2 .
As in conventional coding theory, there is no strict def-

inition of LDPC codes in quantum coding theory. The defi-
nition in this paper also only provide a rough frame.

Definition 23: A quantum LDPC code is defined as a pair
(Q,H) of a quantum code Q and a generator system H, in
the sense of group theory, of a stabilizer S that satisfies the
following condition:

For any ±X(®a)Z(®b) ∈ H, ws(®a| ®b) is small.

The word “small” in the above condition is ambiguous.
Therefore it is not strictly defined. This can be said to be a
translation of the property called “sparsity” into the stabilizer
formalism.

The quantum LDPC codes defined in the stabilizer
formalism are classified into two subclasses according to
whether the class is called CSS or not. In addition, the CSS
code is classified into two subclasses based on whether it
is dual-containing or not. Putting them all together, we ob-
tain the three classes “Dual-containing CSS codes,” “Non-
dual-containing CSS codes,” and “Non-CSS codes.” Let us
introduce the definition of CSS codes.

For the stabilizer S, we write SX for the set of elements
that can be represented as ±X(®a)Z(0), and SZ for the set

of elements that can be represented as ±X(0)Z(®b). Here
®a, ®b,0 ∈ Fn

2 , where 0 is a vector with all zero entries. If S
is generated by the union SX ∪ SZ , then the corresponding
quantum code Q is called a CSS code.

The bit sequence a is obtained from ±X(a)Z(0) of SX .
Let us write C ′X for the set of bit sequences obtained in this
way. Similarly, let us define C ′Z from SZ . Set the dual
code, with the standard inner product, of C ′X as CX and
the dual code of C ′Z as CZ . It turns out that the decoding
methods of CX and CZ can be applied to the error correction
for Q, and the knowledge and the technique of conventional
coding theory can be applied to quantum error correction.
In particular, when (Q,H) is a quantum CSS-LDPC codes,
both CX and CZ are conventional LDPC codes.

CSS codes are called “dual-containing CSS codes”
when CX = CZ , otherwise they are called “non-dual-
containing CSS codes.”

The reason why the performance of non-dual-
containing CSS LDPC codes as quantum LDPC codes is
better than the other two classes is due to its error correction
algorithm and the structure of the stabilizer. In order to cor-
rect errors, the error Paulimatrices are estimated by a specific
algorithm based on the measurement outcomes made by pro-
jective measurements associated to the stabilizer. In quan-
tum LDPC codes, the algorithm is based on the sum-product
algorithm, which is a decoding algorithm for conventional
LDPC codes. This can be regarded as a calculation to find
the error vector from the received word syndrome. The de-
tails can be found in [38]. This sum-product algorithm does
not work well for non-CSS codes and dual-containing CSS
codes, since it is said to be in terms of conventional LDPC
codes as “the girth” of the Tanner graph corresponding to
these quantum codes cannot exceed 4. In the language of
stabilizers, this means that there exist different i and j and
the different ±X(®a)Z(®b) and ±X(®c)Z( ®d) ∈ H such that none
of (ai, bi), (ci, di), (aj, bj) and (cj, dj) is (0,0).

On the other hand, in non-dual-containing CSS codes,
SC QC-LDPC codes and non-binary QC-QLDPC codes are
constructed as codes that overcome this drawback. With
an internal diameter of 6 or more, the accuracy of the sum-
product algorithm is improved, which significantly increases
the success rate of error correction. As a result, it is evaluated
that “at the time of writing, only the SC QC-LDPC codes
and the non-binary QC-QLDPC codes are know to perform
close to the Hashing bound” at [33].

It is very difficult to achieve both sparsity and com-
mutativity of the generators. To overcome this problem, a
method of giving up the commutativity and using EA instead
has been proposed [39]. This method has been reported to
achieve high performance close to that of conventional LDPC
codes [37].

9. Quantum Deletion Codes

In this section, we introduce “deletion error”, one of the er-
rors that cannot be represented by Pauli matrices, and discuss
codes to correct the error. Let H1,H2, . . . ,Hn be quantum
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systems of dimension `. Further, letH := H1⊗H2⊗· · ·⊗Hn

and Hī := H1 ⊗ · · · ⊗ Hi−1 ⊗ Hi+1 ⊗ · · · ⊗ Hn be defined.
In general, any quantum state ρ ∈ H is expressed as

ρ =
∑

®x, ®y∈{0,...,`−1}n
a®x, ®y |x1〉〈y1 | ⊗ · · · ⊗ |xn〉〈yn |

where the coefficients a®x, ®y ∈ C.

Definition 24: A (single) deletion error Di : S(H) →
S(Hī) for 1 ≤ i ≤ n is defined as

Di(ρ) :=
∑

®x, ®y∈{0,...,`−1}n
a®x, ®yTr(|xi〉〈yi |)|x1〉〈y1 |⊗

· · · ⊗ |xi−1〉〈yi−1 | ⊗ |xi+1〉〈yi+1 |⊗

· · · ⊗ |xn〉〈yn |.

This error is known as the partial trace. In physics, the
partial trace gives the state restricted to a subsystem Hī of
H . In terms of coding theory, this is an operation that gives
a shorter subsequence of the codeword.

“Deletion errors” are often confused with “erasure er-
rors” [42]. Here, an erasure error means an error such that
its position is known. An erasure error does not change
the length, while a deletion error makes the length shorter.
The erasure position of the quantum system is assumed to be
known, while the deleted position is assumed to be unknown.
A code that can correct deletion errors can also correct era-
sure errors. This is because an erasure error can be converted
to a deletion error by deleting the erasure part. From these
reasons, it can be understood that deletion error-correction
is more difficult than erasure error-correction.

A quantum code that can correct t-(single-)deletion er-
rors is called a t-deletion code. If t = 1, the code is called
a single deletion code. The first single deletion code was
discovered in 2019 [40]. The code is an [[8,1]]2 code. Later,
in 2020, [[4,1]]2 code was discovered in [41]. For erasure
correction, the following theorem is known, by the way.

Proposition 25 ([42]): There is no single erasure correct-
ing code of length less than 4.

From this theorem and the argument on conversion from
erasure errors to deletion errors above, we obtain:

Proposition 26 ([41]): The [[4,1]]2 code, the four qubits
code, is the shortest single deletion code.

The four qubits code has the property called PI (Permu-
tation Invariant).

Definition 27: A state ρ =
∑
®x, ®y∈{0,...,`−1}n a®x, ®y |x1〉〈y1 | ⊗

· · · ⊗ |xn〉〈yn | is PI if and only if

ρ =
∑

®x, ®y∈{0,...,`−1}n
a®x, ®y |xσ(1)〉〈yσ(1) | ⊗ · · · ⊗ |xσ(n)〉〈yσ(n) |

for any permutation σ on {1,2, . . . ,n}.
A quantum code Q is PI if and only if any state in Q is

PI.

Very recently, three papers on quantum deletion codes are
uploaded to the arXiv server [43]–[45] and all the papers
discussed PI codes. An issue on PI deletion codes is that the
code rate becomes smaller when the code length is increased.
Therefore, the following problem should be raised.

Problem 28: Can we construct a single deletion quantum
code with its code rate close to 1? Here the code rate is
defined as k/n, for the [[n, k]]` code.

The dual error to the deletion error is the insertion error.
While the deletion error reduces the quantum systems, the
insertion error increases. In conventional coding theory, the
following is known.

Proposition 29 ([46]): Let C be a classical code. C is a
t-deletion code by the bounded distance decoding (BDD) if
and only if C is a t-insertion code by BDD†.

The following conjecture arises naturally.

Conjecture 30: Let Q be a quantum code. Q is a t-deletion
code by some decoding if and only if Q is a t-insertion
correction code by some decoding.

This conjecture is unresolved even at t = 1. The fol-
lowing is a positive result by an instance.

Proposition 31: [47] The four qubits deletion code can cor-
rect single insertion errors. In other words, the four qubits
deletion code is the first quantum insertion code.
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Appendix: Proofs

A.1 Proof of Lemma 8

For N ∈ S and an eigenspaceQ of S, let λN be the eigenvalue
to which Q belongs. For a fixed M ∈ E , let ωzMN = N M .
For every |ϕ〉 ∈ Q, N M |ϕ〉 = ωzMN |ϕ〉 = ωzλN M |ϕ〉,
which means that every M |ϕ〉 ∈ MQ belongs to the same
eigenvalue of N ∈ S, which shows that MQ is also an
eigenspace of S.

We also observe that MQ = Q if and only if z = 0. In
the above argument, by the definition of S′, z = 0 if and only
if M ∈ S′, which shows the second claim of the lemma.

A.2 Proof of Proposition 6

Lemma 32: Matrices in E spans the linear space of all
linear matrices onH ⊗n

`
.
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Proof: This can be verified by a straightforward computa-
tion, so the proof is omitted.
Proof of Proposition 6: Since every M ∈ E is unitary,
every eigenvector of M is orthogonal to each other. This
means that Q1 , Q2 implies Q1 ⊥ Q2. By Lemma 8, MQ
is also an eigenspace. By Lemma 32, {MQ | M ∈ E}
linearly spans H ⊗n

`
. If there were eigenspace Q′ not in

{MQ | M ∈ E}, it would contradict with Lemma 8, Lemma
32, or the orthogonality of eigenspaces, which completes the
proof.

A.3 Proof of Proposition 13

It is clear that M ∈ S has no effect on every quantum code-
word in Q.

We will prove that M < S implies existence of |ϕ〉 ∈ Q
such that M |ϕ〉 is not a multiple of |ϕ〉. Assume M < S′,
then, by Lemma 8, M |ϕ〉 < Q for all |ϕ〉 ∈ Q and clearly
M |ϕ〉 is not a multiple of |ϕ〉.

Assume M < S′ \ S. Let S2 be a commutative subgroup
of E generated by M and S. Then dim f (S2) = 1+dim f (S) =
1 + dim f (S). This means that there exists eigenspaces Q2
and Q3 of S2 such that Q2 and Q3 are strictly contained in
Q. Since dim Q2 = dim Q3 ≤ dim Q − `, Q2 and Q3 can be
chosen differently. Let |ϕ2〉 ∈ Q2 \ Q3 and |ϕ3〉 ∈ Q3 \ Q2.
Define λi as the eigenvalue of |ϕi〉 for the matrix M , and
|ϕ〉 = (|ϕ2〉 + |ϕ3〉)/

√
2. By the definition of |ϕ2〉 and |ϕ3〉,

we have λ2 , λ3, which implies M |ϕ〉 is not a multiple of
|ϕ〉.
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