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A Localization Method Based on Partial Correlation Analysis for

Dynamic Wireless Network

Yuki HORIGUCHI'?®, Nonmember, Yusuke ITO®, Aohan LI'®, Members,

SUMMARY  Recent localization methods for wireless networks cannot
be applied to dynamic networks with unknown topology. To solve this
problem, we propose a localization method based on partial correlation
analysis in this paper. We evaluate our proposed localization method in
terms of accuracy, which shows that our proposed method can achieve high
accuracy localization for dynamic networks with unknown topology.

key words: wireless communication, localization, partial correlation anal-
ysis

1. Introduction

In wireless networks, the location information of a node is
very important in terms of search and rescue, target tracking,
and data collection. A method called range-free localization
or range-based localization has been proposed as a localiza-
tion method for wireless networks [1], [2]. However, these
methods require knowing which node is within the commu-
nication radius of which node (i.e., “who is within the com-
munication range of whom” [3]), and can only be applied
to networks with known topology. In addition, even if the
topology is known, it cannot be applied to dynamic networks
because the topology will not be known when it changes. In
order to solve the problem mentioned above, we propose a
correlation analysis based localization method that can be
applied to dynamic networks with unknown topology. In
our proposed method, the location is calculated based on the
network topology that is derived using correlation analysis.

2. Proposed Method

In this paper, we focus on a network with N sensor nodes
and N, anchor nodes. Each sensor node i sends data packets
by flooding to all other nodes. Each anchor node k knows
its own location coordinates (xX, yX) and the coordinates
of the other anchor nodes, records packet time series s(tf )
(length of packet p received from sensor node i at time 7),
and estimates network topology and location coordinates
(xI, yi) of each sensor node i. The flow of our proposed
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Fig.1  Flow of the proposed localization method.

localization method is shown in Fig. 1. At the initial sate, the
anchor nodes do not know the location and the coordinates of
sensor nodes. Three steps are periodically executed based on
correlation analysis in order to estimate the location of sensor
nodes. Since the discrete packet time series s(tf7 ) cannot be
used for correlation analysis, the anchor node transforms
s(tip ) into a continuous time series f;(¢) using kernel density
estimation in the first step, which can be obtained by the
following equation [4].
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1 P
fi(r) = ;;K(r — P)s(iP), (1)
2t — 1P
K(t—tf’):% 1+COSM), 2

where —% <t- ;iP < %, P is the number of packets received
from sensor node i, T is the bandwidth, and K(¢) is the
hanning window function.

In the second step, the anchor node estimates network
topology using correlation analysis. Cross correlation anal-
ysis [5] and partial correlation analysis [6] are used as cor-
relation analysis approaches. For cross correlation analysis
approach, the cross correlation coeflicient p;; between sen-
sor nodes i and j can be derived based on continuous time
series fi(¢) and f;(¢) as follows,

_ i) = N @) = (O

gi0j

3

ij

where () denotes the mean and o denotes the standard
deviation. The partial correlation coefficient y;; between
sensor nodes i and j is defined as follows,

_ Lei(t) = (ei())){e;(t) = (¢;(1)))

gi0j

Yij 4
where ¢;(¢) and e(¢) are the residuals between sensor nodes,
respectively, which can be derived based on the continuous
time series f;(¢) and fj(t) as follows,

Ns

filty=ao+ ) asfilt) + ei(0), 5)
S#L,J
Ns

[0 =bo+ 3" befult) + ¢(1), ©)
S#L,J

where a5 and by are regression constants of sensor node s.

Based on the correlation coefficient p;; or vy;; derived
by Eq. (3) or Eq. (4), the anchor node determines if sensor
nodes i and j are connected. If the correlation coefficient
exceeds a predefined threshold value, it is determined as
“connected”’; otherwise, it is determined as “not connected”
[7]. This determination is executed for all combinations of
sensor nodes.

In the final step, the anchor node estimates the location
of all sensor nodes. In this step, the distance between an-
chor node k and sensor node i, i.e., Lg;, is firstly calculated
according to the number of hops between the anchor node k&
and the sensor node i by using DV-hop algorithm [8]. The
number of hops can be calculated from the network topology
estimated in the second step. Then, the location coordinates
of sensor nodes i, i.e., (xi, yf,) can be derived based on L;;
and the location coordinates of anchor nodes (xX, yX) as
follows,

Ly = V(x} = xD2 + (yh -y,
Loi = (x2 = xI2 + (y2 — yb)%, 7
Li; = V(xk - xH)2 + (yk - yi)2.
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3. Performance Evaluation
3.1 Simulation Setting

Our simulation model consists of a 60 (m) X 60 (m) area
with 3 anchor nodes and 9 sensor nodes. 3 anchor nodes
are statically placed in a density of 1 node per 400 m? [9].
Any two nodes are connected through a direct (single-hop)
path if they are placed in each other’s communication range;
otherwise, they are connected through an indirect (multi-
hop) path. The network connectivity changes when nodes
newly enter or completely leave the communication range
of other nodes. Each sensor node communicates with other
nodes by using simple flooding as a routing protocol. In this
paper, we focus on the performance of one-time localization
by our proposed method. The localization is performed
once after data transmission of all sensor nodes completes
in order to estimate final locations of sensor nodes. We use
accuracy of topology estimation (%) and location error (m)
as evaluation metrics, which can be derived as follows,

Accuracy of topology estimation = (8)
Number of combinations of sensor nodes are correctly estimated

1
Number of combinations of all sensor nodes x 100,

N
. 1 O ; ‘
Location error = A Z \/(X,- -x)?+ X -yh)? 9

i=1

where (X;, Y;) is the actual location coordinates of sensor
node i. Note that the numerator in Eq. (8) includes not only
the number of combinations of directly connected sensor
nodes, but also the number of combinations of directly un-
connected ones in order to evaluate the number of estimation
errors due to the effect of spurious correlation or other fac-
tors. The simulation results are evaluated by100 trials.

3.2 Simulation Results

Figure 2 shows the accuracy of topology estimation by cross
and partial correlation analyses when P varies from 10 to 100
with Ny = 10 and N = 20, respectively. In the simulation,
9 sensor nodes are placed randomly. The movement ranges
of each sensor node for cross correlation analysis and partial
correlation analysis are denoted as R. and R,,, respectively.
All sensor nodes move randomly within R, (m) and R, (m)
around its initial location. From Fig.2, we can see that the
partial/cross correlation analyses achieve higher estimation
accuracy as P (i.e., the length of time series) increases. This
result indicates that our proposed method can provide an
accurate topology estimation by an appropriate setting for
the length of time series. We can also see that the accuracy
of topology estimation analyzed by the partial correlation is
higher than that analyzed by cross correlation. The reason
is that the partial correlation analysis can eliminate the ef-
fect of spurious correlation between two nodes that are not
connected actually [10].

Figure 3 shows the location error of the proposed
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Fig.2  Comparisons of topology estimation accuracy of cross correlation
and partial correlation analyses.

method with the variational numbers of received packets
and mobile sensor nodes. In the simulation, Ny is fixed at 9
while the number of mobile nodes among all sensor nodes
varies. For example, when the number of mobile sensor
nodes is zero, there are 9 sensor nodes and they do not move
from their initial locations during the simulation period. M.
and M, are defined as the numbers of mobile sensor nodes
for cross correlation analysis and partial correlation analysis,
respectively. Meanwhile, P. and P), are defined as the num-
bers of the received packets for cross correlation analysis
and partial correlation analysis, respectively. To evaluate the
effectiveness of our proposed method for dynamic wireless
network, we also compare our proposed method to static
topology method where the localization is based on static
topology information which is defined as initial network con-
nectivity among sensor nodes. M is the number of mobile
sensor nodes for the static topology method. The mobile
sensor nodes move randomly within R (m) around its initial
location. From Fig. 3, we can see that our proposed method
can achieve lower location error than the static topology in
all cases. The reason is that localization by our proposed
method is based on the topology information after the net-
work changes, which can infer the correct location of the
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Fig.3 Location errors estimated by the conventional method, the pro-
posed method with cross-correlation and partial correlation analyses.

sensor nodes more accurately in real time.
4. Conclusion

In this paper, we proposed a localization method based on
correlation analysis for dynamic networks with unknown
topology. Simulation results shown the effectiveness of our
proposed method in localization for dynamic networks with
unknown topology. Moreover, simulation results also shown
that the accuracy of topology estimation analyzed by the
partial correlation is higher than that analyzed by cross cor-
relation. We used simple flooding as a routing protocol in
our experiments because of its simplicity of implementation.
However, an excessive flooding of data packets may cause
collision and congestion, which may induce lower accuracy
of topology estimation and localization. In future work, we
will apply more efficient routing protocols such as [11], [12]
and evaluate the influence of them on estimation accuracy.
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