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An Adaptive Multilook Approach of Multitemporal Interferometry
Based on Complex Covariance Matrix for SAR Small Datasets

Jingke ZHANG†, Huina SONG††a), Mengyuan WANG††, Zhaoyang QIU††, Xuyang TENG††, Nonmembers,
and Qi ZHANG†††, Member

SUMMARY Adaptivemultilooking is a critical processing step inmulti-
temporal interferometric synthetic aperture radar (InSAR) measurement,
especially in small temporal baseline subsets. Various amplitude-based
adaptive multilook approaches have been proposed for the improvement of
interferometric processing. However, the phase signal, which is fundamen-
tal in interferometric systems, is typically ignored in these methods. To
fully exploit the information in complex SAR images, a nonlocal adaptive
multilooking is proposed based on complex covariance matrix in this work.
The complex signal is here exploited for the similiarity measurement be-
tween two pixels. Given the complexity of objects in SAR images, structure
feature detection is introduced to adaptively estimate covariance matrix.
The effectiveness and reliability of the proposed approach are demonstrated
with experiments both on simulated and real data.
key words: SAR, adaptive multilooking, covariance matrix

1. Introduction

Multi-temporal interferometric synthetic aperture radar
(MT-InSAR) techniques have widespread application in
earth observations because of its high precision and wide
coverage. MT-InSAR techniques are generally classified into
two main types: permanent scatterer (PS) technique [1] and
small baseline subsets (SBAS) [2]. In SBASmethods, a sub-
set of interferograms are formed by small temporal-spatial
baselines, and the deformation signal of highly correlated re-
gions can be extracted from small SAR datasets. Multilook
processing plays an important role in accurate estimation of
surface elevation and surface deformation. It is helpful to
reduce temporal-spatial decorrelation and improve the ro-
bustness of unwrapped phase [3], [4].

Boxcar multilook processing is efficient but reduces the
spatial resolution. Besides, it also reduces the quality of
the derived final geographic information in heterogeneous
regions. To solve these problems, various adaptivemultilook
approaches have been proposed in past years [5]–[9].

The guts of adaptive multilooking is a reasonable dis-
tance measure between neighboring pixels and predictor
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pixel. With multitemporal SAR datasets, some statistical
methods based on empirical cumulative distribution func-
tions (CDF), such as two-sample Kolmogorov-Smirnov (KS)
test and Anderson-Darling (AD) test, were introduced to
early adaptive multilook approaches [6]. To improve the
power of hypothesis tests, an almost self-adaptive approach
was proposed without prior knowledge or scenario assump-
tions [7]. In [8], they explore the potential of adaptive multi-
look approach in the framework of SABS processing. How-
ever, the performance of these amplitude-based approaches
is usually poor in the case of small SAR datasets [10].

Compared with the amplitude information, a more ap-
propriate description of backscattered signals is the complex
covariance matrix, which is an important parameter in sta-
tistical modeling of SAR images. Thus, the test statistic of
covariance matrix is introduced to measure the similarity
between two pixels in this work. Given the complexity of
topographic features in SAR images, covariance matrix is
adaptively estimated based on the selected structure feature.

This letter is organized as follows. In Sect. 2, some tra-
ditional distance measures are briefly introduced. In Sect. 3,
the procedure of the presented approach is elaborated. In
Sect. 4, experimental results of simulated and real data are
presented. Conclusions are drawn in Sect. 5.

2. Traditional Distance Measures

The performance of adaptive multilook approach relies on
the reasonable distance measure between two pixels. The
class of CDF statistics, such as KS test ans AD test, have
been effectively used in adaptive multilook processing.

2.1 KS Distance

The KS test is designed as a non-parametric hypothesis test
and can be used to judge if two real-valued datasets differ
significantly. The KS distance between two vectors x =
(x1, x2, . . . , xM ) and y = (y1, y2, . . . , yN ) is defined as

dKS(x, y) =

√
MN

M + N
sup
t
‖Fx(t) − Gy(t)‖, (1)

where Fx(t) and Gy(t) denotes the cumulative distribution
function (CDF) of x and y , respectively. The smaller the
value of the KS distance dKS(x, y) is, the less the statistical
difference between x and y .
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2.2 AD Distance

Compared with the KS test, the AD test is a more sensitive
test. The AD distance between x and y can be described as

dAD(x, y) =
MN

M + N

∑ [Fx(t) − Gy(t)]2

Hz(t)[1 − Hz(t)]
, (2)

where Hz(t) denotes the CDF of the vector z = [x, y]. In
formal (2), all values in the vectors are taken into consider-
ation and an appropriate weight is introduced to the tails of
data distribution.

2.3 PB Distance

The PB distance was first used to measure the patch similar-
ity in nonlocal denoising methods [11], [12]. Under reason-
able assumption, the PB distance between x and y can be
expressed as [8]

dPB(x, y) =
∑

log
[

xi
yi
+
yi
xi

]
, (3)

Likewise, the smaller the value of the PB distance
dPB(x, y) is, the less the statistical difference between x
and y . Note that, unlike for KS distance and AD distance,
the sample size of x and y should be equal in formula (3).

3. The Proposed Approach

The proposed adaptive multilook approach is mainly divided
into two steps: estimation of covariance matrix, similarity
test of covariance matrix.

3.1 Estimation of Covariance Matrix

Given a stack of N coregistered SAR images, the com-
plex vector of a generic pixel p can be described as
d(p) = [d1(p), d2(p), . . . , dN (p)], where di(p) represents the
backscatter value of p in ith SAR image. Under the assump-
tion that each simple-look complex (SLC) observation d(p)
approximately follows Goodman’s model, the multivariate
probability density function (PDF) of d(p) can be described
as [13]

f (d(p)) =
1

πNdet(C)
exp{−d(p)CdH(p)}, (4)

where (·)H denotes the conjugate transpose, C is an N ×
N complex matrix and det(·) denotes the determinant of a
matrix. The maximum likelihood estimator of C is generally
calculated by

C = 1
Nq

∑
q∈Ω

dH(q)d(q), (5)

where Ω denotes the set of neighborhood pixels, and Nq de-
notes the number of samples in setΩ. However, the backscat-
tering observations in a preset estimation window may fol-
low different distribution in heterogeneous SAR scenes [14].

Thus, the different structure features are firstly detected to
adaptively estimate covariance matrix in this letter.

3.1.1 Isolated Scatterer Detection

In SAR images, point-wise scatterers are generated by a de-
terministic bounce scattering [15]. Due to the imagingmech-
anism of SAR, the energy of point-wise scatterers mainly
spreads on the main lobe and the first sidelobe. Let Īc and
Īr be the average intensity of the inner neighbourhood (in-
cluding predictor pixel and four-connected pixels) and the
outer neighbourhood in a preset window, respectively. The
isolated scatterer ratio detector can be calculated as γI = Īc

Īr
[16].

For an ideal point-wise scatterer, Īc is significantly
higher than Īr . Thus, the predictor pixels can be consid-
ered as an isolated scatterer when γI is greater than a preset
threshold γIthres .

3.1.2 Line Detection

An ideal linear structure includes three textured regions: the
oriented line and two subregions. Let Ī1i and Ī2i be the
average intensity of two subregions on both sides of ith line,
respectively. For the preset multiple directions, the ratio
detector in ith direction can be calculated by [18]

γLi = min[
Ī1i

Ī2i
,

Ī2i

Ī1i
]. (6)

Then, the line ratio detector γL can be obtained by min-
imizing γLi over all directions, i.e. γL = min

i
γLi . Based

on the structural features, the predictor pixels can be consid-
ered as be located on an oriented line if γL < γLthres . Here,
γLthres denotes the preset threshold, which can be estimated
by the PDF of the ratio detector γL presented in [17] or set
empirically.

3.1.3 Homogeneous Area Detection

Homogeneous area detection is a key issue for spatial adap-
tive speckle filtering. As stated in [17], the homogeneity
of SAR scenes can be measured by the local coefficient of
variation (CV), which is calculated by CV = δ

µ , where δ and
µ represent the local standard variation and mean of inten-
sity map, repectively. The preset window can be considered
as be local homogeneous if CV < Cu. The value of Cu is
associated with the size of the preset window.

3.1.4 Edge Detection

In Lee filter [20], 16 directional masks were used to adap-
tively reduce phase noise, and experimental results showed
that the use of directional windows was more effective in
noise suppression. Inspired by this idea, the local CV will
be calculated based on the preset 16 directional masks in
9×9 window. Then the directional window with minimum
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CV is selected as the most homogeneous neighborhood. In
addition, the selection of directional windows was based on
the temporally averaged intensity map, in order to decrease
the effect of speckle noise.

3.2 Similarity Test of Covariance Matrix

The speckle noise can be suppressed by averaging neigh-
borhood pixels at the cost of spatial resolution. In this de-
speckle case, the covariance matrix, which is estimated by
the selected homogeneous neighborhood, is a more appro-
priate description of the complex backscatter signal in SAR
images.

When complex vector d(p) follows a complex multi-
variate normal with mean 0, the covariance matrix C can be
considered as Wishart distributed. Let X ∈ WC(N,nx,Σx)
and Y ∈ WC(N,ny,Σy) be two Wishart matrixes. The null
and alternative hypotheses of the test statistic of covariance
matrix can be stated as H0 : ΣX = ΣY, H1 : ΣX , ΣY. The
likelihood-ratio test statistics of X and Y can be described as

Q =
(nx + ny)N (nx+ny )

nNnx
x nNny

y

det(X)nx det(Y)ny

det(X + Y)nx+ny
. (7)

The null hypothesis H0 can be accepted when Q is
larger than a proper threshold. The theoretical threshold
with a constant false-alarm probability needs to be regularly
updated based on the data sets. In a simple fashion, the
threshold can be set empirically.

3.3 Procedure of the Proposed Approach

As analysis presented in [10], the amplitude-based multilook
approaches are usually poor in the case of small stacks of
SAR images. Thus, covariance matrix, which comprises
of the amplitude and phase signal of complex-valued SAR
images, is introduced to measure the distance between two
pixels.

Since Adaptive Multilooking is carried out based on
CovarianceMatrix in this work, the proposed approach is ab-
breviated to AMCV in the following section. The flowchart
of the proposed AMCV is presented in Fig. 1. The average
intensity of N coregisteried images is firstly processed in
temporal dimension to suppress speckle noise to some ex-
tent. The different structure features are detected based on
isolated scatterer ratio detector γI , line ratio detector γL and
CV. Then, the covariance matrix of each pixel is adaptively
calculated based on the selected structure feature. In a preset
search window, the similiarity test indicator (7) is applied to
collect the set of statistically homogeneous pixels, which can
be used for interferometric filtering, coherence estimation,
etc.

4. Experimental Results

In this section, both simulated and real data are used to verify
the reliability and effectiveness of the proposed approach.

Fig. 1 The flowchart of the proposed AMCV.

Fig. 2 (a) True amplitude map of the simulated scene. (b) The true
average coherence map of the simulated scene. (c) Noisy amplitude map of
the first SAR image.

4.1 Simulated Data

The simulated six SAR images of size 430×430 were gener-
ated based on TerraSAR-X platform configurations. In this
experiment, we consider the regular geometry, comprising
of four types of objects with different amplitudes and dif-
ferent scattering stability, as shown in Fig. 2(a). Figure 2(b)
presents the true average coherence map of the simulated
scene.

For the temporal SAR datasets, the temporal decor-
relation is assumed to be exponential decay and the noise
components are simulated based on Cholesky decomposi-
tion of a predefined coherence matrix. Figure 2(c) presents
the noisy amplitude map of the first SAR image. It can be
seen that the amplitude map was seriously affected by noise
and decorrelation.

Figure 3 presents the average coherencemaps estimated
by 5×5 boxcarmethod, 9×9 boxcarmethod, KSmeasure, AD
measure, PBmeasure, AMCV, respectively. For the adaptive
multilooking, 91 pixels are firstly selected from the search
window of size 19×19 pixels based on different distance
measures. In the processing of boxcar multilooking, the size
of selected window has obvious influences on coherence
estimation. Smaller window causes overestimation of coher-
ence in low coherence region, but bigger window reduces
spatial resolution of coherence map, as shown in Fig. 3(a)
and Fig. 3(b). These problems can be resolved by adaptive
multilooking to some degree. The results generated by KS
measure, AD measure and PB measure show better spatial
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Fig. 3 The average coherence maps of simulated scene generated by (a)
the 5 × 5 boxcar method (b) the 9 × 9 boxcar method, (c) KS measure, (d)
AD measure, (e) PB measure, (f) AMCV.

Fig. 4 Quantitative comparison of the average coherence maps shown in
Fig. 3.

resolution, but some image details are still blurring. From
the visual angle, the mean coherence map generated by the
proposed AMCV approach can follow the spatial features of
simulated scene and preserve narrow shapes.

To quantitatively analyze the estimated coherence value,
the mean value and standard deviation (STD) of the differ-
ence between these estimated results and true value are cal-
culated and shown in Fig. 4. It can be seen that the estimated
result by AMCV is closest to the reality.

The effects of different stack sizes are also investigated.
Figure 5 presents the probability of selection error PE in the
simulated scene when the stack size N ≤ 8. To ensure the
reliability of result, each experiment is repeated ten times.
Here, PE is calculated by PE =

NΩ
NΩ̄

, where NΩ and NΩ̄ denote
the number of samples and the number of error samples in
the selected SHP sets, respectively [8]. It can be seen that
the proposed AMCM has a good performance in the case
of small data sets and the accuracy of AMCM is relatively
stability with reducing stack size.

4.2 Real Data

Five TerraSAR-X stripmap images acquired between March
27, 2009 and September 8, 2009 over the western region
of Tianjin, China, were used for experiments with real SAR
data. The test region, as shown in Fig. 6(a), covers both towns
and countryside intersection. Since the spatial baselines are
smaller than 100m, all of 10 interferograms can be used for
SBAS analysis.

Fig. 5 The probability of selection error PE with different stack sizes.

Fig. 6 (a) Average amplitude map of the test region. The average coher-
ence maps of the test region generated by (b) the 9 × 9 boxcar method, (c)
KS measure, (d) AD measure, (e) PB measure, (f) AMCV.

Figure 6(b)–6(e) present the average coherence maps
generated by 9×9 boxcar method, KS measure, AD mea-
sure, PB measure, AMCV, respectively. The boxcar method
caused the loss of spatial resolution and coherence spreading
of point-wise scatterers, as shown in Fig. 6(b). The results
shown in Fig. 6(c)–6(e) can obtain more details, but the co-
herence is underestimated because of the unreliable distance
measure in the case of stack size N = 5. The proposed
AMCV approach can effectively mitigate this phenomenon
as shown in Fig. 6(f).

5. Conclusions

In this letter, an adaptive multilook approach is presented
based on complex covariance matrix. The structure feature
in SAR images is firstly detected to adaptively estimate co-
variance matrix. Compared to amplitude-based methods,
the similarity test of covariance matrix is adopted to mea-
sure the distance between two pixels. Experimental results
both on simulated and real data verify the reliability and
effectiveness of the proposed approach.
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