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Orthogonal Variable Spreading Factor Codes over Finite Fields
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SUMMARY  The present paper proposes orthogonal variable spreading
factor codes over finite fields for multi-rate communications. The proposed
codes have layered structures that combine sequences generated by discrete
Fourier transforms over finite fields, and have various code lengths. The
design method for the proposed codes and examples of the codes are shown.
key words: orthogonal variable spreading factor codes, multi-rate com-
munications, finite fields, discrete Fourier transform

1. Introduction

Orthogonal spreading codes have been applied to wireless
communication systems using direct sequence code divi-
sion multiple access (DS-CDMA) [1]-[3]. Various orthog-
onal codes have been studied. Walsh codes that are derived
from Hadamard matrices are one example of such codes
[1]. Polyphase orthogonal codes over the complex field have
been studied [4]. Recently, Hadamard-type matrices on fi-
nite fields and complete complementary codes have been de-
rived by introducing the concept of the GF-conjugate [5].

Tree-structured generation of orthogonal spreading
codes with different code lengths has been proposed, and
these codes, called orthogonal variable spreading factor
(OVSF) codes, have been used in DS-CDMA systems real-
izing multi-rate communications, which support a wide data
rate range [6]-[9]. These OVSF codes are based on Walsh
codes and are binary codes. The authors have proposed non-
binary OVSF codes over the complex field [10], [11]. The
tree structure combining polyphase orthogonal codes real-
izes the codes, and the binary OVSF codes are represented
as a special case of non-binary OVSF codes.

The present study proposes OVSF codes over finite
fields. The discrete Fourier transform (DFT) exists over an
arbitrary field [12]. Row or column components of the DFT
matrix yield the orthogonal sequences. The tree structure
combining the sequences generates OVSF codes over finite
fields when the DFT matrix is designed over prime fields or
extension fields. The design method for the proposed codes
is shown and examples of such codes are demonstrated.
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The remainder of the present paper is organized as fol-
lows. The conventional OVSF codes are shown in Sect. 2,
the properties of the DFT are shown in Sect. 3, and the pro-
posed OVSF codes over finite fields are shown in Sect. 4.

2. Conventional OVSF Codes
2.1 Binary OVSF Codes

OVSF codes have been used in DS-CDMA wireless sys-
tems that support multi-rate communication services [6]—
[9]. These codes are binary codes having elements in
{+1,—1}. The two-point Hadamard matrix Sg)z is shown
as

o_|1 Li_fo7 o1
SH,Z_[l -1 ]—[ Sa20  SH21 ] ’ M
2 _ 2  _ 2)
where SHa0 = 11 ] and 5,5, = 1 -1 815 ; COrTe-

sponds to a Walsh code sequence of length 2 for i = 0, 1.
We define rg,)z,h which is e;]ual to SS,)Z,h for h = 0,1.
2 ()

The inner product of sy, ; and ry, , yields
o o T _ |2 (h=1),
Su2iHon = { 0 (otherwise), @
then Sg,)Z,i and rg,)z,h are orthogonal to each other for & # i.

We define an M| x M| square matrix X and an M, X M,
square matrix Y respectively, then the Kronecker product [1]
of X and Y generates the M| M, X M; M, matrix Z as

Z =XQ®Y
xp,0Y X0, Y XomY
x10Y x1,1Y Xtm-1Y
= ) , 3)
Xpa,0Y xXpra0Y © XM Y
where
X0,0 X0,1 X0,M -1
X1,0 X1,1 T X1,M-1
X= ) ) . ) . 4
XM-1,0  XM-1,1 XM-1,M-1

The Kronecker product of § g)z and § g)z generates S gf) as

@ o)

§CD - ¢@ oo _| Sy Spo
H4 — 2 H2 H2 — S(Z) _S(2)
H2 H2
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1 1 1 1
I I T R
11 1 -1 -1
1 -1 -1 1
[ eaT en’ enT enT |
- [ Suao  Suan  SHa2  SHA3 ] . O

where sg’j)i is the ith row of Sg’f) fori =0,1,2,3. In ad-

.\ 22 (22 (22 22
dition, sp’y 0. Sy 10 Span H43
quences of length 4.

Next, we describe the superscripts attached to the
matrices and sequences. The matrix SE_’IZ‘nTz and the se-

(n1,n2)
quence sH,n 1M,

and s correspond to Walsh se-

; have superscripts of (n,n,;), which indi-

cates that the Kronecker product of the n,-point matrix S 22”)2
and the n{-point matrix S(H"‘)

B

generates the nn,-point ma-

(n1.n2)

t.rix S 5’;":,2 and the sequence sp,° . of length nijny for
i =0,1,...,nn, — 1. Furthermore, the Kronecker prod-
uct of S(H";)} and S(H”"I;T;; generates the n1nyn3-point matrix

(n1,12,n3)
H,n]n2n3,i

(n1,n2,13)
S Hmmn, and the sequence s

i=0,1,...,nmn3 — 1.
The Kronecker product of S 2)2 and S S’j) generates

222
S (H s ) as

of length njnyn; for

(2,2,2)
S H.8

5(2’2) S(2,2)
S(2) ® S(2,2) _ H4 H4
H2 H4 — 5(2,2) _S(2,2)
HA4 HA
_ 2227 @227 e2nT 17
- [ SH8.0 SHg,1 T Spga ] O

where sgéf) is the ith row of 52’82’2) fori =0,1,...,7 and

222 (222 222
SH80  SH81 > > SH8T correspond to Walsh sequences of
length 8.

The tree-structured code generation constructs the
three-layer code sequences shown in Fig. 1. In multi-rate
DS-CDMA systems, each Layer 1 code sequence of length
2 is used for the high-rate data, each Layer 2 code se-
quence of length 4 is used for the middle-rate data and each
Layer 3 code sequence of length 8 is used for the low-rate
data. When a code sequence is selected in the tree, code
sequences other than its descendant or ancestor code se-
quences are selected in order to realize the orthogonality of
the sequences. Examples exhibit the following properties:

sg,)z,o is orthogonal to the first halves of sg?] and orthogo-
(2,2

(2,2) s
nal to the second halves of Spai fori = 1 and 3. SH40

orthogonal to the first halves of sﬁéf) and orthogonal to the

second halves of s(;;lz) fori=1,2,3,5,6and 7.

is

2.2 Polyphase OVSF Codes

The authors have proposed non-binary OVSF codes over the
complex field [10], [11]. A polyphase orthogonal code over
the complex field is given by the n X n matrix

wo w() DY wo
0.)0 wl . wn—l
SC,n = . . . . 5 (7)
2
o0 ! el

45
Layer 1  Layer2 Layer 3
(2) (2.2) (2,2,2)
H2,0 SH40 HB,0
[1 1] [11 11] 1111 1111]
(227)
H84
[1111-1-1-1-1]
2,2) 7272
HA2 H82
[11-1-1] [11-1-111-1-1]
7272
HZB.,6
[11-1-1-1-111]
S(Z) S(Z,Z) (227)
H2,1 HAl HB8.1
[1-1] [1-11-1] [1-11-11-11-1]
227)
HQB)5
[1-11-1-11-11]
2.2) 7272
HA3 HB83
[1-1-11] [1-1-111-1-11]
(227)
HB8.1
[1-1-11-111-1]

Fig.1 Conventional binary OVSF codes.

where n is a positive integer. The complex number w is a
primitive nth root of unity and is represented by

w= e, ®)

where j = V-1. The n different nth roots of unity are
denoted as w°, w', w?, ..., w'"'. Polyphase orthogonal
code sequences of length n are presented as the rows of
S ¢, which are defined as sc,,; = [ W W Wi ] for
i=0,1,....,n—-1.

We define rc,;, which is equal to sc,;, for h =
0,1,...,n — 1. Multiplying sc,.; and rc,,,, where rc,,7
corresponds to a conjugate transpose of r¢ ., yields

H n (h=1),
Scnitcnh = { 0

(otherwise).

©)

Forn =2, S(Cz)2 is shown as

0,0
2) _ w w 1 1 _ 2) T ?) 71T
Sc,z—[ 0 1] [1 —1]_[SC,2,0 Sca ] . (10)

w w

_ -2r/2 _ 2  _ 2  _
where w = e /7= = -1, Sca0 = [l l] and Scan =
[1 -1 ] In addition, S(CZ)zo and S(c2)21 correspond to

polyphase sequences of length 2.
Forn = 4, S?L over the complex field is shown as

W W W W 1 1 1 1
g _ W 0 W G| | - -1
Ca |l W W oWt W T -1 1 -1
o & W 1 j -1 —j
J@»T @ @7 @
_[ c40 Scal Scaz Scas ] ’ (1D
where w = e /2"/* = —j and S(ézu:[ o o W WY ] for

- ses 4) 4) 4) 4)
i=0,1,2,3. In addition, 8400 SCa1 SCa2 and Sca4.3 CoITe-

spond to polyphase sequences of len§th 4. The Kronecker

product of § (C2)2 and S (éi generates S (682) as
(C)) “

Sc Sc }

42 _ (@ @ _ 4 4
Scs = Sc,2®Sc,4—[ 5(4) _S(4)
c4 cA
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- [ @’ @nT @7 ]T (12)
Scs0  Scs.l Sc8.7 ’

42 ) ) ) . . .
where S(c’gz' = [(uo W w0 W W W w3’] and
4,2) _ 0 i 2i 3,0 _ i 20 _, 30
‘?C,S,i+4 = [a) W w' w w w w w ] for

i = 0,1,2,3. These sequences of length 8 construct the
code tree of the polyphase OVSF codes over the complex
field. The matrix S ¢, generating the polyphase sequence is
closely related to the DFT matrix.

3. Properties of DFT
3.1 DFT over a Finite Field

We introduce the DFT operation over arbitrary finite fields
GF(g), including prime fields and extension fields. F' is
added to a matrix or a sequence over the finite field as a
subscript in this paper. Moreover, a is an element in the fi-
nite field and n is a positive integer that satisfies a” = 1 and
a # 1fori=1,2,...,n— 1. In the finite field, we define
V = [ vy U1 Up—1 ]T of length n. When referring
to the notation shown in [12], the DFT operation of V gen-

T
erates U = [ uy U Up—1 ] as
U = Sk.V, (13)
ao aO Clo
aO al an—l
SF,n = :
— —_1)2
(10 a’ 1 a(n 1)

T
seant’ | (14)

where S g, is defined as an n-point DFT matrix and S, =
S F,nT. In addition, sp,; is the ith row of S f, and is defined
as

T T
[ SFEn,0 SFn2

SEni =[ a d & ... gV ], (15)
fori=0,1,...,n—1. Each sf,; corresponds to a spreading
code sequence of length n for data multiplexing.

We define the inverse element of a as a~! such that
a-a' = 1 over the finite field. The n-point inverse DFT
(IDFT) matrix is defined as

aO a() .. aO
Om— a0
RF,n =
(n_ (1)
ClO a (n—1) a (n—1)
T
T T T T
= [ YFn0 YFn1 YFn2 YFnn-1 ] B
(16)

where Rr, = Rr,,", and r,, is the hth row of R, for h =
0,1,...,n—1 and is defined as

Fenh :[ &L a2

a b ], (17)

Each rg,, corresponds to a despreading code sequence of
length n for data demultiplexing.

IEICE TRANS. FUNDAMENTALS, VOL.E105-A, NO.1 JANUARY 2022

The inner product of sg,,; and rg,, 5, which is calculated
by multiplying sf,; and rF,,,,;,T over the finite field, yields

oo g T2 F (=),
Fmil Finsh 0 (otherwise).

Therefore, sg,; and g, are orthogonal to each other for
h # i. In Eq. (18), np is equal to a value obtained by adding
1 n times over the finite field. In order to normalize the
transform as Sg, 7k’ = 1 for h = i, the definition of rg,,,
in Eq. (17) is replaced with

(18)

Frnh = n;l[ & ah g

a*(nfl)h ] , (19)
where the normalization factor n;' is the inverse of ny such
that np - ny;' = 1 over the finite field. However, in this paper,
the normalization factor is not used for easy understanding.

3.2  Number of Points for DFT

In this section, we consider the DFT over a finite field de-
noted as GF(g). Then, ¢ is set to ¢ = p for a prime field,
where p is a prime number of p > 3. In addition, g is set to
q = p™ for an extension field, where p is a prime number of
p = 2, and mis an integer of m > 2. Therefore, the proposed
code cannot be constructed over GF(2).

A prime factorization of ¢ — 1 is represented as

g—1=pi'py-pi, (20)
where pi, p2,...,p; for i > 1 are prime numbers that are

different from each other, and ey, ey, . . ., ¢; are positive inte-
gers. We define d as the number of divisors except for one,
and d is given by

d=(e +1)ex+1)---(e;+1)—1. 21

Each divisor except for the value of one corresponds to the
number of points for the DFT. Next, we show some exam-
ples. F, is added to a matrix or a sequence over GF(g) as a
subscript in this paper.

3.3 DFT over Prime Fields

When g = p = 5, the elements of GF(5) are included in the
set {0,1,2,3,4}). Leta = 2. Thena* = 1 and & # 1 for
i=1,2,3.

A four-point DFT and a two-point DFT exist over
GF(5), because g — 1 = 51 = 4 = 22, The four-point
DFT matrix S ;ﬁ?} 4 over GF(5) is given as

0 0 g0
L2 8|
2 4 |
CRY )

T
o T @» T @& T @ ]
_[ SEsa0  SFsal SFsa2  SFsa3 ’ 22)

@ _
SF5,4_

ISTRES RSN

1 1
1 3
1 4
1 2

o ko
W AN =
N RN =R =

where sjf)4 - is the ith row ofo)4 fori=0,1,2,3.
5541 5
The four-point IDFT matrix Rg) 4 1s given as
5
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@ @ & 1 1 1 1
RY _ @ a' a? a3 | |1 3 42
Fsa™l g0 g2 g% a®|7|1 4 1 4
a@ a3 a® a?° 1 2 4 3
@ T @ T @ T @7
_[ Tpsao  Trsal  Trsa2  TrRsa3 ] . (23)
@ (4) _
where Froan 1S the hth row ofRFS’; forh=0,1,2,3.
Multiplying sg‘i 4; and rﬁfi 4 over GF(5) yields
@ @ T _| 4 (h=1),
SksaiFsan = { 0 (otherwise). @4

Next, we focus on other element of GF(5) to explain
other matrix size. Let @ = 4. Then, a® = 1 and there exists
the DFT of matrix size two. The two-point DFT matrix S (Fzs),2
over GF(5) is written as

S(z) _ ao aO _ 1 1
Fs2 7 | g o' |71 4

@ T o 77"
- [ SEs20  SFs2. ] ) (25)

2 - . 2 s _
where Spy0i 18 the ith row OfSF5,2 fori=0,1.

The two-point IDFT matrix Rfs)z is written as

0 0
2) _ a a _ 1 1
RFﬂ_[aO a‘l}_[l 4}

.o T o 7|
- [ Trono TR ] ’ (26)

(2) : (2) _
where Fraog 18 the Ath row of RF5,2 forh=0,1.

Multiplying sf;z’i and rﬁ),z,hT over GF(5) yields
@ o T_J2 (h=1,
Srs2ilFsan T { 0  (otherwise). @7

3.4 DFT over Extension Fields

For p =2 and m = 8, ¢ is equal to p™ = 28, Then, there
are 256 elements of {0, 1, @, a?,...,a**} in GF(2%), where
« is a primitive root of the primitive polynomial p(x) = x® +
X+ 3 +x2+ 1. In this case, @ = 1 and o # 1 for
i=1,2,...,254. g—1=2-1=255=3-5-17, then
255 has divisors of 3,5,15,17,51,85, and 255, except for
one. Each divisor corresponds to the number of points for
the DFT over GF(2%) [12].

The 255-point DFT over GF(2%) maps a vector of 255
eight-bit bytes into a vector of 255 eight-bit bytes. Let n =
255 and a = « in the n-point DFT, then the 255-point DFT
matrix is given as

ao aO .. ao
P TN 1
(255)  _
Fj5.255 = .
2
a0 o2 . g2
sy T @ss) T (255) r"
= (28)

SF.2550  SFg055,1 Spg2sspsa | o
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(255)  _ [ 0 i 2 .. 254i ]
Sprossi=| @ @@ a s 29)
fori=0,1,...,254.
The 255-point IDFT matrix is given as
QO ao CECERY ao
0 gl L g4
(255 _
Fy5,255 — )
2
Q0 g4 ... g4
T
@5 T @5 T (55 T
= [” F3.2550 TF255,1 Prg255054 | > (30)
©255)  _[ 0 .~k -2k . . . -254h
TFg55h = [ a’ " «a a ], (€2))

forh=0,1,...,254.

(255) and r(255)

Multiplying s ! over GF(2}) yields

Fl3,255,i Fl5,255,h
T 1 h=1),

(259 059) _ ( ). (32)

Fy8,255,i" Fp5,255.h 0 (otherwise).

_ . (255) @55 T _
For h = i SF23,255,1' Fa255h = 1, because the number of

points for the DFT over GF(2") is odd and adding 1 an odd
number of times equals 1 in the case of GF(2") calculation.
We define a = o in GF(2%). Then a® = 1. The three-point
DFT matrix S ;32)3,3 over GF(2%) is given as

a a & @ o
;73 2)8‘3 =14 a; T a/g 018750 018750
a’ a* a a’ «a a
o 7 e 7 o 7
| SEgs0  SEgal SEg32 | oo (33)
where s(Fi)g&i is the ith row ofSE%)K’3 fori=0,1,2.
The three-point IDFT matrix R(F3,)g,3 is given as
a@ a & a a® a®
RS)S = &L al a? ‘:l @ o 170
28 &L a? ot @ o170 o8
o e 7o 17
_[ Trs30  Trgsi Trg3n ’ (34)

where r%’lh is the Ath row of R%,S forh=0,1,2.

Multiplying sg;&li and rf;&hT over GF(2%) yields
@ 3 T_|[1 (h =1,
Sk Py T { 0 (otherwise). (35)

We define a = @' in GF(2%). Then ¢® = 1. The five-
point DFT matrix S ;5)8 5 in GF(2®) is written as
285

(10 (10 aO (10 llo
aO al a2 613 d4
forld 2w @
a a a a a
aO a4 Cl8 a 12 a 16
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Il
r 1
QR R KR
©c o ©o o ©
—
(=3
[SURN1
)
=3
K
W
—
—
w
@

r T
g T o T o T
SFes0  SFgsi SFy.5.4 . (36)

where sf) oy is the ith row of S© _ fori = 0,1,2,3,4.
285951 F28,5

The five-point IDFT matrix RS)S 5 is written as

ra® a a a® a®
o0 Sl g2 153 204
Rf) = o0 102 5204 451 183
2% @ o133 oSl g2 12
| @0 @204 1S3 o102 S
T T T 7
=| Toaso Trasi 7 Tresa | o GD

where > . is the hth row of Rf)s 5 forh=0,1,2,3,4.
85

Fy.5.h
Multiplying SSZ)S 5, and rfz)gvs,hT over GF(2%) yields

& o T_J1 (h=1),

SFy.5.i Fys 50 _{ 0 (otherwise). (38)

4. Proposed OVSF Codes over Finite Fields

The multiplication of the ith row of the n-point DFT matrix
and the Ath column of the n-point IDFT matrix gives 0 over
finite fields for i # h, where i = 0,1,...,n— 1 and h =
0,1,...,n — 1, as shown in Eq.(18). Using this fact, we
propose tree-structured OVSF codes over finite fields.

4.1 Construction of the Proposed Codes

We generalize the construction of the proposed codes over
GF(qg). Then, q is set to g = p for a prime field, where p is
a prime number of p > 3. In addition, g is set to ¢ = p™ for
an extension field, where p is a prime number of p > 2 and
m is an integer of m > 2.

We assume that the number of layers is L for L > 2.
When ¢ — 1 is factorized using prime numbers py, pa, ..., p;
for i > 1, as shown in Eq. (20), g — 1 has d divisors, except
for the divisor of value one, as shown in Eq. (21). We define
these d divisors as fi, f2,..., fs. The n;-point DFT matrix
S (F"‘?n, is applied to construct the codes for / = 1,2,..., L.
Eaz:h ny is selected from fi, f>, ..., f; arbitrarily. Therefore,
there exist d” kinds of code tree. The code length in Layer [
is defined as k; and is decided as k; = Hle n;.

Next, we present examples. In the case of GF(g) for
qg=p="7,q—-1isfactorizedasg—1 = 6 = 2 -3, then
the divisors of ¢ — 1 are f{ = 2, f, = 3 and f3 = 6, and
the number of divisors is d = 3. For L = 3, there exist
27(= d* = 3%) kinds of code tree. Table 1 shows 27 kinds
of (ny,ny, n3), where each n; is selected from f; =2, o, =3
and f3 = 6 for [ = 1,2, 3. Then Table 1 also shows 27 kinds
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Table 1  DFT-points (n1,n2, n3) and code lengths (k1, k7, k3) for L = 3
and GF(7).
n 2 2 2 2 2 2 2 2 2
ny 2 2 2 3 3 3 6 6 6
ns 2 3 6 2 3 6 2 3 6
ki 2 2 2 2 2 2 2 2 2
ko 4 4 4 6 6 6 12 12 12
k3 8 12 24 12 18 36 24 36 72
ni 3 3 3 3 3 3 3 3 3
ny 2 2 2 3 3 3 6 6 6
ns 2 3 6 2 3 6 2 3 6
ki 3 3 3 3 3 3 3 3 3
ko 6 6 6 9 9 9 18 18 18
ks | 12 18 36 18 27 54 36 54 108
n 6 6 6 6 6 6 6 6 6
ny 2 2 2 3 3 3 6 6 6
n3 2 3 6 2 3 6 2 3 6
ki 6 6 6 6 6 6 6 6 6
ky | 12 12 12 18 18 18 36 36 36
ky | 24 36 72 36 54 108 72 108 216

of code lengths (ki, ky, k3) corresponding to (ny, ny, n3).

In the case of GF(q) for ¢ = 28, ¢ — 1 is factorized as
g—1=3-5-17. Then, the number of divisors is d = 7,
as shown in Eq. (21). For L = 3, there exist 343(= d* = 7°)
kinds of code tree.

We show a generalized construction method for the
proposed codes over GF(g) of both prime and extension
fields. Let a be an element in GF(g) which satisfies a?! = 1
and @' # 1 fori = 1,2,...,q — 2, then the n;-point DFT
matrix S g") , for Layer 1 is written as

gsl
S("l) o0 T @) T ) r| (39)
Fgni — SFq,nl,O Fgnp,l qu,n],nl—l ’
(n1) _ 0 i 2i (ni=Di; s .
where SE,min = [ b} b} b by ]1s the i;th

row of § (F"'L and corresponds to the code sequence of length
g:11

ny in Layer 1 for by = a9"/™ and i, = 0,1,...,n; — 1. In

addition, the ny-point DFT matrix S g’zlz is written as
o
g | ) my T (m2) r 40
Foma | SFm0  SEoma 7 SFompm—1 » (40)

(n2) _ 0 i 2i (n2—1)i : :
where SEomi = [ by b, b b ] is the ith

Tow ofo:”L2 for by, = a4 Vm andi=0,1,...,n, — 1.
o

The Kronecker product of S Sfj)n , and S S;'I‘L] generates

(n1,n2)

the nyny-point matrix S Fomin

, for Layer 2 as

(nmp) _ o(n2) ®S("1)
Fgon

Fq,n]nz_ F,i,nz
T T au
—| ((rm) (n1,n2) L mm)
Fynina,0 Fyniny,l Fyniny,niny—1 ’
41
(n1,n2) . . (n1,n2)
where SEymimsiy 19 the irth row of § Fomm and corresponds

to the code sequence of length nyn, in Layer 2 for i, =

0,1,...,mny — 1. Then, the n, code sequences s(lf""Z) .
PROTER

(n1,n2) (n1,m2) (n1,n2)

Fyninyiy+ny® “Fyning,ig+2n® * 0" 2 UFgning ii+(na—1)n;

2 are the descendants of sfv”')n i, of Layer 1 for i; =
pRn

of Layer



YAMASAKI and MATSUSHIMA: ORTHOGONAL VARIABLE SPREADING FACTOR CODES OVER FINITE FIELDS

Layer 1 Layer 2 Layer 3
(n1) (n1.n2) (n1,n2,13)
Fgqn1,0 Fgqning,0 Fgnynan3,0
(n1,n2,13)
Fgnynanz,(n3—Dnyny
(n1,n2) (n1,12,13)
Fgqnynyny Fgnynynz,ng
(n1,n2,13)
Fgmnynanz,(n3—Dnyny+ny
(ny.n2) (ny.,np,n3)
Fg.niny (ny—ny Fg.ninynz (np—1ny
(n1,n2,13)
Fg.ninynz (n3—1)niny+(ny—1)ny
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Fgninynyny—1 Fg.ninpnz.nyny—1
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Fgninpnz,(n3—Dnyny+nyny -1

Fig.2  The proposed OVSF codes based on DFT over GF(g), which are
used as spreading sequences for data multiplexing.

0,1,...,n; — 1 in the code tree shown in Fig. 2.
For [ = 2,3,...,L, the Kronecker product of the n;-
point DFT matrix Sg”)n, and the nyn; - - - n_1-point matrix
o
(F”‘fﬁ;'z'jj_"ril"l) generates the 17, - - - nj-point matrix
” )

for Layer [ as

S (ny,n2,...,17)

Fyniny-—m

(Vllynz,---Jl/):S(nl) ® S(”l»nZ»uwnl—l)

Fgniny-ny Fgom Fgnny-n-

T
_ (nl,l’lz ..... Vl[) T (Vl],ﬂz ..... n,) T . (Vll,nz ..... I’l[) T

Fyniny--n;,0 Fyniny-ng,l Fyniny--nyniny--n—1 ’

(42)

where sg"’"z"“’"’). is the ijth row of $""") and corre-
g NNl F(,,n1n2~~~n,

sponds to the code sequence of length nyn, - - - n; in Layer [

forij=0,1,...,nny---n;— 1. Then, the n; code sequences
(n1,12,...,17) (n1,12,....,17) (n1,12,...,117)

Fgning-npii-® U Fgming-npir+nngn-y® " Fgniny-ngii +2nngny

of Layer [ are the de-

> UFgniny-engi+y=Dngng-ng g
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(1,12,...51-1) _ : _
Fos ot s of Layer [ — 1 for i, =

0,1,...,niny---n;—; — 1 in the code tree.
The code sequences obtained from the IDFT matrix
over GF(g) are derived by the same procedure.

scendants of s

4.2 Examples of the Proposed Codes

When we design the sequences over GF(5), the Kronecker
product of § sz and S gi) 4 generates S 5;:*28) as

1- S(4)
@ _ Fs,4 Fs.4
4) 3

42)_ @
SF5,8_S ®SF5,4_ 15(

Fs.2

e e e e
BN =W RN =
N S W S SN
A LW =D D W
N = WA WRDN
»—‘-lk»—\-lk-lk»—-lk»—“

3 2

[T apnT @y T 17
_[SF5,8,0 Fs81 7 Sk ] ’ (43)

4,2)
where Sp.8i

0,1,....7.
The inverse matrix of S ffs’zg) is obtained as

of length 8 is the ith row of § ;4;23) for i =

1- R(4) 1- R(4)
(4.2) _ p(2) @ _ Fs.4 Fs.4

RF5,8 _RF5,2 ® RF5,4 - [ 1- R(45) 4- (45)
F5,4 F5,4

1

1

AW =N R W
AN = WA DND—
—_— W R W RN -

[ e T i S e S =Y
A= bR =A==
B s e
[T (S N O PR S|

— A= B b ==

2 3

@ T @y T @y T 7
[rF5,8,0 S R O ] ’ (44

\&}

r

where rjé,zs),h of length 8 is the hth row of R(Ifs”zg for h =

0,1,...,7.

Multiplying sg:,zg . and rﬁ’zs) hT over GF(5) yields

@2 @2 T :{ 3 (h=1),

F5,8,i" F5,8, 0 (otherwise). “45)

N

When we refer to Eq. (42), the Kronecker product of Sf;z

and S ffs’zg) generates S ;i’zl’? over GF(5) as

1542

4.22) 2 4,2) ‘ F S(,) ‘
5 (it} _S ® S' =) — 5,8 Fs,8
Fs,16 Fs,2 Fs,8 ] . 4.2) . (4,2)

3 3 3 S Fs,8 4 S 8

Fs,
T
s T @)

:[ @2 T @2 T
§ F5,16,15

Fs5,16,0 Fs,16,1

4,2,2) . . 42,2) .
where Spo 16 of length 16 is the ith row of SF5,16 fori =
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Layer 1  Layer 2 Layer 3
@) (4.2) (422
SFs,4,0 SFs,8,0 SFs,16,0
[1111] [1111 1111] [1111 1111 1111 1111]
(€M)
SFs,16,8
[1111 1111 4444 4444]
(4.2) (€M)
SFs.8.4 SFs,16,4
[1111 4444] [1111 4444 1111 4444]
(€M)
SFs.16,12
[1111 4444 4444 1111]
4) 4.2) Y(4"2’2)
Spsa SFs.8.1 SFs.16.1
[1243] [1243 1243] [1243 1243 1243 1243]
(€N
SFs,16,9
[1243 1243 4312 4312]
(4.2) (€N
SFs85 SFs.16,5
[1243 4312] [1243 4312 1243 4312]
(€N
SFs.16,13
[1243 4312 4312 1243]
@) (4.2) (CN))
Spsan SFs.8,2 SFs.16.2
[1414] [1414 1414] [1414 1414 1414 1414]
(CN))
SFs.16,10
[1414 1414 4141 4141]
(4.2) (CN))
SFs.8.6 SFs.16,6
[1414 4141] [1414 4141 1414 4141]
(CN))
SFs.16,14
[1414 4141 4141 1414]
(@) (4.2) (CN))
SFsa3 SFs.83 SFs,16,3
[1342] [1342 1342] [1342 1342 1342 1342]
(€N
SFs.16,11
[1342 1342 4213 4213]
(4.2) (€N
SFs.8,7 SFs,16,7
[1342 4213] [1342 4213 1342 4213]

4.22)

SFs.16,15
[1342 4213 4213 1342]

Fig.3  Example of the proposed three-layer OVSF codes based on DFT
over GF(5), which are used as spreading sequences for data multiplexing.

0,1,...,15.

. . 422) . .
The inverse matrix of S ;5 ) 6) is derived as

(4,2) (4,2)
w3l | R ws ]
Fs8—| 1. p@ p

5 1-Rp7s 4-Rpg

422 2
RF5,16 _RF5,2 ®R

_[ @27 @27 @22 T "
_[ Trs 16,0 Fs,16,1 TFs,16,15 ] . (47)
(4,2,2) : (4,2,2) _
Bvliere rFi%G’h of length 16 is the hth row of R: 1 for h =

The obtained sequences construct the code tree of the
OVSF codes depending on the DFT matrices over GF(5),
as shown in Fig. 3, which is used in data multiplexing. For
example, the sequence [1 2 4 3], which is the first half of
s%2 _or the sequence [4 3 1 2], which is the second half of

Fogs® is not orthogonal to rffs) 4 =11 3 4 2]. Moreover, the

sequence [1 24 3 4 3 12], which s the first half of s{"%? .,
or the sequence [4 3 1 2 1 2 4 3], which is the second half
of s(ﬁfl’é?m, is not orthogonal to r;f:”zg’s =[13424213].
Therefore, if one sequence is selected as the spreading code
in the system, then the sequences, which are located as its
ancestors or its descendants in the code tree, cannot be se-

lected as the spreading codes.
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Layer 1 Layer 2
3) (3,5)

Ky 9,
Fs.30  Spis0

2’2’

[(10(_1’0050 (YO(YOLYO (l’OO./O(YO (IOG’OG’O 0.’0050(10]

(3.5)

Flg.153

1002000051 051 0511024102102 153 ;153 153 ;204 , 204 204
@3,

aa a aa
3.3
F,g,15,6
000000102102 102,204 204,204 51,51 51,153 153, 153)
3.5
SF 8,159

[{10& 000153(1153(1153051(151(251(1204(1204(1’204(21020102(1102]

3.5
Fg.15,12
o 1000000204 5204 4204 153 4 153 153 102,102,102 51,51 5Ty
SFg.3.1 3.)
0288’5. 17 a5
000850170 04854170 04854170 404854170 10,85,170 40,85 ,170;
3.5
Fg.154
00055 0170451 51364221 4102 187 17 153,238 68 204 34, 119]
3.5
SFg.15.7

[{10&850170(1102&1870170204(134011905101360221 (l153(12380,68]

(3.5)
SF5.15,10
10 a35 1704153 4238 68 51,136,221 204 34, 119 102 187 ,17)
3.5)
SF5.15.13
o 0035 1704204 434, 119 153,238 68 102,187 17 51,136,221y
K 3.5
e
200! 70039 1304170485404 170485 4017048510, 170,85 10, 170, 85)
3.5)
Fo5.15.5
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(3.5)
Fog.15.8
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3.5
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Fig.4 Example of the proposed two-layer OVSF codes based on DFT
over GF(2%), which are used as spreading sequences for data multiplexing.

When we design the sequences over GF(2%), the Kro-
necker product of S ?2)8 sand S gz)m generates S (F32:)1 5as

§63 ¢ ®S(3)

F23,15 F23,5 F23,3
3) 3) 3) 3)
Fg3 Fg.3 SF 3 SF 3
A 51¢0) 10203 204 ¢ 3
Sres @ Spy @7Sp s @SS
B 8 5 B 5
N TG) 102¢@ 20403 15303
=|Spes @ S 3 @SE a>Sps |
A 15303 51¢0) 10203
Sres @7Sp s @ Sp 4 @S Es
A @ 153¢3) 51¢3)
Skgs @ Spys @S @ Sps
T
_| By T @5 T 35 T
T | Skgas0 SEgis1 T SEgisi4 ., (48)
(3.5) : 3 3.5
where SFadsi of length 15 is the ith row of § Fauls for

i =0,1,...,14. These sequences construct the code tree
of the OVSF codes over GF(2%), as shown in Fig. 4. Since
the DFTs of lengths 3, 5, 15, 17, 51, 85, and 255 exist over
GF(2%), combining these DFTs in multiple layers realizes
the various OVSF codes over GF(2%).

4.3 Advantages of the Proposed Codes

We investigate the advantages of the proposed codes. Any
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Receiver for usery

.. Multiplexed
Transmitter Trsaimir;lsssmn symbgls in Information symbols
Information symbols ovger Rx GF(9) _[Despread | in GF(q) for usero
. P > —
in GF(g) for userg [ [Spread channels circuit by codeg
' by codey Multiplexed Demultiplexer in GF(g)
Information symbols symbols in
in GF(g) for user; [ [Spread GF(g) [7
' » 1X .
by code; I > circuit< Receiver for usery-i
. : Multiplexed .
Information symbols symbols in Information symbols
in GF(g) for usery—1 [ [Spread Rx |GF(@ _[Despread |in GF(g) for usery_
> P > EEEE——
" |by codey_ ™ circuit by codey-—1
Multiplexer in GF(q) Demultiplexer in GF(gq)
Fig.5 Downlink system configuration for the proposed codes.

Transmitter

Fig. 6

of the proposed OVSF codes has a layered structure with L
Layers for L > 2. Combining the DFT matrices of points
ny, ny, ..., n; over GF(g) generates the code sequence of
Layer [ forl = 1,2,..., L. The value #n; is selected from the
d divisors of g — 1, except for one. These d divisors are de-
fined as fi, f>, ..., fy and are decided by the factorization of
g — 1 using prime numbers, as shown in Eq. (20). Therefore,
d" kinds of code tree exist and the various code lengths are
obtained, because the code length on Layer [ is decided as

le n;. The proposed codes realize multi-rate communica-
tions with various code lengths.

The conventional OVSF code [6]-[9] also has a layered
structure with L Layers for L > 2. Combining the Hadamard
matrices of points ny, ny, .. ., n; generates the code sequence
of Layer [ for [ = 1,2,..., L. Then, the code lengths of the
code sequences are restricted to powers of 2.

A system configuration when the proposed codes are
applied to synchronous code division multiplexing system
for the downlink transmission between a transmitter at an
access point and receivers for N users is illustrated in Fig. 5.
At the transmitter, @ denotes an addition circuit in GF(g).
Every element in information symbols, spread sequence
symbols and multiplexed sequence symbols is in GF(g).
This means that the symbols are spread and multiplexed by
the calculation over GF(g). Multiplexing causes no expan-
sion of the range for symbol values.

Transmission
signals

channels

Information symbols over
in complex or real .
field for userg .| Spread MUIEPIIC’SCd
> symbols in
Information symbols by codeo cﬁmplex
in complex or real or real
field for user; | Spread field
; " by code; [MP—1x
: circuit
Information symbols :
in complex or real
field for usery—_ | Spread
" by coden-|
Multiplexer in complex or real field

Receiver for userg

Multiplexed symbols Information symbols
in complex or in complex or real
Rx |realfield [pespread | field for userg
circuit " by codey |

Demultiplexer in complex or real field

Receiver for usery_1

Multiplexed symbols Information symbols
in complex or in complex or real
Rx |realfield [pDespread | field for usery—;
circuit " [by codey-]

Demultiplexer in complex or real field

Downlink system configuration for the conventional codes.

We show the case of ¢ = 22 as an example. There are
four elements of {0, 1, @, @?} in GF(2?), where « is a primi-
tive root of the primitive polynomial p(x) = x*>+x+ 1. Then,
o =1land & # 1fori=1,2. Since g — 1 has divisor of 3,
the three-point DFT exists over GF(2?). The proposed codes
of length k; = 3 are used as the spread sequences in Layer
[ for [ > 1. Multiplexing the user information symbols over
GF(2?) by using these sequences generates the multiplexed
sequence symbols over GF(2?). Both the information sym-
bols and the multiplexed sequence symbols are elements in
the set {0, 1, @, @2}, which is mapped in a one-to-one way
onto the set {00,01, 10, 11}.

At a transmission circuit, which is denoted as Tx circuit
in Fig. 5, the multiplexed sequence symbols in GF(2?) are
converted to continuous-time transmission signals fed to the
channel such as a radio channel, a cable channel and an opti-
cal channel. At each receiver for user; fori =0,1,--- ,N—1,
signals from the channel are fed to a receiving circuit, which
is denoted as Rx circuit in Fig.5, and are converted to
discrete-time symbols in GF(2%). Demultiplexing the sym-
bols reconstructs the information symbols in GF(2?).

Several methods transmitting the multiplexed sequence
symbols in GF(2?) can be supposed. These symbols, which
consist of two-bit patterns in {00, 01, 10, 11}, are transmit-
ted by on-off keying signals. And they are also transmitted
by 4-phase-shift keying signals. In addition, the multiplexed
sequence symbols can be error correction coded to increase
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error resilience of transmission signals through an erroneous
channel. For example, they are transmitted by coded modu-
lation signals combined with error correction coding of code
rate 2/3 and 8-phase-shift keying mapping.

In the case of GF(2?) as an example, we have shown
that the proposed scheme has several transmission methods.
The other cases will be studied in future work.

At the end of this section, we illustrate a system con-
figuration when the conventional codes [6]-[9] are applied
to synchronous code division multiplexing for the downlink
transmission in Fig. 6, where & denotes an addition circuit
over the real or the complex field. Information symbols of
each user are spread by an assigned code sequence, and the
spread sequence symbols for N users are multiplexed over
the real or the complex field operation. Multiplexing causes
expansion of the range for symbol values.

5. Conclusion

The present paper proposed tree-structured orthogonal
spreading codes with different code lengths over finite fields
including prime fields and extension fields. Combining the
sequences generated by the discrete Fourier transforms over
finite fields realizes various lengths of the codes. The design
method for the proposed codes was shown and examples of
the codes were demonstrated. The proposed scheme mul-
tiplexing symbols over finite fields would have potential of
low peak-to-average power ratio (PAPR) characteristics of
the transmission signal and a discussion of the PAPR is fu-
ture work.
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