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[PAPER

On the Convergence of Convolutional Approximate
Message-Passing for Gaussian Signaling

SUMMARY  Convolutional approximate message-passing (CAMP) is
an efficient algorithm to solve linear inverse problems. CAMP aims to
realize advantages of both approximate message-passing (AMP) and or-
thogonal/vector AMP. CAMP uses the same low-complexity matched-filter
as AMP. To realize the asymptotic Gaussianity of estimation errors for all
right-orthogonally invariant matrices, as guaranteed in orthogonal/vector
AMP, the Onsager correction in AMP is replaced with a convolution of all
preceding messages. CAMP was proved to be asymptotically Bayes-optimal
if a state-evolution (SE) recursion converges to a fixed-point (FP) and if the
FP is unique. However, no proofs for the convergence were provided. This
paper presents a theoretical analysis for the convergence of the SE recursion.
Gaussian signaling is assumed to linearize the SE recursion. A condition
for the convergence is derived via a necessary and sufficient condition for
which the linearized SE recursion has a unique stationary solution. The
SE recursion is numerically verified to converge toward the Bayes-optimal
solution if and only if the condition is satisfied. CAMP is compared to
conjugate gradient (CG) for Gaussian signaling in terms of the convergence
properties. CAMP is inferior to CG for matrices with a large condition
number while they are comparable to each other for a small condition num-
ber. These results imply that CAMP has room for improvement in terms of
the convergence properties.

key words: linear inverse problems, convolutional approximate message-
passing, state evolution, Gaussian signaling, bifurcation analysis

1. Introduction
1.1 Background

Innoisy linear inverse problems, an unknown N-dimensional
signal vector x = (xy,...,xy)T € RY is estimated from M-
dimensional linear and noisy measurements y € RM

y=Ax +w, w~N(0,0'21M). (1)

In (1), A € RM*N i5 a known sensing matrix. The additive
white Gaussian noise (AWGN) vector w has independent
zero-mean Gaussian elements with variance o->. The 3-tuple
{A, x, w} is composed of independent random variables.

For simplicity, the signal vector x is assumed to have
independent and identically distributed (i.i.d.) elements with
zero mean and unit variance. Such noisy linear inverse
problems appear in compressed sensing [1], precoding [2]
and multiuser detection [3] in wireless communications, and
linear regression in machine learning [4].
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Approximate message-passing (AMP) [5] is a low-
complexity and powerful message-passing (MP) algorithm
for noisy linear inverse problems. Bayes-optimal AMP is
regarded as a large-system approximation of belief propaga-
tion [6]. Bayati and Montanari [7] used state evolution (SE)
to prove that Bayes-optimal AMP can achieve the minimum
mean-square error (MMSE) performance for zero-mean i.i.d.
Gaussian sensing matrices in the large system limit—AM and
N tend to infinity while the ratio § = M /N is kept constant.
However, AMP cannot converge for non-zero mean [8] or
ill-conditioned [9] sensing matrices.

Orthogonal AMP (OAMP) [10] or equivalently vector
AMP (VAMP) [11] is an MP algorithm to solve the conver-
gence issue of AMP. A prototype of OAMP/VAMP was orig-
inally proposed by Opper and Winther [12]. Bayes-optimal
OAMP/VAMP is regarded as a large-system approxima-
tion [13], [14] of expectation propagation (EP) [15]. Bayes-
optimal OAMP/VAMP was proved to achieve the MMSE
performance in the large system limit for right-orthogonally
invariant sensing matrices [11], [14]. However, Bayes-
optimal OAMP/VAMP requires a high-complexity linear
MMSE (LMMSE) filter in interference suppression.

Convolutional AMP (CAMP) [16], [17] aims to solve
the disadvantages of AMP and OAMP/VAMP. The main
feature of CAMP is Onsager correction via a convolution of
messages in all preceding iterations while CAMP uses the
same low-complexity matched-filter (MF) as AMP. CAMP
has been proved to achieve the MMSE in the large sys-
tem limit for all right-orthogonally invariant sensing matri-
ces if an two-dimensional (2D) discrete system—called SE
recursion—converges to a fixed-point (FP) [17] and if the
FP is unique. The SE recursion was numerically shown to
converge for sensing matrices with low-to-moderate condi-
tion numbers [17]. However, it is still open to analyze the
convergence properties of the SE recursion theoretically.

1.2 Contributions

This paper presents a bifurcation analysis for investigating
the convergence properties of CAMP, instead of analyzing
the convergence of the SE recursion toward a certain solu-
tion. In the bifurcation analysis, we investigate conditions for
which the SE recursion has multiple solutions. The occur-
rence of multiple solutions does not immediately indicate
that the SE recursion converges to a suboptimal solution.
However, it is a negative sign for the convergence of CAMP.

To derive a simple condition for the occurrence of mul-
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tiple solutions, we linearize the SE recursion and use a basic
technique in linear algebra. Gaussian signaling is a key as-
sumption to linearize the SE recursion. In this case, we know
that the Bayes-optimal estimator of x in (1) is the LMMSE
estimator. Thus, CAMP for Gaussian signaling may be re-
garded as an efficient algorithm for linear precoding [2]. See
[9], [18] for existing works that assumed Gaussian signaling
in the convergence analysis of MP.

The contributions of this paper are twofold: A first con-
tribution is that a condition for the convergence is derived
under Gaussian signaling via a necessary and sufficient con-
dition for which the SE recursion has a unique stationary
solution. CAMP is numerically verified to converge toward
the MMSE solution when the condition is satisfied. Other-
wise, CAMP cannot converge to the MMSE solution.

The other contribution is a comparison between conju-
gate gradient (CG) [19] and CAMP for Gaussian signaling
in the noiseless case. CG is an efficient iterative algorithm
to solve linear systems. Numerical results show that CAMP
is inferior to CG for sensing matrices with a large condition
number while they are comparable to each other for a small
condition number. This implies that CAMP has room for
improvement in terms of the convergence properties.

1.3 Organization & Notation

The remainder of this paper is organized as follows: After
summarizing the notation in this paper, CAMP is reviewed
in Sect.2. The convergence of the SE recursion is theo-
retically analyzed in Sect.3. Section 4 presents numerical
results: verification of the theoretical analysis and compari-
son between CG and CAMP. Section 5 concludes this paper.
Technical results are summarized in the appendices.

Throughout this paper, N (i, X) denotes the Gaussian
distribution with mean u and covariance X. The Euclidean
norm, imaginary unit, and identity matrix of dimension M
are represented as || -|[, i, and I »s, respectively. The notations
z*, R[z], and 3[z] mean the complex conjugate, real part,
and imaginary part of a complex number z € C.

For a vector v, the notation [v],, denotes the nth element
of v. For a scalar function f : R — R, the notation f(v)
is used to mean the element-wise application [f(v)], =
f([v],). Furthermore, we use the notational convention

Y, =0and [\, ---=1fort >t

For two sequences {at};’ie and {bt}f‘; , the convolution
operator * is defined as a;4; * bryj = X7 _gArvibi—r4j, in
which all variables with negative indices are set to zero.

The one-dimensional (1D) and 2D Z-transforms A(z)

and A(zy, z2) of {a,};'io and {a,/,,};’,‘”t:O are defined as

(o) [o0]

A(z) = Zatzt, A(z1,22) = Z ap. 2l 2, 2)

t=0 t/,t=0

respectively. Note that the 1D Z-transform is usually defined
as A(z™1). Nonetheless, we use the definition A(z) since the
2D Z-transform A(zy, zo) was used in the literature [20].
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2. Convolutional Approximate Message-Passing
2.1 Algorithm

The goal in noisy linear inverse problems is estimation of
the unknown signal vector x from the measurement vector
y in (1). Bayes-optimal CAMP [17] computes an estimator
X141 € RN of x initeration r = 0, 1, . . . as follows:

Xtil = fopt(xt + ATZ:§ Urt)s 3)

with x¢ = 0 and

-1
a=y—Axi+ ) VO AAT — gDz, (@)
7=0

In (3), the denoiser fopt(itn; vs,¢) is defined as the pos-
terior mean estimator of x,, given a virtual AWGN measure-
ment u, = x, + W, with w;, ~ N(0,v:,), in which the
variance v;; > 0 is determined in Sect.2.2. For Gaussian
signaling x ~ N (0, ), we have the LMMSE estimator

u
1+ Ut,t.

(&)

fopt(u; Ut,t) =

The forgetting factor gi"” = i,_:lT &y in (4) is defined with

N
& = %Zf(;p; ([xt +ATZZ]n;Ut,t)s (6)

where the derivative is with respect to the first variable. For
Gaussian signaling, we have the representation

3 1
T

& @)

Thus, the forgetting factor fi’_l) is geometrically small for

sequences {vyp > 0:t' =7,...,t—1}.

For given {6,}, the tap coefficients {g,} in (4) are de-
termined so as to realize the asymptotic Gaussianity of the
estimation error h, = (x; + ATz,) — x before denoising for
all right-orthogonally invariance sensing matrices. See [17]
for the details. The other tap coefficients {0,} are designed
to improve the convergence properties of CAMP.

2.2 State Evolution

SE [17] tracks the asymptotic dynamics of the mean-square
errors (MSEs) N~!||h,||> and N~!||q,,||> before and after
denoising, respectively, with g, = x;, — x. The former MSE
corresponds to the variance parameter v; ; in CAMP while
the latter MSE is associated with another variance parameter
dt+l,t+] .

The SE recursion derived in [17] is a 2D discrete system
with respect to the asymptotic error covariance vy and dy ;
in iterations ¢’ and ¢, given by
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T
dyy = lim 29 )

h'h,
. t
Uyt = lim

’ M=6N—-c N

M=5N-co N

Theorem 1 ([17]): Suppose that the signal vector x ~
N (0, I ) is Gaussian and that the empirical eigenvalue dis-
tribution of ATA converges almost surely to a compactly-
supported deterministic distribution with unit first moment
in the large system limit. Then, the covariance parameters
{vy.;} and {d} .} satisfy the SE recursion

[
E § (t'=1) £(z-1)

gt’—‘r’ é:t—‘r (02 i T R
7=07=0

’

3 1
’—1 -1
= Z Z f(ft_-ﬂ)gz(t—-r )(ﬂ‘r’,‘rdt’—T’,l—T + VT’,T)’ (9)

/=0 7=0
with
Up Ut + Uyt
A +vy ) +0p,)

dysle1 = fort’,t > 0, (10)
where all variables with negative indices are set to zero, and
where we impose the initial condition do o = 1 and boundary
conditions do ;11 = dr41,0 = —Elxn{ fopt(Un; vr,r) — x4}]. In
(9), the coefficients @, ¢, B+.z, and y; . are given by

Az =Grrar = Grrvrel T (Gr—1 — gr) * Orriryy

+ grrarr1 # (07 — 0-1) + gr * (047 — 677,007)
- 6)‘r * (g‘r’+‘r - 67’,Og‘r)7 (11)
ﬂ‘r’,‘r = gr * Orrgrsl — Grrarsl ¥ 04, (12)
Yoo = O—Z(HT’H' = Orr4r41)s (13)

with go = 69 = 1, where d,/; denotes the Kronecker delta.

Proof: The SE recursion (9) was proved in [17, Theorem 4].
The representation (10) for Gaussian signaling is obtained
by taking the limit p — 1 in [17, Appendix F].

To use [17, Theorem 4], however, we need the right-
orthogonal invariance of the sensing matrix. It is induced
from the orthogonal invariance of Gaussian signals x ~
N(,1Iy),ie. x ~ ®x for any Haar-distributed orthogonal
matrix @ independent of x and A. Re-defining A® in Ax ~
A®x as the sensing matrix, we obtain the right-orthogonal
invariance of the sensing matrix. O

CAMP uses the variance parameter v, ; in the Bayes-
optimal denoiser fop(-;0r,,) While d;y1,41 predicts the
asymptotic MSE after denoising. As proved in [17, The-
orem 5], the SE recursion (9) has the uniform solution
limy ;00 Upy = vy, With v, > 0 denoting the solution of
the FP equation,

o? ay

:—, d = N
R(—dy/o?) YT 1+ ay

Uy (14)
where R(x) denotes the R-transform of the asymptotic eigen-
value distribution of ATA. This uniform solution dy is
unique for Gaussian signaling and corresponds to the asymp-
totic MMSE based on the posterior mean estimator [17]. In
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proving the optimality of CAMP in [17], the SE Eq. (9) was
assumed to converge toward this uniform solution.

3. Bifurcation Analysis

We are interested in whether the SE recursion (9) converges
to the uniform solution as both ¢’ and ¢ tend to infinity. To
derive a bifurcation point at which the solution of the SE re-
cursion (9) changes qualitatively, we investigate a necessary
and sufficient condition for which the uniform solution is a
unique stationary solution to the SE recursion (9).

To enable theoretical analysis of the SE recursion (9),
we postulate the following assumption:

Assumption 1: The variance parameter v;; converges to-
ward a constant v > 0 as ¢ tends to infinity.

Note that the convergence of vy is not assumed for
t’" # t. Assumption 1 is postulated to find soliton-like solu-
tions shown in Figs. 1 and 4 while it excludes non-stationary
solutions in which v, ; does not converge. It is difficult to
verify Assumption 1 numerically, because of slow dynamics.
Even if Assumption 1 did not hold, we could still use theo-
retical results in Sect. 3. When we focus on a time window
W, ={t-W+1,...,t} of size W, we can regard vy, for
t’ € W, as a constant approximately. Theoretical results in
Sect. 3 can be applied to this finite window. Such a finite-
window analysis is well-known in time series analysis [21].

Assumption 1 implies the boundedness of vy in (9).
From the definition (8), we use the Cauchy-Schwarz inequal-
ity to obtain |v,r,,|2 < vy p0py < oo due to the convergence
U — U < 0o. Also, we have the lower bound v > v, with v,
denoting the solution of the FP Eq. (14) since d,, = vy/(1+vy)
corresponds to the asymptotic MMSE. This lower bound im-
plies the upperbound ¢ = (1+v)~! < &, with&, = (1+v,)7".

Assumption 2: The Z-transforms of the tap coefficients
{g:} and {6, } exist in the region {z € C : |z]| < &,}.

Assumption 2 implies that the 2D Z-transforms of @+ -,
Br .+, and yr 7 given in (11), (12), and (13) are convergent
in the region {(z1,22) € C? : |z1] < &u, |22] < &)

Lemma 1: Postulate Assumptions 1 and 2, suppose that
{vy+} is the solution to the SE recursion (9). Then, {vs;}
satisfies the following truncated 2D discrete system in the
limit limz, e0 limy s 00t

Tc

Z ‘;‘:T,+T(IT’,TUI’—T’,I—T = ‘;‘:21)2B(§’ f) + C(f’ f)

7/,7=0
Tc
, ,
+E D E Bt o1y + 0(1) (15)
7/, 7=0

for & = (1+v)~! with v in Assumption 1, in which B(z1, z2)
and C(z1,z2) denote the 2D Z-transforms of {S, } and
{y2 ¢}, respectively.

Proof: See Appendix A. O
Lemma 1 does not claim that the two recursions (9)
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and (15) converge toward the same solution as each other.
Nonetheless, we analyze solutions of the 2D discrete sys-
tem (15) instead of the original SE recursion (9). The 2D
discrete system (15) is different from the original system (9)
in a neighborhood of the boundaries. However, the boundary
influences are forgotten due to the geometrically small factor
;(/t__fl/) D in the SE recursion (9). As a result, we expect
that the two systems converge toward an identical solution.
The 2D discrete system (15) is linear when v or equiva-
lently £ is fixed. We focus on stationary solutions to the 2D
discrete linear system (15) for fixed & = &,. The following
theorem provides a necessary and sufficient condition for
guaranteeing that the uniform solution is a unique stationary
solution to the 2D discrete linear system (15).

Theorem 2: Define a function Q(zy, zo) for the 2D discrete
linear system (15) with & = &, as

0(z1,22) = Aéuzi, &uz2) - Esz122B(éuz1, &uza), (16)

where A(z1,z2) and B(zy, z2) denote the 2D Z-transforms
of {ay;} and {By;}. Assume the existence of a stationary
solution limy e vy 4+ = vr in (15) with ¢ = &, for all 1.
Then, v; = v, holds for all ¢ if and only if the following holds:

0(z,z") #0 intheregion {z € C: |z| = 1}. (17)

Proof: See Appendix B. O

The function Q(z1, z2) determines the stability of the 2D
discrete linear system (15) with & = &,. In fact, we evaluate
the 2D Z-transform of both sides in (15) with & = &, in
the limit lim;,_, limy ;00 to represent the 2D Z-transform
V(z1,22) of {vy;} as

E202B(Ey, &) + C(&y, £0)
(1 —=z1)(1 =22)0(z1,22)

Thus, the 2D discrete linear system (15) with & = &, is
stable if and only if Q(zy,z2) has no zeros in the region
{(z1,22) € C? : |z1] < 1,]z2] < 1} [20, Theorem 5]. This
implies that the 2D discrete linear system becomes unstable
when the condition (17) in Theorem 2 is not satisfied.
Theorem 2 does not claim no existence of non-
stationary solutions that depend on both ¢” and ¢ in the limit
t’,t — oo or the convergence of vy, in (15) toward to the
uniform solution vy,. It only claims that the uniform solu-
tion is a unique stationary solution to the 2D discrete linear
system (15) with & = &,. As shown in Sect. 4, nonetheless,
the condition (17) in Theorem 2 is useful for specifying the
region in which the SE recursion (9) converges toward the
uniform solution vy, — v, as ¢’ and ¢ tend to infinity.

Property 1: 3[Q(z,z")] = 0 and Q(z1,22) = Q(z2,21)
hold.

V(z1,22) =

+o(1). (18)

Proof: We first prove the former property by showing that
both A(z, z*) and B(z, z*) are real. We follow [17, Eq. (177)]
to obtain

(21 + 22 - D[O(21)G(z2) — G(21)0O(z2)]
Az 2) = 21— 2
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N (1= 2)G(z2) = (1 = 21)G(z1)
i1 — 22

. (319

where G(z) and ®(z) denote the Z-transforms of {g,} and
{6,}, respectively. Since [G(z)]* = G(z¥) and [O(2)]* =
O(z") hold, we find J[A(z,z*)] = 0.

Similarly, we follow [17, Eq. (176)] to have

0(z1)G(22) — G(21)0O(z2)
71— 22 ’

B(z1,22) = (20)
which implies 3[B(z, z*)] = 0. Thus, 3[Q(z, z*)] = O holds.

We next prove the latter property. It is a simple exercise
to confirm A(zy, 22) = A(22,21) and B(z1,22) = B(22,21)
from (19) and (20). Thus, Q(z1, z2) = Q(z2,z1) holds. O

Property 1 implies Q(e7¢, €) = Q(e'“, e7) forw €
R. Since Q(e'“, ¢7*) is a real and continuous function of
w, thus, the condition (17) in Theorem 2 is satisfied if and
only if the following holds:

R[O(1, DO, e )] >0 forallw e [0,7]. (21)

The condition (21) can be used to determine the bifurca-
tion points between two regions: In one region, the uniform
solution vy ; = vy is a unique stationary solution to the 2D
discrete linear system (15) with & = &, as ¢’ and ¢ tend to
infinity. In the other region, the 2D discrete linear system
has multiple solutions, so that vy, may converge toward a
non-uniform solution. The bifurcation points are defined via
the following condition

min RIQ(1, DQ(e™, e7)] = 0. (22)

4. Numerical Results
4.1 Bifurcation Analysis

To verify the correctness of the bifurcation condition (22),
we consider Gaussian signaling x ~ N (0,1 ) and an arti-
ficial model of the sensing matrix A [17, Corollary 3]. In
the artificial model, the singular values of A are located at
equal intervals. Thus, the eigenvalue distribution of ATA is
uniquely determined via the unit-first moment assumption
in Theorem 1 and the condition number x = 0" max /O min, iN
which o max and oin denote the maximum and minimum
non-zero singular values of A. See [17, Corollary 3] for
how to compute the tap coefficients {g,} for given {6,}.

We assume 6y = 1 and 6, = O for all + > 2. When
O(&,) = 1 holds for &, = (1+uv,)"", the solution v, of the FP
equation (14) corresponds to the MMSE performance [17,
Theorem 5]. To impose the condition @(&,) = 1 + 61&, +
0,62 = 1, welet 6 = 6 and 6] = —£,6.

We first verify that the SE recursion (9) and 2D discrete
linear system (15) converge to the same solution as each
other. As shown in Fig. 1, the SE recursion (9) has a soliton-
like quasi-steady solution. Since its dynamics is slow, the
variance v; ; does not yet converge even for t = 300. When &
in (15) is set appropriately, the 2D discrete linear system (15)
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Fig.1  Comparison between (9) and (15) for 6 = 1, k =5, 6 = 0, and

SNR 1/02 = 30dB. The parameter v = 300,300 in (9) was used to simulate
(15) with & = (1 +v)7 L.
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Fig.2 R[Q(el®, e7 )] versus w for 6 = 1, k = 5, and SNR 1/02 =
10dB.

provides approximately the same solution as to (9).

We next plot the function RO (¥, e )] of w € [0, 7]
in Fig.2 to evaluate the condition (22). For 6 = 0, the
function has two local minima at w = 0 and w = wq for
some wg € (0,7). As the condition number « increases,
R[Q(e'“, e710)] decreases and passes through zero while
R[Q(1,1)] remains separate from zero. As a result, the
bifurcation point is given as the condition number k such
that R[Q (&', e7¢0)] = 0 holds.

For 6 = —0.16, the function R[Q(e'®, e7?)] is quali-
tatively different from for § = 0. It has an additional local
minimum at w = 7. The local minimum R[Q(e'®0, e71¢0)]
decreases and passes through zero as the condition num-
ber « increases. On the other hand, R[Q(e', e77)] de-
creases and passes through zero as « decreases. Thus, we
have two bifurcation points defined via the condition (22).
One bifurcation point is the condition number « such that
R[Q(e, e70)] = 0 holds. The other bifurcation point is
& such that R[Q(e'™, e77)] = 0 holds.

Figure 3 presents a bifurcation diagram obtained by
solving the bifurcation points for different . The mark-
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SE(SNR=10dB) x

Suboptimum
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Bayes optimum

-02  -0.15 -0.1 -0.05 0 0.05 01 015 02 025 03
0

Fig.3  Bifurcation diagram for 6 = 1.

ers show numerical prediction of the true bifurcation points
obtained via 103 iterations of the SE recursion (9). For
each 6, the SE recursion (9) converges to the uniform solu-
tion vy ; = v, when the condition number « is smaller than the
corresponding marker. This uniform solution corresponds
to the Bayes-optimal performance [17, Theorem 5]. When
k is larger than the marker, on the other hand, a soliton-like
non-uniform solution appears, as shown in Fig. 1.

Theorem 2 claims that the uniform solution is a unique
stationary solution of the 2D discrete linear system (15) when
k is between the upper bifurcation curve and the sheer bi-
furcation line for & < 0. The original SE recursion (9)
converges to the uniform solution when « is smaller than the
upper bifurcation curve. Otherwise, it cannot converge to
the uniform solution. In this sense, the upper bifurcation
curve corresponds to a correct bifurcation curve.

The sheer line does not indicate any bifurcation in terms
of the dynamics of the SE recursion (9). Theorem 2 claims
that the 2D discrete linear system (15) has multiple solutions
when « is smaller than the sheer line. Fig.3 implies that
the initial conditions for the SE recursion (9) are included
into the basin of attraction for the uniform solution when «
is smaller than the sheer line.

Finally, we show the covariance vy, versus ¢’ for condi-
tion numbers above and below the bifurcation point in Fig. 4.
Since the condition number « = 4 is below the bifurcation
point, the covariance v, converges toward the uniform so-
lution v, as ¢’ and ¢ increase. Thus, the Bayes-optimality of
CAMP is guaranteed from [17, Theorem 5]. For x = 5, on
the other hand, soliton-like solutions appear.

The occurrence of solution-like solutions is due to the
instability of the 2D discrete linear system (15) and to the for-
getting factor in the original system (9). As noted in Sect. 3,
the 2D discrete linear system (15) is unstable when the con-
dition number « is above the bifurcation point. Thus, v,
in (15) diverges as t increases. However, increasing v; ; de-
creases the forgetting factor fz(:]) in the original system (9)
geometrically. This negative feedback produces soliton-like
quasi-steady solutions.



TAKEUCHI: ON THE CONVERGENCE OF CONVOLUTIONAL APPROXIMATE MESSAGE-PASSING FOR GAUSSIAN SIGNALING

0.05 T T T T

11
|

=200 =400 =600 =800 +=1000

-0.01 1

20.02 L L L A
0 200 400 600 800 1000

r

Fig.4  Covariance v’ , versus t’ =0, ..., for severalt. § = 1,0 =0,
and SNR 1/0% = 30dB.

1 : : : : : : : : : : : : :
CAMP (Theory) ——
CAMP (Sim.) +
10" CG (Theory) —o— 3
CG (Sim.)
10?
@ 10°
=
10"
107
10-6 I I I I 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of iterations

Fig.5 MSE versus the number of iterations for M = N = 256, 6 = 0,
and 0% = 0.

4.2 Convergence Properties

CAMP is compared to CG [19] for the noiseless case. As dis-
cussed in Appendix C, it is fair to compare the performance
of the two algorithms for a fixed number of iterations. See
Appendix C for the details of CG and its theoretical analysis.
In numerical simulations, the singular value decompo-
sition (SVD) A = VT was postulated to reduce the com-
plexity of the matrix-vector multiplication. In the SVD, V
is a Hadamard matrix while £ was determined according to
[17, Corollary 3]. This SVD structure allows us to compute
the matrix-vector multiplication in O(N log N) time.
Figure 5 shows the MSEs versus the number of iter-
ations for CAMP and CG. The numerical simulations for
N = 256 are in good agreement with the SE recursion (9)
or a theoretical result in Appendix C, while the large system
limit has been assumed in both theoretical analyses. CAMP
converges more slowly than CG for the condition number
k = 4 while they are comparable to each other for k = 2.
This implies that CAMP has room for improvement in terms
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of the convergence property.
5. Conclusion

This paper has revealed negative aspects of CAMP theo-
retically: The SE recursion cannot converge to the Bayes-
optimal solution for high condition numbers. CAMP con-
verges more slowly than CG for high condition numbers.
The conclusion of this paper is that CAMP has room
for improvement in terms of the convergence properties. A
possible direction for improvement is a further addition of
degrees of freedom for CAMP to handle high condition num-
bers. Long-memory damping [22] is a candidate to add
degrees of freedom to CAMP. This paper has developed a
methodology for linearizing the SE recursion under the as-
sumption of Gaussian signaling. The methodology will be
useful in designing CAMP with long memory damping.
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Appendix A: Proof of Lemma 1

We first prove the following lemma:

Lemma 2: Suppose that an array {a, - }m _o is summable

and that {5’ ”}T o is bounded. If limy ;o 6% = 0
holds for all 7/ and 7, we have

vt
: @0 _
RLEDIDICALS R (A1

7/=0 7=0

Proof: Let L ={0,...,
tice for any non-negative integer T.
inequality to obtain

't
. t't .
lim ap Tb(,’ )l < lim
’ U T
t,t—00 | & g 4 t',t—00
/=0 7=

7.} X {0, ..., 7.} denote a 2D lat-
We use the triangle

(t',1)
Z aTI’TbT’,‘r

(T, 7)€ Ls,

+bmax  lim arvz|, (A-2)

i (rcrzmzrm

with bpax = sup Ib(l ”I The assumption lim, ;e b(’ D =

0 implies that the ﬁrst term on the upper bound converges to

zero for any 7. Similarly, the boundedness of 5" and the

summability of {a,/ .} imply that the second term tends to

zero as 7. — oo. Thus, Lemma 2 holds. O
We first prove that {v, .} satisfy the following 2D dis-

crete system:
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t 3
Z D E vy = E07B(£,€) + C£,€)

7=0
t t
Z D E T Bty e +o(1). (A3)
=0 7=0

We use the triangle inequality to evaluate the following dif-
ference:

t/
ZZ/?T by i~ E0B(EE)
7/=07=0
t 1
—E2 )" BT
7/=0 7=0
vt
< ZZBT',T(f,(/t_;})f(t b

7'=07=0
¢

t
+ Z Z ﬁT’,TfT/-FTdI’fT',th - fzsz(‘f’ 6)

¢ ZZ[#T%‘

/=0 7=

Uy —r/—1,t-7-1

,
§T +T)dt’—7",t—‘r

Ut’—T'—l,t—‘r—l . (A-4)

To evaluate the first term on the upper bound, we let
—1 1
v = Bkl and b = dpc (VR -

t'-1
§T/+T)/ET *T in Lemma 2. Using Assumptions 1 and 2,
we can confirm that a, - and b(’ T’) satisfy all assumptions
in Lemma 2. Thus, the first term converges to zero as t’ and
t tend to infinity. Similarly, we can prove the convergence of
the second term on the upper bound toward zero.

It is exercise to evaluate the differences between the
other terms in the SE recursion (9) and its approxima-
tion (A- 3), by repeating the same argument. Thus, we arrive
at the 2D discrete system (A- 3).

The truncated 2D discrete system (15) follows from
the boundedness of the summations in (A-3). Since vy, is
bounded, we let vmax = sup,. , vy | to have

ﬂ&ZZf

7/=0 7=

QT’,TUZ’—T’,FT < vmaxA(§, ),
(A-5)

which is bounded from Assumption 2. Similarly, we have
the boundedness of the other summation in (A-3). Thus,
Lemma 1 holds.

Appendix B: Proof of Theorem 2
We investigate properties of the truncated system (15). Un-

der the stationarity assumption vy ;4 — vy as ¢’ tends to
infinity with 7 kept constant, (15) with & = &, reduces to

N T vy = E0B(Ew ) + Cléun )

7/, 7=0
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Tc
+E D ET B ctr ey + 0(1). (A-6)

7/,7=0

Applying the change of (7/, 7) into (7/, 7) with ¥ = 7 — 7’ in
the limit 7. — oo, we have

D (@ELBoIvs = E007 By £)+C 6w £)+0(D),

(A7)
with
a= ) & e (A-8)
7/=max{0,-7}
Be= D, & B (A-9)

7/=max{0,-7}

Asprovedin[17, Theorem 5], the Toeplitz system (A- 7)
has the uniform solution v, = v, with v, given in (14). To
prove the uniqueness of this solution, it is necessary and suf-
ficient to show the asymptotic non-singularity of the Toeplitz
matrix [Ty = @y — §3 By —¢. For that purpose, we use the
so-called Szego theorem.

Lemma 3 ([23], [24]): Consider the T x T Toeplitz matrix
[T];; = ci—; for Fourier coefficients {¢; € C : ¢t € Z} that
satisfy

(o) (o8]
2
Dilad+ > e < oo.

(A-10)
t=—00 t=—00
Define a function ¢(8) on the interval [0, 1) as
c(6) = Z ¢ e?mito (A-11)
t=—00

Suppose that ¢(8) has no zeros for 8 € [0, 1) and thatlog c(6)
is continuous. Then,

. det(T)
lim ———

Toeo oT+Ddy (A-12)

(Z tdid t) )
where d, is the Fourier coefficient of log c(6), given by

1
d, = f e 27119 1og ¢(0)d6. (A-13)
0

Lemma 3 provides the asymptotic determinant formula
of a non-singular Toeplitz matrix T. The function c(6)
corresponds to the eigenvalue spectrum of T'. Thus, we need
to investigate zeros of c¢(0) for ¢; = a; — fﬁ B to prove the
non-singularity of [Ty = cy—;

By definition, we have

o)

cO)= ) @z~ & e,

T=—00

(A-14)

Substituting the definitions (A- 8) and (A-9), and changing
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the variables from (7’, ¥) back to (7, 7) with t = 7/ + T, we
obtain

C(G) - Z 63,4—1 (a'T/,T - fgﬂr’,r)ezm(‘r_-ﬂ)e
7/,7=0
=A(&ue Y, £0e70) — E1B(Eue Y, £0e7).
(A-15)

The condition (17) implies that c(#) has no zeros on the
interval [0, 1). Thus, Theorem 2 holds.

Appendix C: Conjugate Gradient

Consider the noiseless measurement (1) with w = 0. When
A has full rank, the solution to this noiseless system is given
by x = (ATA) 'A%y for 6 > 1. CG [19] is an efficient
method for computing this solution via the linear system

b=A"y = Gx, (A-16)

where G = ATA is symmetric and positive-definite.

Let xS6 € RN r, = b — GxC, and p, € RV denote
a tentative solution of x, the residual, and a conjugate and
gradient vector in CG iteration ¢, respectively. The conjugate
and gradient vectors {p. }'_{ satisfy pT Gp, = Oforall s’ # 1.
Using the initial conditions xS6 =0, ry = b, and po=2>,
we compute these vectors recursively as

CG _ .CG ||
X =X tawp, ar= P,TGP,’ (A-17)
ri =r;—a;Gp,, (A-18)
_ _ reall?
Pivi =Tl +bipy, by = TR (A-19)
t

The per-iteration complexity of CG is dominated by
computation of Gp, = ATAp,, which requires two matrix-
vector multiplications. This requirement is the same as in
each iteration of CAMP. Thus, it is fair to compare the per-
formance of CG and CAMP for a fixed number of iterations
in terms of the computational complexity.

We follow [25] to evaluate the MSE N~!||x — x&6||
for CG in the large system limit. Let g, > O denote the rth
moment of the asymptotic eigenvalue distribution of G, i.e.

1
U= lim  =Tr(G").

M=5N—-c N (A-20)

Theorem 3: Suppose that N~!||x||> converges almost
surely to 1 as N — oo, that A is right-orthogonally invariant,
that the empirical eigenvalue distribution of ATA converges
almost surely to a compactly-supported deterministic distri-
bution in the large system limit, and that {r.,} and {p;,}
satisfy

Fre+l = Fep — GrPr-1 70,0 = 1, (A-21)
Dri+l = Vel + biprr, poo =1, (A-22)
where rr; = pr; = 0 holds for 7 ¢ {0,...,¢}, with a;, =



108

i/ Pt Bt = Ft11/7t, and

t
P = T/ 11, He' 4742, (A-23)
7/,7=0
3
pr = Z Pt Pt Mo/ +7+43- (A-24)

7/, 7=0
Then, the MSE N~!{|x — x©9||? converges almost surely to

t

1 CG 2
N”x_xt ” - Z rT',trT,tﬂT+T’

7,7/=0

(A-25)

in the large system limit.

Proof: For notational simplicity, we omit the superscript CG
in x®. The asymptotic MSE (A-25) is obtained via the
following asymptotic representation:

t
X, =x— Z rz+G x +o(l),

(A-26)
7=0
t
re= Z e G x + 0(1), (A-27)
=0
t
P, = PG x +o(1). (A-28)

=0

Since G = ATA is orthogonally invariant and symmetric,
we have the eigen-decomposition G = VAV, in which V
is a Haar-distributed orthogonal matrix and independent of
A. Using (A-26) and [14, Corollary 1], we obtain

2
1 1 J
—lx—x? = —=xTV (Z r,,,AT) VTx +o(1)
N N 7=0

2
! . .
- M:Igw_m ﬁTr (Z;) res A )
=

(A-29)

almost surely in the large system limit, which reduces to
(A-25).

We prove the representation (A-26)—(A-28) by in-
duction. For ¢+ = 0, we use rgo = poo = | to have
xo=x—-r00x =0,r9 =ro0Gx = b and p, = pooGx = b.
Thus, the representation (A- 26)—(A- 28) is correct for ¢ = 0.

Suppose that (A-26)—(A- 28) are correct for some non-
negative integer r. We shall prove that (A-26)—(A- 28) pro-
vide the correct representation for x,.1, 7,41 and p, ;.

We first confirm the almost sure convergence a; — a;
in the large system limit. Using the induction hypothe-
ses (A-27) and (A-28), and repeating the derivation for the
asymptotic MSE (A-25), we find the almost sure conver-
gence N7!||r;||> — 7, and N‘lp,TGpt — p;. These results
imply the almost sure convergence a;, — a;.

t
re:G'x + @ meG”lx +o(1)
7=0 7=0

t
X4l =X —
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t+1
=X - Z (r‘r,t - 51177—1,;) G'x +o0(1)
7=0
t+1
=X - Z rr.+1G7x + o(1),
7=0

(A-30)

where the last two equalities follows from 11, = p_1, =0
and (A- 21), respectively.
Similarly, from (A- 18) we obtain

t t
et = ) reGT X =a ) pr,GTx + o)

=0 =0
t+1
= 1
= (s = @apr1.0) G™'x + 0(1)
7=0

t+1

=Zr,,,+IGT+1x+o(1). (A-31)
7=0

This representation implies N “Yir1l? > 741, so that we
have the almost sure convergence b; — b,. Thus, from
(A-19) we obtain

t+1

'
Pia1 = Zr‘r,t+lGT+]x + by ZPT,IGTHX +o(1)

=0 =0
t+1
7 +1
= > (Frest +Bipes) G x + 0(1)
7=0
t+1

= Prsi G x +o(D). (A-32)
=0

These results imply that the representation (A-26)—(A- 28)
is correct for all 7. O
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