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PAPER
An Improved Adaptive Algorithm for Locating Faulty Interactions
in Combinatorial Testing

Qianqian YANG† ,††, Nonmember and Xiao-Nan LU††a), Member

SUMMARY Combinatorial testing is an effective testing technique for
detecting faults in a software or hardware systemwith multiple factors using
combinatorial methods. By performing a test, which is an assignment of
possible values to all the factors, and verifying whether the system functions
as expected (pass) or not (fail), the presence of faults can be detected. The
failures of the tests are possibly caused by combinations of multiple factors
assigned with specific values, called faulty interactions. Martínez et al. [1]
proposed the first deterministic adaptive algorithm for discovering faulty
interactions involving at most two factors where each factor has two values,
for which graph representations are adopted. In this paper, we improve
Martínez et al.’s algorithm by an adaptive algorithmic approach for dis-
covering faulty interactions in the so-called “non-2-locatable” graphs. We
show that, for any system where each “non-2-locatable factor-component”
involves two faulty interactions (for example, a system having at most two
faulty interactions), our improved algorithm efficiently discovers all the
faulty interactions with an extremely low mistaken probability caused by
the random selection process in Martínez et al.’s algorithm. The effective-
ness of our improved algorithm are revealed by both theoretical discussions
and experimental evaluations.
key words: combinatorial testing, covering array, adaptive testing, faulty
interaction, testing-equivalence, factor-component

1. Introduction

Combinatorial testing (CT), also called combinatorial in-
teraction testing (CIT), is an effective testing technique for
detectingmulti-factor faults in a software or hardware system
using combinatorial methods. A system under test (SUT) for
CT is basically modeled by multiple factors (or parameters)
and their associated values (or levels) taken from a finite
alphabet. A test suite is a collection of test cases for the
given SUT. The presence of failures can be detected from
the outcomes of tests. In a large software or hardware sys-
tem, the factors are usually interrelated with some others,
and specific combinations of values may cause unexpected
or incorrect test outcomes, called failures. The combinations
of factors assigned with specific values causing failures are
called faulty interactions.

Pioneer studies on CT can be traced back to 1980s [2],
[3]. Theories and applications on CT have been extensively
studied in the recent decades for software testing and hard-
ware testing [4], [5]. However, most studies on theories of
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Table 1 An SUT model for a printing system.
Factors Values

(1) Double-sided or not 0 = double-sided
1 = single-sided

(2) File format
0 = JPEG
1 = PDF
2 = PS

(3) Connection 0 = USB cable
1 = wireless

(4) Colors 0 = black & white
1 = color

Table 2 A test suite for the printing system.

Tests Factors Outcomes(1) (2) (3) (4)
Test 1 0 0 0 0 pass
Test 2 1 0 1 1 fail
Test 3 1 1 0 1 pass
Test 4 0 1 1 0 fail
Test 5 1 2 0 0 pass
Test 6 0 2 1 1 fail

CT concentrated on test suite generation. Whereas, there is
only a limited number of literature on the issue of discovering
the reasons once a failure is encountered.

Let us give an example for CT. An SUT model for a
printing system with four factors is shown in Table 1, where
each factor has two or three possible values. Suppose that
a failure occurs if one of the following is specified: “PDF
files with double-sided printing”, “JPEG files with wireless
connection”, and “PS files with color printing”. By using 1,
2, 3, 4 for the factors and 0, 1, 2 for the corresponding values
as given in Table 1, these faulty interactions can be written as
{(1,0), (2,1)}, {(2,0), (3,1)}, and {(2,2), (4,1)}, respectively.
In order to detect the failures, a trivial way is to perform an
exhaustive testing for all the possible combinations, which
requires 2 × 3 × 2 × 2 = 24 test cases. However, using the
test suite provided in Table 2, all the failures can be verified
from the failed test outcomes, for which only six tests are
performed. The combinations causing failures are marked in
bold in Table 2. In fact, it is not hard to see in Table 2 that, for
each pair of factors, every possible combination appears at
least once. The underlying array of such test suites are called
(mixed) covering arrays, for which the formal definitionswill
be given in Sect. 2.2.

Although the presence of failures can be successfully
detected by using (mixed) covering arrays, it is not easy to
identify which are the faulty interactions causing the failures.
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For instance, only using the outcomes given in Table 2, one
cannot determine the real reason that makes Test 2 failed.
It might be because we printed a JPEG file with single-
sided mode ({(2,0), (1,1)}), or we printed a JPEG file by
wireless connection ({(2,0), (3,1)}), or we used the wireless
connection for color printing ({(3,1), (4,1)}).

There are two kinds of approaches for discovering faulty
interactions: non-adaptive testing and adaptive testing. For
non-adaptive testing, the full test suite should be prepared
in advance without prior information on the outcome of any
test. Whereas, for adaptive testing, test cases can be gener-
ated based on the previous outcomes. The most significant
contributions for non-adaptive testing are (d, t)-detecting ar-
rays (DAs) and (d, t)-locationg arrays (LAs) introduced by
Colbourn and McClary [6]. While, the parameters d for the
number of faulty interactions and t for the size of each inter-
action are required to be determined in advance. There are a
few work on DAs and LAs following [6], and the interested
reader is referred to [7]–[9] and their references.

The first deterministic adaptive algorithmwas proposed
by Martínez et al. [1] for discovering faulty interactions of
size at most two where each factor has two values. However,
there are a few classes of faulty interactions with specific
structural constraints that their approach cannot deal with.

In this paper, we improve Martínez et al.’s adaptive al-
gorithm [1, Sect. 6] for the above issues and show the effec-
tiveness for our improvements. In particular, our improved
algorithm is the first algorithm that can efficiently discover
all the faulty interactions whenever there are at most two
pairwise faulty interactions (i.e., faulty interactions involv-
ing two factors).

At the system testing phase, it could be assumed that
each factor has been tested in isolation, and the integrated
system is going to be tested as a whole [10]. Moreover, it
is shown by several empirical results [11]–[13] that testing
all pairwise interactions in a software system is sufficient to
discover most of its faults. Hence, we restrict our attention
on only pairwise interactions.

The remaining of this paper is organized as follows.
In Sect. 2, formal definitions for combinatorial testing and
covering arrays are reviewed. Section 3 gives an intensive
introduction on the graph representations for faulty interac-
tions, together with some novel concepts and lemmas for
our further discussions. Moreover, we clarify which kind of
faulty interactions cannot be discovered by the adaptive algo-
rithm in [1] by a careful investigation on graph structures. In
Sect. 4, we propose the improved adaptive algorithm for the
issues clarified in Sect. 3 and prove their correctness. Sec-
tion 5 shows the effectiveness of our improved algorithm by
both theoretical discussions and experimental evaluations.
Conclusions and future work are summarized in Sect. 6.

2. Definitions and Notation

In this section, we introduce the formal notions and termi-
nologies in combinatorial testing, and then summarize some
basic facts on covering arrays.

2.1 Basic Notions in Combinatorial Testing

Consider a system under test (SUT) consisting of k factors
denoted by 1,2, . . . , k. Throughout this paper, we use the
notation [1, k] to denote the set {1,2, . . . , k}. Without loss of
generality, the values are taken on Ωi = {0,1, . . . , gi − 1} for
factor i ∈ [1, k]A test case (simply, a test) is an assignment of
values to all the factors, which can be represented by a k-tuple
in Ω1 ×Ω2 × · · · ×Ωk . A t-way interaction is an assignment
of values to t factors, which can be represented by a set
of factor–value pairs involving t distinct factors, namely I =
{( f1, v1), ( f2, v2), . . . , ( ft, vt )}with distinct fj ∈ [1, k] and vj ∈
Ωj for 1 ≤ j ≤ t, where the parameter t is called the strength
of I. A t-way interaction I = {( f1, v1), ( f2, v2), . . . , ( ft, vt )}
is said to be covered by a test case T = (T1,T2, . . . ,Tk) if
Tfj = vj for every 1 ≤ j ≤ t. By regarding the test T as a
k-way interaction, we say the t-way interaction I is covered
by T if and only if I ⊆ T .

The execution of a test gives an outcome, pass or fail.
We assume that a failure of a test is caused by some interac-
tions (including 1-way interactions, which is simply a factor
assigned with some value). In other words, the execution
of a test T fails if and only if T covers one or more faulty
interactions.

2.2 Covering Arrays

A covering array (CA) A, denoted by CA(N; t, k, g), is
an N × k array whose entries are taken from the alphabet
[0, g − 1], such that every t-way interaction is covered by
some row of A. In A, each column of corresponds to a
factor and each row represents a test case. In other words,
in a CA A = (ai, j), for any set of t factors { f1, . . . , ft } and
any choice of t values (v1, . . . , vt ) ∈ [0, g − 1]t , there exists
some test r such that ar , fi = vi for each 1 ≤ i ≤ t. The
parameter t is called the strength of A. If each factor is
allowed to take different values, the notion of covering ar-
rays can be generalized to mixed covering arrays, denoted
by MCA(N; t, k, (g1, g2, . . . , gk)), where the i-th factor takes
values from [0, gi − 1] (see [14]). For example, the test suite
used in Table 2 is an MCA(6; 2,4, (2,3,2,2)).

The most essential problem on CAs is to find a
CA(N; t, k, g) with the smallest N when the other param-
eters are given. Let CAN(t, k, g) denote the smallest inte-
ger such that a CA(N; t, k, g) exists. A CA(N; t, k, g) has
exacly N = CAN(t, k, g) rows is said to be optimal. For
t = g = 2, Katona [15], Kleitman and Spencer [16] inde-
pendently proved that CAN(2, k,2) is equal to the smallest
N satisfying k ≤

( N−1
dN/2e

)
. The construction for such optimal

CA(N; 2, k,2) is quite simple and elegant, as follows.

Theorem 2.1 (see [15], [16]): LetX be the set of all the N-
dimensional binary vectors such that the Hamming weight
of x is dN/2e and the first entry of x is 0 for every x ∈ X.
Then, the N × k array whose columns are the vectors of X
is an optimal CA(N; 2, k,2), where k = |X| =

( N−1
dN/2e

)
.
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An example of optimal CA(6; 2,10,2) obtained by The-
orem 2.1 is given as follows:

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1
1 0 1 1 0 1 1 0 0 1
1 1 0 1 1 0 1 0 1 0
1 1 1 0 1 1 0 1 0 0


.

It is well-known that CAN(t, k, g) ∈ Θ(log k) for fixed
t and g. For t = 2, Gargano et al. [17] showed that
CAN(2, k, g) = g

2 log k(1 + o(1)). For t > 2, the determina-
tion of CAN(t, k, g) is still a widely open question. More-
over, Colbourn maintains a comprehensive repository [18]
on the best known values of CAN(t, k, g) for 2 ≤ t ≤ 6 and
2 ≤ g ≤ 25. The mathematical constructions for optimal
and nearly optimal CAs have been intensively studied in the
recent decades; see the surveys [19]–[22] for details.

3. Graph Representation for Faulty Interactions of
Strength at Most 2

In what follows, the strength of all the faulty interactions
are supposed to be at most 2. In this section, we give a
brief introduction on the graph structures for representing
faulty interactions with the notions in [1]. Moreover, we
introduce two novel concepts, “testing-equivalence” between
two graphs and “factor-components” of the graphs, which
play an important role in our improved locating algorithms.

3.1 Graph Representation and Characterization

If we restrict the strength to be exactly two, then each faulty
interaction can be represented by an edge, and then all the
faulty interactions form a simple graph, that is, an undirected
graph without loops and multiple edges. Notably, there may
be self-loops in the graph if 1-way interactions are allowed.

Suppose that the SUT consists of the factors in [1, k],
and each factor i has gi values in Ωi = {0,1, . . . , gi − 1}. Let
Vi = {(i,0), (i,1), . . . , (i, gi − 1)} and V =

⋃k
i=1 Vi . Let E be

the set of all 2-way faulty interactions of the SUT. Then the
graph G = (V,E) visually represents the faulty interactions
for the SUT. The graph G is a subgraph of Kg1 ,g2 ,...,gk , the
complete k-partite graph where the i-th partite setVi consists
of gi vertices for each 1 ≤ i ≤ k. Clearly,G is also a k-partite
graph. In what follows, the term “graphs” means the graphs
representing the faulty interactions, unless stated otherwise.

Example 3.1: The graph shown in Fig. 1 represents the
faulty interactions with respect to the SUT given in Table 1.

Let T be a test and let Test(G,T) be the outcome of T
for (the SUT represented by) the graph G, which is either
pass or fail. More precisely, Test(G,T) = fail if and only
if T covers some e ∈ E(G). For simplicity, we will write
Test(T) instead of Test(G,T) if no confusion occurs.

Definition 3.2: Let G and G′ be two different graphs (not

(1, 0)

(1, 1)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(4, 0)

(4, 1)

V1 V2 V3 V4

Fig. 1 The graph for the SUT given in Table 1.

Fig. 2 Examples of testing-equivalent graphs.

necessarily simple, in other words, may having self-loops)
with the same vertex set. Then G and G′ are testing-
equivalent if Test(G,T) = Test(G′,T) for any test case
T ∈ Ω1 ×Ω2 × · · · ×Ωk .

Definition 3.3: A graph G is said to be minimal if there
does not exist a graph G′ testing-equivalent to G such that
E(G′) is a proper subset of E(G).

Example 3.4: The graphs shown in Fig. 2 are mutually
testing-equivalent. It is easily seen that for each G of the
four graphs, we have Test(G,T) = fail for T = (1,a, b) with
any a, b ∈ {0,1} and Test(G,T ′) = pass for any other T ′.
The graph in Fig. 2(d) is not minimal, since the graph in
Fig. 2(c) is its (minimal) subgraph. It is remarkable that
the graph in Fig. 2(a) has a self-loop at (1,1), representing a
1-way interaction, so it is not a simple graph.

In general, we have the following lemma describing the
testing-equivalence for the graphs with self-loops.

Lemma 3.5: Let G be a graph containing a self-loop at
( f`, v`). Let G′ be the graph obtained by removing the self-
loop at ( f`, v`) and adding the edges {( f`, v`), ( f , s)} for all
0 ≤ s ≤ gi − 1, where f ∈ [1, k] \ { f`}. Then, G′ is testing-
equivalent to G. Furthermore, if G is minimal, then the
resulting G′ is minimal as well.

Proof. For any test T with Tf̀ = v` , Test(G,T) =
Test(G′,T) = fail. Conversely, for any test T with Tf̀ , v` ,
since the induced subgraph G[X] is exactly the same graph
with G′[X], where X = V(G) \ {( f`, v`)}, it is clear that
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Fig. 3 The forbidden configurations for 2-locatable graphs.

Test(G,T) and Test(G′,T) are identical. The minimality
is obvious by noting that G′[X] = G[X] is minimal, and
(V(G′),E(G′) \ E(G)) is also minimal. �

For a test T = (T1,T2, . . . ,Tk) ∈ Ω1 × Ω2 × · · · × Ωk ,
where Ωi = {0,1, . . . , gi − 1}, we say T avoids the graph G
if for any J ⊆ [1, k]we have {(i,Ti) : i ∈ J} < E(G). Here, it
suffices to consider the case |J | ≤ 2, since we only consider
the interactions of strength at most 2. A 2-way interaction
I = {( f1, v1), ( f2, v2)} is locatable with respect to G if there
exists a k-tuple T ∈ Ω1 × Ω2 × · · · × Ωk with Tfi = vi for
i ∈ {1,2} that avoids G − eI , where eI denotes the edges in
G corresponding to I and

G − eI =

{
G, if eI < E(G),
(V(G),E(G) \ {eI }), if eI ∈ E(G),

i.e., G − eI is the graph obtained by removing eI from G if
eI ∈ E(G). A graph G is 2-locatable (resp., 2̄-locatable) if
every t-way interaction with t = 2 (resp., t ≤ 2) is locatable
with respect to G.

Martínez et al. [1] proposed the following characteriza-
tion of 2-locatable graphs where each factor has exactly two
values, which will be called binary graphs in what follows.

Lemma 3.6 ([1] Corollary 6.2): A binary graph G is not 2-
locatable if and only if it contains a subgraph isomorphic to
one of the two forbidden configurations (type-a or type-b)
shown in Fig. 3.

In this paper, we focus on binary graphs. Then, Vi =

{(i,0), (i,1)} and V(G) =
⋃k

i=1 Vi . We introduce the notion
of factor-components of G by using the the auxiliary graph
G∗ of G defined as V(G∗) = V(G) and E(G∗) = E(G) ∪
{{(i,0), (i,1)} : 1 ≤ i ≤ k}.

Definition 3.7: Let F be a subset of [1, k], and let XF =⋃
f ∈F Vf . The induced subgraph G[XF ] is said to be a

factor-component of G if G∗[XF ] is a component in G∗. The
size of a factor-component G[XF ] is the number of edges in
G[XF ].

Example 3.8: As illustrated in Fig. 4, the auxiliary graph
G∗ is obtained by adding the dashed edges inside each factor
in G, where G is represented by the solid edges. There
are two factor-components in G, namely, G[V1 ∪ V2] and
G[V3 ∪ V4 ∪ V5].

3.2 Preliminaries for the Locating Algorithms

To investigate the graph structures in a comprehensive and

(1, 0)

(1, 1)

(2, 0)

(2, 1)

(3, 0)

(3, 1)

(4, 0)

(4, 1)

(5, 0)

(5, 1)

Fig. 4 The auxiliary graph G∗ in Example 3.8.

Fig. 5 The factor-component of parallel edges.

systematic manner, following the notation in [1], the factors
are partitioned into subsets according to their incident edges.
The partition of factors is associated with a passing test.
Without loss of generality, we assume that the test where all
the factors assigned with 0 is a passing test.

We define the sets A, B, andC to partition the set of fac-
tors [1, k]. The set A consists of the factors where 1 is an end-
point of a 1-0 edge, i.e., A = { f ∈ [1, k] : there exists j ∈
[1, k] such that {( f ,1), ( j,0)} ∈ E(G)}. The set B contains
the factors where 1 is an endpoint of a 1-1 edge and neither
endpoints are in A, i.e., B = { f ∈ [1, k]\A : there exists j ∈
[1, k]\A such that {( f ,1), ( j,1)} ∈ E(G)}. All the remaining
factors form the set C, i.e., C = [1, k] \ (A ∪ B).

The set A is further partitioned into the sets AL , AP , and
AS , where the set AL consists of the factors f ∈ A such that
{( f ,1), ( j,0)}, {( f ,1), ( j,1)} ∈ E(G) for some j ∈ [1, k] (see
Fig. 3(a)), the set AP consists of the factors f ∈ A \ AL such
that {( f ,1), ( f ′,0)} ∈ E(G) for some f ′ ∈ A (see Fig. 5), and
AS = A\(AP∪AL). The set AP is called the set of endpoints
of “parallel edges” and AS is called the set of “single factors”
in A.

Remark 3.9: As shown in Lemma 3.5, by removing
{( f ,1), ( j,0)}, {( f ,1), ( j,1)} from G and adding a self-loop
at ( f ,1), the resulting graph is test-equivalent to G. So we
simply say AL is the set of “loops”.

As subsets of the set C, let C0 (resp., C1) be the set
of factors f ∈ C such that {( f ,0), ( f ′,1)} ∈ E(G) (resp.,
{( f ,1), ( f ′,1)} ∈ E(G)) for some f ′ ∈ AS , and CI = C \
(C0 ∪ C1).

Remark 3.10: As indicated in [1], C0 and C1 must be
disjoint if G is 2-locatable; otherwise, a type-b forbidden
configuration (e.g., {{( f3,0), ( f1,1)}, {( f3,1), ( f2,1)}} where
f3 ∈ C0 ∩ C1 as in Fig. 6) would be present. But, C0 and
C1 may not be disjoint in general. However, in this case,
the factor-component has at least three edges (see Fig. 6).
Hence,C0 andC1 must be disjoint if every factor-component
is either 2-locatable or of size 2.

Claim 3.11: The possible edges can be classified into the
following three categories.
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( f1 , 0)

( f1 , 1)

( f2 , 0)

( f2 , 1)

( f3 , 0)

( f3 , 1)

( f4 , 0)

( f4 , 1)

Fig. 6 A factor-component involving f3 ∈ C
0 ∩C1.

Fig. 7 The type-b forbidden configurations for cases (II.i) and (II.ii). The
thick lines indicate the corresponding edges.

(I) The edges which may appear in a 2-locatable factor-
component:

(I.i) 1-0 edges inside AP ,
(I.ii) 1-1 edges inside AS ,
(I.iii) 1-1 edges inside B,
(I.iv) 1-1 edges between AS and B,
(I.v) 1-0 edges between AS and C0,
(I.vi) 1-1 edges between AS and C1.

(II) The edges which is unavailable for a 2-locatable
factor-component but may be contained in a factor-
component of size 2:

(II.i) 1-0 edges between AS and B (which form
type-b forbidden configurations as shown in
Fig. 7(a)),

(II.ii) 1-0 edges between AP and AS (which form
type-b forbidden configurations as shown in
Fig. 7(b)),

(II.iii) 1-0 and 1-1 edges involving factors in AL

(which form type-a forbidden configurations).

(III) The edges which is impossible to be contained in a
factor-component of size 2:

(III.i) 1-1 edges with one of the endpoints in AP .

The edges in category (I) can be correctly discovered
by the algorithm proposed in [1, Sect. 6]†, which will be
reviewed in Sect. 4.1. For category (III), if we assume that
every factor-component of G is of size 2, then G has no
1-1 edge with an endpoint in AP; otherwise, the factor-
component involving some factor in AP would contain at

†More precisely, some edges between AS and B ∪ C may be
missed with a low probability due to a random selection process in
the algorithm.

least three edges. In Sect. 4.3, we will propose adaptive
algorithmic approaches for the category (II) edges.

4. Improved Adaptive Algorithms for Locating Binary
Graphs

Martínez et al. [1] proposed an adaptive algorithm for locat-
ing faulty interactions in a 2-locatable graph, which will be
simply called “MMPS algorithm” (named after the authors’
names) hereafter. Based on MMPS algorithm, we give im-
proved adaptive algorithms for locating faulty interactions
in a graph G such that each factor-component of G is either
2-locatable or of size 2.

4.1 A Brief Review on MMPS Algorithm

MMPS algorithm is proposed for 2-locatable graphs, and
clearly it also works for 2-locatable graphs, which are merely
2-locatable graphs without self-loops. In the original setting
of MMPS algorithm, the set AL is defined to be the factors
involving self-loops. While, in Sect. 3.2 the definition of
AL is changed to be the factor of the common vertex of two
edges in a type-a forbidden configuration (cf. Remark 3.9).

The framework of MMPS algorithm is given in Algo-
rithm 1. The correctness is stated as follows.

Theorem 4.1 ([1] Theorem 6.4): For a 2-locatable graph
G, MMPS algorithm correctly outputs the set AP , ÃS ⊆ AS ,
ÃL ⊇ AL , B, C, and a set of edges Ẽ ⊆ E(G) such that the
only possible edges in E(G) \ Ẽ are the 1-0 edges with one
endpoint in ÃL \ AL ⊆ AS . The probability that a factor f
is wrongly classified into ÃL \ AL is at most exp(−M/2δ f ),
where δf denotes the degree of the vertex ( f ,1) in G, and
M > 2δ f is a manually decided parameter for the number of
iterations of a random selection process in the algorithm.

Now, we give a brief review on MMPS algorithm and
investigate what happens if the graph is simple but not 2-
locatable. As assumed in Sect. 3.2, the test (0,0, . . . ,0) is a
passing test. A covering array A of strength 2 is utilized as
the initial test suite, which can be obtained fromTheorem2.1.

MMPS algorithm is divided into five steps as in Algo-
rithm 1. The procedure in step 4 plays an essential role in
our further discussions, so it is listed in Algorithm 2. While,
the detailed procedures of the other steps are omitted and the
reader is referred to the original work [1].

In step 1, SearchEndPoint(T,D), where T is a failing
test and D is a set of factors, is a procedure for finding f such
that ( f ,1) is an endpoint of some edge in G. SearchEnd-
Point is basically a binary search algorithm starting from
each failing test with its possible “fault-causing” factors.
Combining with the 2-coverage property of a covering array,
it is easily shown that SearchEndPoint correctly outputs
the set A for any simple graph.

Step 2 is devoted to discovering parallel edges in EP

and the corresponding factors in AP . Note that there is only
one possibility (up to isomorphism) for a factor-component
involving parallel edges in a 2-locatable graph, as illustrated
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Algorithm 1 The framework of MMPS algorithm
1: function DiscoverEdges(F)
2: . Precondition: (0, 0, . . . , 0) is a passing test; F consists of all

failing test cases in A
3: . Step 1. Discover the set A.
4: A← ∅
5: for each T ∈ F do
6: F1(T ) ← { f ∈ [1, k] : Tf = 1}
7: A← A∪ SearchEndPoint(T , F1(T ))
8: end for
9: . Step 2. Discover the edge set EP and the set AP .
10: (AP , EP ) ← FindParallelEdges(A)
11: . Step 3. Discover the set B.
12: Define T by Tf = 0 for f ∈ A and Tw = 1 for w ∈ [1, k] \ A
13: EB ← LocateErrorsInTest(s = (0, 0, . . . , 0),T , [1, k] \ A)
14: B ←

⋃
e∈EB { f1, f2 : e = {( f1, 1), ( f2, 1)}}

15: . Step 4. Find ÃS and ÃL that approximate AS and AL .
16: (ÃS , ÃL , C̃0, C̃1, ES ) ← DiscoverAsAndAl(A, AP , B)
17: . Step 5. Find ESS within ÃS .
18: ESS ← FindEdgesWithinAs(ÃS , C̃0)
19: return (A, B, AP , ÃL , ÃS , C̃0, C̃1, EP , EB , ES , ESS )

20: end function

in Fig. 5. But for non-2-locatable graphs, there may be other
types of factor-components containing parallel edges, such
that MMPS algorithm may miss some 1-0 edges with both
endpoints in A. The solution for this issue will be given in
Sect. 4.3.

Similarly to step 1, LocateErrorsInTest in step 3 is a
procedure for searching 1-1 edges, namely the edges internal
to B, via binary search. As an initial test, the test T declared
in line 12 of Algorithm 1 avoids all the edges having an
endpoint ( f ,1) with f ∈ A. Hence, the set B and its internal
edges in EB can be correctly discovered in step 3 for any
graph, regardless of the 2-locatable property.

The details of step 4 are given in Algorithm 2, which
requires the results of the sets A, AP ⊆ A, and B obtained
in the previous steps. This step is aimed to distinguish AS

and AL , which partition A \ AP , and discover all the edges
involving the factors in AS . For finding AL , a random se-
lection process is employed, so that a factor f ∈ AS may be
wrongly classified into ÃL \ AL with a small probability that
is exponentially decreasing with the iteration number M . To
discover the 1-0 edges between ÃS (the approximate output
for AS) and B, new tests are exhaustively generated for all
possible pairs in ÃS × B. For the edges between ÃS and C,
the binary search algorithm SearchEndPoint is adopted.
For non-2-locatable factor-components, even if the iteration
number M tends to ∞, there is still some factor fs ∈ AS

that would be wrongly classified into ÃL , and thus the edges
involving fs cannot be discovered. Detailed discussion on
this issue will be held in Sect. 4.3.

Lastly, the purpose of step 5 is to find the set ESS of all
edges with both endpoints in ÃS , based on a full exploration
on all the pairs within ÃS .

In summary, MMPS algorithm is able to correctly dis-
cover all the edges of category (I) in Claim 3.11, regard-
less of the 2-locatable property. As a direct consequence,
MMPS algorithm correctly works for all the 2-locatable

factor-components.

Algorithm 2 Procedure in step 4 of MMPS algorithm [1]
1: function DiscoverAsAndAl(A, AP , B)
2: ÃS ← ∅; ÃL ← ∅

3: ES ← ∅;C ← [1, k] \ (A∪ B)
4: for each f ∈ A \ AP do
5: Fix Tf = 1 and Ti = 0 for all i ∈ (A \ { f }) ∪ B
6: iter← 0
7: repeat
8: iter + +
9: Randomly pick the values of Tj for j ∈ C
10: until (Test(T ) = pass) or (iter > M)
11: if Test(T ) = fail then
12: ÃL ← ÃL ∪ { f }
13: else
14: ÃS ← ÃS ∪ { f }
15: for each b ∈ B do
16: T ′ ← T ; T ′

b
← 1

17: if Test(T ′) = fail then
18: ES ← ES ∪ {{vf ,1, vb ,1 }}
19: end if
20: end for
21: . Binary search for mates of f inC
22: Set T ′′ with T ′′i = Ti for i ∈ A∪ B, T ′′i = ¬Ti for i ∈ C
23: if Test(T ′′) = fail then
24: L ← SearchEndPoint(T ′′,C)
25: end if
26: ES ← ES ∪ {{vf ,1, vc ,T ′′c } : c ∈ L }

27: C̃0 ← {c ∈ L : T ′′c = 0}; C̃1 ← {c ∈ L : T ′′c = 1}
28: end if
29: end for
30: return (ÃS , ÃL , C̃0, C̃1, ES )

31: end function

4.2 Framework of Our Improvements

Recall Claim 3.11 that, there are three types of edges unavail-
able for a 2-locatable factor-component but they are possibly
contained in a factor-component of size 2, listed as follows:

(II.i) 1-0 edges between AS and B,

(II.ii) 1-0 edges between AP and AS ,

(II.iii) 1-0 and 1-1 edges involving factors in AL .

Here, categories (II-i) and (II-ii) correspond to type-b for-
bidden configurations, and category (II-iii) corresponds to
type-a forbidden configurations.

The framework of our improved algorithm is given in
Algorithm 3. In Sect. 4.3, for finding the missed 1-0 edges in
non-2-locatable factor-components of size 2, wewill propose
the algorithmsFindBetweenAsAndBandFindBetweenA-
pAndAs for (II-i) and (II-ii), respectively. Moreover, in order
to deal with category (II-iii) edges, in Sect. 4.4, we will ex-
plain the practical solution we provided in lines 10–17 in
Algorithm 3.

4.3 Discovering Missed 1-0 Edges in Factor-Components
of Size 2

Before going deeply in algorithms and proofs, let us start by
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Algorithm 3 The framework of our improved algorithm
1: function ImprovedDiscoverEdges(F)
2: . Precondition: (0, 0, . . . , 0) is a passing test; F consists of all

failing test cases in A
3: . Discover the sets and edges by MMPS algorithm
4: (A, B, AP , ÃL , ÃS , C̃0, C̃1, EP , EB , ES , ESS ) ← Discov-

erEdges(F)
5: E ← EP ∪ EB ∪ ES ∪ ESS

6: . Discover missed 1-0 edges between AS and B (see Algorithm 4)
7: E ← E ∪ FindBetweenAsAndB(ÃL , ÃS , EB )

8: .Discover missed 1-0 edges between AP and AS (see Algorithm 5)
9: E ← E ∪ FindBetweenApAndAs(AP , ÃL , ES )

10: . Output the solution set containing testing-equivalent subgraphs
11: . Suppose ÃL = {a1, a2, . . . , a` }, where ` =

��ÃL
��.

12: if ` > 0 then
13: E ←

{⋃`
i=1 {{(ai , 1), ( fi , 0)}, {(ai , 1), ( fi , 1)}} ∪ E : fi ∈

[1, k] \ {ai } for 1 ≤ i ≤ `
}

14: return E
15: else
16: return {E }
17: end if
18: end function

observing what would happen if a non-2-locatable graph is
inputted into MMPS algorithm.

First, consider graph Gb1 shown in Fig. 7(a). By
the discussions in Sect. 4.1, the sets A and B can be cor-
rectly obtained by MMPS algorithm as A = { f1} and
B = { f2, f3}. However, step 4 (Algorithm 2) gives the out-
put Eout = {{( f2,1), ( f3,1)}} with ÃL = { f1}, but the edge
{( f1,1), ( f2,0)} is missed.

Next, consider graph Gb2 shown in Fig. 7(b). Then,
the definitions tell us f1 ∈ AP , f2 ∈ AS , f3 ∈ C0. By the
discussion in Sect. 4.1, the sets A and C can be correctly
obtained by MMPS algorithm as A = { f1, f2} and C =
{ f1, f2, f3} \ A = { f3}. However, step 4 (Algorithm 2) gives
the output Eout = {{( f2,1), ( f3,0)}} with ÃL = { f1}, ÃS =

{ f2}, and C̃0 = { f3}, but the edge {( f1,1), ( f2,0)} is missed.
In step 4 of MMPS algorithm (Algorithm 2), in both

Gb1 and Gb2, for identifying whether f1 is in AL , the test
cases T = (1,0,∗) (∗ ∈ {0,1}) are generated (see line 5
of Algorithm 2). Clearly, Test(T) always fails because of
the unexpected edge {( f1,1), ( f2,0)}. This gives rise to the
resulting output with f1 ∈ ÃL . Note that, in both Gb1 and
Gb2, the other edge can be successfully discovered.

Now, we propose Algorithm 4 for discovering 1-0 edges
between AS and B in the factor-components isomorphic to
Gb1 (see Fig. 7(a)).

Lemma 4.2: If in graph G each non-2-locatable factor-
component is of size 2, then Algorithm 4 is correct, that
is, it correctly discovers the 1-0 edges between AS and B in
non-2-locatable factor-components of G.

Proof. Consider a factor-component isomorphic to Gb1.
Similarly to the previous discussions, the factor f1 must be
wrongly classified into ÃL by MMPS algorithm. While, the
other two factors f2 and f3 can be correctly classified into
B. It suffices to check whether an “unexpected” edge (like
{( f1,1), ( f2,0)} in Gb1) exists for each pair of factor f ∈ ÃL

and edge {(b1,1), (b2,1)} ∈ EB. Let T ′ and T ′′ be the tests

Algorithm 4 Discover missed 1-0 edges between AS and B
1: . EB is the edge set discovered by MMPS algorithm containing all the

1-1 edges inside B
2: function FindBetweenAsAndB(ÃL , ÃS , EB )
3: E ← ∅
4: for each f ∈ ÃL do
5: for each edge {(b1, 1), (b2, 1)} ∈ EB do
6: Define T ′ by T ′

f
= 1, T ′

b1
= 1, and T ′w = 0 for w ∈

[1, k] \ { f , b1 }
7: Define T ′′ by T ′′

f
= 1, T ′′

b2
= 1, and T ′w = 0 for w ∈

[1, k] \ { f , b2 }
8: if Test(T ′) = pass and Test(T ′′) = fail then
9: E ← E ∪ {( f , 1), (b1, 0)}
10: ÃL ← ÃL \ { f }; ÃS ← ÃS ∪ { f }
11: end if
12: if Test(T ′) = fail and Test(T ′′) = pass then
13: E ← E ∪ {( f , 1), (b2, 0)}
14: ÃL ← ÃL \ { f }; ÃS ← ÃS ∪ { f }
15: end if
16: end for
17: end for
18: return E
19: end function

( f , 0)

( f , 1)

(b1 , 0)

(b1 , 1)

(b2 , 0)

(b2 , 1)

Fig. 8 The case when T ′′ (the solid vertices) is failed and T ′ is passed.

as defined lines 6 and 7 in Algorithm 4, respectively.
Consider the case when Test(T ′) = pass and

Test(T ′′) = fail. Note that, since b1 ∈ B, the vertex (b1,1)
cannot be adjacent to ( j,0) for j ∈ [1, k] \ { f , b2}; otherwise,
the 1-0 edge would force factor b1 into the set A. Then,
Test(T ′′) is failed if and only if

• {( f ,1), (b2,1)} ∈ E(G), or
• {( f ,1), ( j,0)} ∈ E(G) for some j ∈ [1, k] \ { f , b2}.

In the same manner, Test(T ′) is passed if and only if

• {( f ,1), (b1,1)} < E(G), and
• {( f ,1), ( j,0)} < E(G) for any j ∈ [1, k] \ { f , b1}.

Therefore, combing the above conditions, as illustrated in
Fig. 8, we have Test(T ′) = pass and Test(T ′′) = fail if and
only if

(a) {( f ,1), (b2,1)} ∈ E(G) and {( f ,1), (b1,1)} < E(G) and
{( f ,1), ( j,0)} < E(G) for any j ∈ [1, k] \ { f , b1}, or

(b) {( f ,1), (b1,0)} ∈ E(G) and {( f ,1), (b1,1)} < E(G) and
{( f ,1), (b2,0)} < E(G).

Case (a) can be further divided into two sub-cases:

(a-1) both {( f ,1), (b2,1)} and {( f ,1), (b1,0)} are edges in
G, but there is no other 1-0 edge incident with ( f ,1);

(a-2) {( f ,1), (b2,1)} ∈ E(G) and there does not exist any
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1-0 edge incident with ( f ,1).

Sub-case (a-1) violates the assumption that each non-2-
locatable factor-component is of size 2. While, for sub-
case (a-2), the factor f should be classified into the set B,
which contradicts the fact that f ∈ ÃL . So, we can rule out
case (a). In other words, the only possible edge that makes
Test(T ′) = pass and Test(T ′′) = fail is {( f ,1), (b1,0)}. This
completes the proof of the correctness for the former half part
of Algorithm 4 (up to line 11).

The proof for the latter half part is totally the same
to the former part, just by exchanging b1 and b2 with each
other. �

Remark 4.3: Sub-case (a-1) possibly occurs if the graph
G does not fulfill the assumption that each non-2-locatable
factor-component is of size 2. In this case, Algorithm 4 suc-
cessfully finds {( f ,1), (b1,0)} (the thick edge in Fig. 8), but
misses {( f ,1), (b2,1)} (the dashed edge in Fig. 8). However,
it can be directly verified that the factor-component shown in
Fig. 8 with the dashed edge is testing-equivalent to that with-
out the dashed edge. Hence, one can improve Algorithm 4
by outputting the dashed edge as a candidate solution.

Next, we consider the general case of Gb2 that a graph
G contains, as factor-components, subgraphs isomorphic to
Gb2, i.e., type-b forbidden configurations in case (II.ii) with
1-0 edges between AP and AS . The algorithm needs the
following passing test.

Lemma 4.4: Define TC0 by TC0
f
= 1 for f ∈ C0 and TC0

w =

0 for w ∈ [1, k] \ C0. Then, TC0 is a passing test.

Proof. It follows from the definition of the set C that there
is no edge within C; otherwise, the corresponding factor
would be assigned to the set A or B. For the same reason,
there does not exist an edge {( f ,1), (w,0)} for any f ∈ C
and w ∈ [1, k] \ C. Recall that (0,0, . . . ,0) is a passing test.
Then, the test TC0 avoids all the possible edges, which is
equivalent to saying that TC0 is a passing test. �

Then, we propose Algorithm 5 for discovering the
“unexpected” 1-0 edges between AP and AS in the factor-
components isomorphic to Gb2 (see Fig. 7(b)).

Lemma 4.5: If in graph G each non-2-locatable factor-
component is of size 2, then Algorithm 5 is correct, that
is, it correctly discovers the 1-0 edges between AP and AS

in non-2-locatable factor-components of G.

Proof. Consider a factor-component isomorphic to Gb2.
The factor f1 is wrongly classified into ÃL , and the other
two factors f2 and f3, can be correctly classified into ÃS and
C̃0, respectively. We need to check whether an edge (like
{( f1,1), ( f2,0)} in Gb2) exists for any factor f ∈ ÃL and any
edge {(as,1), (c0,0)} ∈ ES .

It follows from Lemma 4.4 that TC0 is a passing test.
Let T ′ and T ′′ be the tests as defined in lines 7 and 8 in Al-
gorithm 5, respectively. Consider the case when Test(T ′) =
pass and Test(T ′′) = fail. Note that T ′′ and the passing test

Algorithm 5Discover missed 1-0 edges between AP and AS

1: . ES is the edge set discovered in Algorithm 2 of MMPS algorithm
containing all the 1-0 edges between AS andC

2: function FindBetweenApAndAs(AP , ÃL , ES )
3: E ← ∅
4: Define TC0 by TC0

f
= 1 for f ∈ C0 and TC0

w = 0 for w ∈
[1, k] \C0

5: for each f ∈ ÃL do
6: for each edge {(as , 1), (c0, 0)} ∈ ES do
7: Define T ′ by T ′

f
= 1, T ′as

= 1, and T ′w = TC0
w for w ∈

[1, k] \ {as , c0 }
8: Define T ′′ by T ′′

f
= 1 and T ′′w = TC0

w for w ∈ [1, k] \ { f }
9: if Test(T ′) = pass and Test(T ′′) = fail then
10: E ← E ∪ {( f , 1), (as , 0)}
11: ÃL ← ÃL \ { f }; AP ← AP ∪ { f }
12: end if
13: end for
14: end for
15: return E
16: end function

TC0 only differ in the values for the factor f . So Test(T ′′)
is failed if and only if

• {( f ,1), ( j0,0)} ∈ E(G) for some j0 ∈ [1, k]\ (C0∪{ f }),
or

• {( f ,1), ( j1,1)} ∈ E(G) for some j1 ∈ C0.

Test(T ′) is passed only if

• {( f ,1), ( j0,0)} < E(G) for any j0 ∈ [1, k]\(C0∪{ f ,as}),
and

• {( f ,1), ( j1,1)} < E(G) for any j1 ∈ C0 ∪ { f ,as}.

Therefore, Test(T ′) = pass and Test(T ′′) = fail imply that
{( f ,1), (as,0)} ∈ E(G). �

As a direct consequence of Lemmas 4.2 and 4.5, we
have the following corollary.

Corollary 4.6: If in graph G each non-2-locatable factor-
component is of size 2, then all the 1-0 edges in non-2-
locatable factor-components ofG can be correctly discovered
by Algorithms 4 and 5, provided that ÃS = AS .

The only possible edges that cannot be discovered are
that of the form {( f1,1), ( f2,0)} in a type-b forbidden config-
uration (see Fig. 7(b)), where f1 ∈ AP∩ ÃL and f2 ∈ ÃL\AL ,
due to the mistaken probability on f2 of MMPS algorithm.

The time cost for fault location is evaluated by the num-
ber of tests needed to be performed. The total number of tests
performed inAlgorithms 4 and 5 is 2

��ÃL
�� (m1+m2) ∈ O(d2),

where m1 and m2 are the number of 1-1 edges inside B and
the number of 1-0 edges between ÃS and C, respectively.
Here, d is the number of edges in the graph. It is remarkable
that, the number of tests executed in MMPS algorithm is
O(d2 + d log k + d(log k)c) if a passing test is found in the
covering array A and the maximum degree of G is upper
bounded by c log log k (see [1, Theorem 6.5]). This means
that, by appending our proposed Algorithms 4 and 5 after
MMPS algorithm, the complexity order in fault location does
not change.
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4.4 Generating Minimal Testing-Equivalent Solutions for
Graphs Containing Type-a Forbidden Configurations

As shown in Algorithm 3, we suppose ` =
��ÃL

�� > 0 and let
ÃL = {a1,a2, . . . ,a`}. According to the definition of AL (see
Sect. 3.2), each ai ∈ ÃL corresponds to a type-a forbidden
configuration, that is a subgraph Gi, fi = (V(G),Ei, fi ) with

Ei, fi =
{
{(ai,1), ( fi,0)}, {(ai,1), ( fi,1)}

}
where fi ∈ [1, k]\ {ai}. It follows from Lemma 3.5 that Gi, fi

is testing-equivalent to Gi, f ′i
for any fi, f ′i ∈ [1, k] \ {ai}. In

other words, by using combinatorial testing methods, no
one can distinguish Gi, fi and Gi, f ′i

. However, in practical
applications, even if the output graph is testing-equivalent to
the real graph for the faulty interactions, it would be useless
as long as they are not exactly the same. Hence, it can be
considered that a solution set which contains the true answer
is better than an “equivalently true” answer. In Algorithm 3,
the solution set E is defined as follows:

E =

{⋃̀
i=1

Ei, fi ∪ E : fi ∈ [1, k] \ {ai} for 1 ≤ i ≤ `

}
. (1)

Note that all the candidates in E are minimal by
Lemma 3.5. Generally, it is possible that for each ai ∈ ÃL

there are more than two edges involving ai in the real graph.
However, if all the possibilities are considered, it would
cause an exponential explosion for the cardinality of the so-
lution set. This is the primary reason why we only consider
minimal graphs.

Every non-minimal graph contains a minimal one as
its subgraph. In practice, a minimal subgraph can provide
most information on the faulty interactions. For example,
suppose the real graph G is as shown in Fig. 2(d), which is
not minimal. The algorithm tells us that ÃL = {1} and E
has two members, as in Fig. 2(b) and 2(c). In this case, no
candidate in E meets the true answer E(G). However, as
the minimal testing-equivalent subgraph of G, the graph in
Fig. 2(c), which contains most faulty edges, is provided as a
candidate solution.

To end this section, we show the correctness of the
entire improved algorithm (Algorithm 3). Here, the output
E is considered to be correct if there exists E ∈ E coincides
with E(G) of the real graph G.

Theorem 4.7: LetG be a graphwhere each non-2-locatable
factor-component is of size 2. Then Algorithm 3 is correct,
that is, it correctly gives a solution set E such that E(G) ∈ E,
provided that ÃS = AS .

Moreover, the probability that a factor f is wrongly
classified into ÃL \ AL is at most exp(−M/2δ f ), due to
the mistaken probability of MMPS algorithm as in The-
orem 4.1. Let f ∈ ÃL \ AL be such a factor. Then,
there exists Ẽ ∈ E such that E(G) ⊆ Ẽ and Ẽ \ E(G) ={
{( f ,1), (c0,1)}, {( f ,1), (ap,1)}

}
, where c0 is the factor in

C0 satisfying {( f ,1), (c0,0)} ∈ E(G) and ap is the factor in

AP ∩ ÃL satisfying {(ap,1), ( f ,0)} ∈ E(G).

Proof. Since each non-2-locatable factor-component of G
is of size 2, it is obvious that each factor-component con-
taining a type-a forbidden configuration must be minimal.
Combining with Corollary 4.6, the statement clearly holds
when ÃS = AS .

For the case when MMPS Algorithm wrongly gives
f ∈ ÃL \ AL , the following two edges in E(G) cannot be
discovered before line 10 of Algorithm 3:

• the edge of the form {( f ,1), (c0,0)} where c0 ∈ C0;
• the edge of the form {(ap,1), ( f ,0)} in a type-b for-
bidden configuration (cf. the edge {( f1,1), ( f2,0)} in
Fig. 7(b)), where ap ∈ AP ∩ ÃL .

The former is missing in MMPS Algorithm because of the
mistake of f . Consequently, this causes the latter missing
in Algorithm 5. Eventually, both f and ap are wrongly
classified into ÃL \AL . Then, in the last step of Algorithm 3,
four edges {( f ,1), (g,0)}, {( f ,1), (g,1)}, {(ap,1), (h,0)}, and
{(ap,1), (h,1)} would be added to create a candidate in E,
where g ∈ [1, k] \ { f } and h ∈ [1, k] \ {ap}. Let Ẽ be
the candidate in E with g = c0 and h = f . Then, we have
E(G) ⊆ Ẽ and the proof is completed. �

5. Discussions andExperimental Evaluations on theEf-
fectiveness of our Improved Algorithm

In this section, we make a comparison on the numbers of
graphs that can be correctly recovered between MMPS algo-
rithm and our improved algorithm, which shows the effec-
tiveness of our improved algorithm.

Let G(d)
k

be the set of all graphs with d edges rep-
resenting the faulty interactions in an SUT with k factors
where each factor takes two values. Let ρd(k) denote the
proportion of 2-locatable graphs in G(d)

k
, which is also the

the proportion of graphs that can be correctly recovered by
using MMPS algorithm in G(d)

k
. Moreover, let ρ∗

d
(k) denote

the proportion of graphs that can be correctly recovered by
our improved algorithm in G(d)

k
.

5.1 Explicit Formulas for Graph Enumerating

In this subsection, we are devoted to theoretical analysis of
ρd(k) and ρ′

d
(k), where ρ′

d
(k) denotes the proportion of

the graphs where each factor-component is 2-locatable or of
size 2 in G(d)

k
. Here, ρ′

d
(k) is considered to be a good lower

bound for the “success proportion” ρ∗
d
(k) of our improved

algorithm.
Let Nd(k) =

���G(d)k

���. Then, Nd(k) is equal to the number
of subgraphs of the complete k-partite graph K2,2,...,2 of size
d, that is Nd(k) =

(ek
d

)
, where ek := 4

(k
2
)
= 2k(k − 1) is

the number of edges in K2,2,...,2. Thus, it suffices to find
the number of non-2-locatable graphs of size d for given k,
denoted by nd(k). Similarly, for given k, let n′

d
(k) denote
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the number of size-d graphs containing at least one non-2-
locatable factor-component withmore than two edges. Then,

ρd(k) = 1 −
nd(k)
Nd(k)

and ρ′d(k) = 1 −
n′
d
(k)

Nd(k)
. (2)

We firstly give the explicit formula of n2(k) with a
combinatorial proof.

Proposition 5.1: The total number of non-2-locatable
graphs of size 2 with respect to k factors is n2(k) =
2k(k − 1)(2k − 3).

Proof. By taking any two factors from [1, k], say f1 and f2,
and considering ( fi,u) (for some i ∈ {1,2}, u ∈ {0,1}) as
a “loop” vertex, one can obtain a subgraph isomorphic to a
type-a forbidden configuration. Hence, the number of size-2
graphs containing a subgraph isomorphic to the type-a for-
bidden configuration is n(a)2 (k) := 4

(k
2
)
= 2k(k − 1). Next,

consider the similar process for creating a type-b forbidden
configuration as follows. Firstly, take a factor f from [1, k]
to be the factor which has edges incident to another two
factors. Secondly, sequentially take f0, f1 from [1, k] \ { f }
to be the two factors incident with ( f ,0) and ( f ,1), respec-
tively. Thirdly, choose {( f0,u0), ( f ,0)} and {( f1,u1), ( f ,1)}
with u0,u1 ∈ {0,1}. Then, the number of size-2 graphs
containing a subgraph isomorphic to the type-b forbidden
configuration is n(b)2 (k) := 4k(k − 1)(k − 2). Therefore,
n2(k) = n(a)2 (k) + n(b)2 (k) = 2k(k − 1)(2k − 3), which com-
pletes the proof. �

Next, we propose a general way to calculate nd(k) by the
following lemma. For the sake of convenience, in graph G,
the factors involved in the edges ofG are called fault-causing
factors.

Lemma 5.2: The number of non-2-locatable graphs of size
d with respect to k factors is

nd(k) =
2d−1∑
l=l0

ml

(
k
l

)
, (3)

where the term ml

(k
l

)
represents the number of non-2-

locatable graphs of size d with l fault-causing factors, and l0
is the smallest positive integer such that d ≤ 4

(l0
2
)
.

Proof. The number of non-2-locatable graphs of size d with
givenF ⊆ [1, k] as the set of its fault-causing factors, denoted
by ml , is invariant under the choices of F. Moreover, for any
two different subsets F1,F2 ⊆ [1, k], let G1 and G2 be two
arbitrary graphs where Fi is the set of fault-causing factors of
Gi for i ∈ {1,2}. Then, it is easily seen that G1 and G2 must
be different graphs (not necessarily non-isomorphic), which
implies that the above enumeration for ml graphs does not
involve duplicated graphs. Therefore, nd(k) can be expressed
as the sum of ml

(k
l

)
for positive integers l ∈ N.

The range of l is determined as follows. On the one
hand, at least l0 factors is required to accommodate d edges,
where l0 is defined as in the statement of the lemma. On the

other hand, in a non-2-locatable graph having d edges, the
number of fault-causing factors cannot exceed 2d, since each
edge involves exactly two factors. Moreover, a size-d graph
with exactly 2d fault-causing factors is nothing but a graph
consisting of d isolated edges as its connected components,
which is clearly 2-locatable. So, we set l ≤ 2d − 1 for the
sum of (3). �

The coefficient ml in (3) can be obtained by a tedious
mathematical enumeration or a computer program. With the
aid of computers, we have the following formulas.

Proposition 5.3: The numbers of non-2-locatable graphs
in G(d)

k
for d ∈ {3,4,5} are, respectively,

n3(k) =4
(
k
2

)
+ 200

(
k
3

)
+ 864

(
k
4

)
+ 960

(
k
5

)
,

n4(k) =
(
k
2

)
+ 492

(
k
3

)
+ 8400

(
k
4

)
+ 38400

(
k
5

)
+ 66240

(
k
6

)
+ 40320

(
k
7

)
,

n5(k) =792
(
k
3

)
+ 39240

(
k
4

)
+ 446144

(
k
5

)
+ 2025600

(
k
6

)
+ 4394880

(
k
7

)
+ 4623360

(
k
8

)
+ 1935360

(
k
9

)
.

It is possible to give a proof of Proposition 5.3 using
purely combinatorial arguments, as in Proposition 5.1 for
d = 2. However, the proofs by case analysis would be quite
lengthy, and they are omitted. Even by using a computer
program, the enumeration cannot be done with ease for large
d, because of the huge number of candidate graphs. For
example, when d = 5, in order to get the explicit formula
for n5(k), one needs to generate all the 481,008,528 graphs
having five edges with nine fault-causing factors, and check
the 2-locatable property for each of them.

Proposition 5.4: The numbers of graphs in G(d)
k

contain-
ing at least one non-2-locatable factor-component with more
than two edges, for d ∈ {3,4,5} are, respectively,

n′3(k) =4
(
k
2

)
+ 200

(
k
3

)
+ 768

(
k
4

)
,

n′4(k) =
(
k
2

)
+ 492

(
k
3

)
+ 8304

(
k
4

)
+ 36000

(
k
5

)
+ 46080

(
k
6

)
,

n′5(k) =792
(
k
3

)
+ 39240

(
k
4

)
+ 445824

(
k
5

)
+ 2000640

(
k
6

)
+ 3978240

(
k
7

)
+ 2580480

(
k
8

)
.

For the general case, which is similar to Lemma 5.2, we
have

n′d(k) =
2d−2∑
l=l0

m′l

(
k
l

)
, (4)

where l0 is as defined in Lemma 5.2, and m′
l

(k
l

)
represents
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Table 3 The proportions that all the faulty edges can be correctly discovered by MMPS algorithm
(denoted by ρ̂d (k)) and our improved algorithm (denoted by ρ̂∗

d
(k)).

k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100

d = 2 ρ̂2(k) 81.0% 90.1% 93.7% 95.3% 96.1% 96.7% 97.2% 97.2% 97.5% 98.3%
ρ̂∗2(k) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

d = 3 ρ̂3(k) 53.7% 73.8% 81.1% 86.6% 89.0% 89.9% 91.8% 92.3% 93.7% 94.0%
ρ̂∗3(k) 87.0% 96.2% 98.3% 99.1% 99.4% 99.4% 99.7% 99.7% 99.8% 99.9%

d = 4 ρ̂4(k) 28.8% 54.6% 67.4% 73.7% 79.2% 81.6% 84.2% 86.2% 87.6% 88.9%
ρ̂∗4(k) 64.7% 87.5% 93.5% 96.5% 97.7% 98.4% 98.8% 99.3% 99.1% 99.4%

d = 5 ρ̂5(k) 13.3% 36.9% 52.1% 61.2% 68.0% 71.8% 75.7% 77.4% 80.3% 83.0%
ρ̂∗5(k) 40.2% 74.1% 86.4% 91.6% 93.7% 96.2% 96.8% 97.7% 98.1% 98.3%

Fig. 9 The proportions ρd (k), ρ′d (k), ρ̂d (k), and ρ̂
∗
d
(k) for d = 3, 4, 5.

the number of graphs in G(d)
k

having exacly l fault-causing
factors such that there is at least one non-2-locatable factor-
component with more than two edges. Remarkably, it must
hold in (4) that l ≤ 2d − 2, since a size-d graph with exactly
2d − 1 fault-causing factors must consist of d − 1 factor-
components, one of which is a size-2 factor-component in-
volving three factors, and the other d − 2 are isolated edges.

In summary, n′
d
(k) is a polynomial of degree 2d − 2,

while nd(k) is of degree 2d − 1. In other words, for given
k, among all the O(k2d) graphs, there are O(k2d−1) graphs
for which MMPS algorithm is not applicable. While, by our
improved algorithm, this number is reduced to O(k2d−2).

5.2 Experimental Results for MMPS Algorithm and our
Improved Algorithm

In this subsection, we propose experimental evaluation re-
sults for estimating the values of ρd(k) and ρ∗

d
(k) for

2 ≤ d ≤ 5.
We implemented MMPS algorithm and our proposed

algorithm in Python 3. The performance of MMPS algo-
rithm and the proposed algorithm are examined as follows.
In each experiment, for fixed d and k, a graph with d edges is
randomly generated as the input. More precisely, each edge
of an input graph is independently randomly picked up from
all the 2k(k − 1) possible edges. The randomly generated
graph represents the faulty interactions of an SUT. For each
input graph G, MMPS algorithm outputs a set Ẽ of edges.
We say the edges are correctly discovered by MMPS algo-
rithm if E(G) = Ẽ . While, our proposed algorithm outputs
a set of candidates, say E, where each candidate is a set of

edges. We say the edges are correctly discovered by our
improved algorithm if E(G) ∈ E.

The iteration number for the experiments is set to be
10,000 for each pair of parameters d and k. By ρ̂d(k) and
ρ̂∗
d
(k), we denote the proportions of graphs that are correctly

discovered among the 10,000 randomly generated inputs by
MMPS algorithm and our proposed algorithm, respectively.
The parameter M in MMPS algorithm is set to be 50. Ta-
ble 3 shows the values of ρ̂d(k) and ρ̂∗d(k) obtained from the
experiments for d ∈ {2,3,4,5} and k ∈ {10,20, . . . ,100}.

It can be verified from the results for d = 2 in Table 3
that, our improved algorithm is able to correctly discover all
the edges for all the graphs of size 2. However, some cases
cannot be well dealt with by MMPS algorithm.

In Fig. 9, for d ∈ {3,4,5}, the graphs of the functions
ρd(k) and ρ′d(k), which are derived from (2) and Proposi-
tions 5.3 and 5.4, are plotted together with the data shown in
Table 3. It can be observed that the values of ρd(k) and ρ̂d(k)
are almost identical, which provides strong numerical evi-
dence for the correctness of the formulas in Propositions 5.3.
Moreover, the values of ρ′

d
(k) and ρ̂∗

d
(k) are extremely close

when k is large. Accordingly, it seems that ρ′
d
(k) can be

used as a good lower bound for ρ∗
d
(k).

As mentioned in the last paragraph of Sect. 5.1, by
our improved algorithm, the number of inapplicable graphs
is reduced to O(k2d−2) from O(k2d−1). Although one
may notice that limk→∞ ρd(k) = limk→∞ ρ

′
d
(k) = 1 and

limk→∞(ρ
′
d
(k) − ρd(k)) = 0, the gaps between ρ′

d
(k) and

ρd(k) are significant when k is not too huge, which can be
intuitively verified from Fig. 9. Furthermore, it can be ob-
served from Fig. 10 that, for fixed k ≥ 20, the difference
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Fig. 10 The differences between �ρ∗
d
(k) and �ρd (k).

Fig. 11 Factor-components of size 3 that is applicable to our improved
algorithm.

ρ∗
d
(k) − ρd(k) becomes more significant for larger d.

5.3 Remarks on the Factor-Components with Three or
More Edges

It can be observed from Fig. 9 that ρ∗
d
(k) ≥ ρ′

d
(k) holds in

general. The main reason for the inequality can be consid-
ered as follows. In a factor-component H containing a type-a
or type-b forbidden configuration with more than two edges,
if the edges in the forbidden configuration are not involved
in other forbidden configurations, then our improved algo-
rithm can correctly discover all the edges in H. Two simple
examples are illustrated in Fig. 11(a) and 11(b), for type-a
and type-b forbidden configurations, respectively.

6. Conclusion and Future Work

In this paper, we studied adaptive algorithms for locating
2-way faulty interactions, continuing the work by Martínez
et al. [1], which is called MMPS algorithm in this paper.
By introducing two novel notions, testing-equivalence and
factor-component for the graph structures representing the
faulty interactions, we provided an adaptive algorithmic ap-
proach for discovering faulty interactions in a large number
of graphs for which there was no locating algorithm in the
literature. Such graphs are said to be not 2-locatable in [1].
However, our algorithm shows that they can be actually “lo-
cated”.

As the main result of this paper, we showed that, for
any graph G where each non-2-locatable factor-component

is of size 2, our improved algorithm can correctly give a
solution set E such that E(G) ∈ E with an extremely low
mistaken probability caused by the random selection process
in MMPS algorithm. The proposed algorithm is realized by
by a combination of MMPS algorithm and our proposed
procedures. Notably, for a graph with d edges, only O(d2)
tests are performed in the improved parts (i.e., Algorithms 4
and 5), such that the entire improved algorithm has the same
order of time complexity with MMPS algorithm in fault
location.

The effectiveness of our improved algorithm is dis-
cussed by both theoretical analysis and experimental eval-
uations. Among all the graphs with k factors and d edges,
which is as many as O(k2d), there are O(k2d−1) graphs for
which MMPS algorithm cannot deal with. While, by our
improved algorithm, this number is reduced to O(k2d−2). In
particular, for practical applications when d and k are not
that huge, it can be observed from Table 3 and Fig. 9 that,
the locating ability is significantly improved by our proposed
algorithm.

Potential directions for further extensions include adap-
tive algorithms for non-2-locatable factor-components with
more than two edges, and the generalization of the algo-
rithms for multi-value systems. As suggested by a reviewer,
in addition to the simulation evaluation, it is an important
future study to perform practical evaluation by using real
software fault data, for instance, [23], [24].
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