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PAPER
An Algorithm for Single Snapshot 2D-DOA Estimation Based on a
Three-Parallel Linear Array Model

Shiwen LIN†a), Yawen ZHOU†b), Weiqin ZOU†c), Huaguo ZHANG†d), Lin GAO†e), Nonmembers,
Hongshu LIAO†f), Member, and Wanchun LI†g), Nonmember

SUMMARY Estimating the spatial parameters of the signals by using
the effective data of a single snapshot is essential in the field of reconnais-
sance and confrontation. Major drawback of existing algorithms is that its
constructed covariance matrix has a great degree of rank loss. The perfor-
mance of existing algorithms gets degraded with low signal-to-noise ratio.
In this paper, a three-parallel linear array based algorithm is proposed to
achieve two-dimensional direction of arrival estimates in a single snapshot
scenario. The key points of the proposed algorithm are: 1) construct three
pseudo matrices with full rank and no rank loss by using the single snapshot
data from the received signal model; 2) by using the rotation relation be-
tween pseudo matrices, the matched 2D-DOA is obtained with an efficient
parameter matching method. Main objective of this work is on improving
the angle estimation accuracy and reducing the loss of degree of freedom
in single snapshot 2D-DOA estimation.
key words: three-parallel linear array model, single snapshot, 2D-DOA
estimation, parameter matching, rotation invariance

1. Introduction

The estimation of 2D-DOA has received a significant
amount of attention over the last several decades. It is a key
problem in array signals processing such as mobile com-
munication systems [1], MIMO radar [2], [3], and remote
sensing [4]. Many prominent algorithms, such as multiple
signal classification (MUSIC) [5] and estimation of signal
parameters via rotation invariance techniques (ESPRIT) [6],
have been developed over the years and extended to 2D-
DOA estimation [7]–[9]. Many signal source localization
has focused on the scene of DOA estimation for an instanta-
neous signal with a limited single snapshot. However, the
traditional method finds little application in such a scene
because the subspace cannot be accurately divided due to
insufficient data in a single snapshot [10]–[12]. The prob-
lem is analyzed as follows: In a single snapshot, the rank
of the covariance matrix of the array is only 1, which will
cause “rank loss,” that is, the rank is less than the number of
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sources. Due to the extremely small amount of data and the
“rank loss” problem, the two subspaces cannot be accurately
divided to achieve 2D-DOA estimation.

From a practical viewpoint, major studies on solving
the problem of 2D-DOA estimation in a single snapshot
have been focused on realizing the restoration of the covari-
ance matrix rank. By using the spatial smoothing method,
A. Thakre et al. [13] estimated the DOA of sources by
achieving the restoration of the rank of the data covariance
matrix. B. F. Jiang et al. [14] achieved DOA estimation
through the construction of weighted summation of single
snapshot data received by antenna arrays. Q. S. Ren et al.
[15] extended MUSIC to single snapshot and realized matrix
rank restoration by constructing pseudo-covariance matrix.
Even though the above methods in [13]–[15] work well for
realizing the restoration of the covariance matrix rank, they
essentially use the loss of degrees of freedom to make up
for the “rank loss,” and they will result in a reduction in the
maximum number of sources in DOA estimates. Y. Wu et
al. [16] used a uniform rectangular array (URA) to accom-
plish joint estimation of the azimuth and elevation angles.
It uses the particularity of the URA structure and automati-
cally matches 2D angles through the calculation of an itera-
tive procedure which utilizes the sinusoidal linear prediction
(LP) property and weighted least squares (WLS). But this
method also has a problem of large loss of degrees of free-
dom, and its number of sources can be estimated is strictly
limited by the number of elements of the rectangular side
length. Dakulagi, V [17] proposed a single snapshot 2D-
DOA estimation by using a UCA-DOA. It uses the doublet
structure array antenna consist of UCA array and the mode-
space transformation method to realize the two-dimensional
angle measurement in the single snapshot scene. However,
this method still has a large loss of freedom due to the mode-
space transformation process.

Q. Lin et al. [18] proposed a single snapshot two-
dimensional DOA estimation method based on parallel lin-
ear arrays, which calculates the two-dimensional angle by
reconstructing the matrix through multiple non-rank loss
pseudo-covariance matrices and using the ESPRIT method.
However, this method is based on a strictly non-circular sig-
nal with zero initial phases, and this signal has been proved
to be almost impossible in practice [19], [20]. To address
the limitation of non-circular signals, L. Wang et al. [21]
offered a single snapshot DOA matrix method (SS-DOAM)
based on parallel linear arrays to achieve two-dimensional
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DOA estimation. However, the method has the limitation
that the number of linear array elements must be odd num-
bers, and there is a large loss of degrees of freedom.

This paper proposes an effective method for 2D-DOA
estimation in a single snapshot to overcome the above prob-
lems. First, the proposed method designs three-parallel lin-
ear arrays to form a signal receiving array. Then, three
pseudo-matrices with full rank and no rank loss are con-
struted by using the single snapshot data of the array. Fi-
nally, the direction of arrival can be estimated by matching
joint parameter, which is obtained by singular value decom-
position of the matrix composed of three pseudo-matrices.
The algorithm can effectively reduce the loss of degrees of
freedom in the implementation process. Simulations show
that the proposed method can provide better DOA estima-
tion accuracy than the SS-DOAM method in [21], especially
under scenarios of low signal-to-noise ratio (SNR).

Throughout the paper, italic small letters, boldface
small letters, and boldface capital letters are used for scalars,
vectors, and matrices, respectively. (·)T , (·)H and (·)∗ denotes
transpose, Hermitian transpose, and the complex conjugate
of the operand.

2. Algorithm Description

2.1 Signal Receiving Model Composed of a Three-Parallel
Linear Array

As shown in Fig. 1, the antenna array consists of three par-
allel linear arrays in the xy-plane. The subarray 1, 2, and
3 have M, M + 1 and M receiving antennas respectively.
Each element has the same signal response characteristics,
and the elements numbered from 0 to M are parallel. The
distance between sub-array elements is the same, and the
distance between the elements is d.

The signal receiving model is shown in Fig. 2. Suppose
N far-field narrowband signals impinge on the antenna array
in the presence of white Gaussian noise. Denote by si the i
th incident signal, ϕi its elevation angle, and θi its azimuth
angle, (θ ∈ (−π, π), ϕ ∈ (0, π/2), i = 1, 2, · · ·N). Suppose
these signals have the same center frequency and the signal
wavelength λ is not less than 2d. Denote by xi the ith ele-
ment in subarray 3, yi the ith element in subarray 2, zi the ith
element in subarray 1. The element placed at the origin is
common for referencing purposes. Then the steering vectors
of each subarray can be expressed as:

a1(θi, ϕi) = [e
2πd
λ (cos θi sinϕi), · · · ,

e−
2πd
λ (m·sin θi sinϕi−cos θi sinϕi), · · · ,

e−
2πd
λ ((M−1)·sin θi sinϕi−cos θi sinϕi)]T

(1)

a2(θi, ϕi) = [1, · · · , e−
2πd
λ m·sin θi sinϕi ,

· · · , e−
2πd
λ M·sin θi sinϕi]T (2)

Fig. 1 Structure diagram of three-parallel linear array.

Fig. 2 Schematic diagram of signal receiving model.

a3(θi, ϕi) = [e−
2πd
λ (cos θi sinϕi), · · · ,

e−
2πd
λ (m·sin θi sinϕi+cos θi sinϕi), · · · ,

e−
2πd
λ ((M−1)·sin θi sinϕi+cos θi sinϕi)]T

(3)

Accordingly, the single snapshot signal data matrix ob-
tained by the three-parallel linear arrays can be given by:

Wx = [x0, x1, · · · , xM−1]T = A1S + N1 (4)
Wy =

[
y0, y1, · · · , yM−1, yM

]T
= A2S + N2 (5)

Wz = [z0, z1, · · · , zM−1]T = A3S + N3 (6)

where A1, A2, and A3 are the subarray manifold, S =

[s1, s2, · · · , sN]T is the single snapshot signal from differ-
ent directions and N1, N2, N3 represent the additive white
Gaussian noise (AWGN).

2.2 Construct Pseudo-Matrix

According to the single snapshot data received the designed
array, we construct three pseudo-matrices, and the form of
these pseudo-matrices is as follows:

R1 =


y0y

∗
0 y∗1y0 y∗2y0 · · · y∗M−1y0

y1y
∗
0 y0y

∗
0 y1y

∗
0 · · · y∗M−2y0

...
...

...
. . .

...
yM−1y

∗
0 yM−2y

∗
0 yM−3y

∗
0 · · · y0y

∗
0

(7)
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R2 =


y1y

∗
0 y∗0y0 y∗1y0 · · · y∗M−2y0

y2y
∗
0 y1y

∗
0 y0y

∗
0 · · · y∗M−3y0

...
...

...
. . .

...
yMy

∗
0 yM−1y

∗
0 yM−2y

∗
0 · · · y1y

∗
0

 (8)

R3 =


z0y
∗
0 x∗1y0 x∗2y0 · · · x∗M−1y0

z1y
∗
0 z0y

∗
0 x∗1y0 · · · x∗M−2y0

...
...

...
. . .

...
zM−1y

∗
0 zM−2y

∗
0 zM−3y

∗
0 · · · z0y

∗
0

 (9)

The constructed three pseudo-matrices are all M-
dimensional square matrices. To simplify the repre-
sentation, we define k for rows and q for columns
(k, q ∈ (1, 2, · · · ,M)), ui = exp {−2πd/λ sin θi sinϕi}, vi =

exp {−2πd/λ cos θi sinϕi}, σ2
n is the variance of AWGN.

Then, the elements of the kth row and the qth column of
the three pseudo-matrices can be respectively expressed as:

R1 (k, q) =



y∗q−ky0 =
N∑
i

N∑
j

uk
i s js∗i

(
uq

i

)∗
+σ2

nδ (q − k) ,q > k

yk−qy
∗
0 =

N∑
j

N∑
i

uk
j s js∗i

(
uq

j

)∗
+ σ2

nδ (k − q),k ≥ q

(10)

R2 (k, q) =



y∗q−k−1y0 =
N∑
i

N∑
j

uk+1
i s js∗i

(
uq

i

)∗
+

σ2
nδ (q − k − 1) ,q > k

yk−q+1y
∗
0 =

N∑
j

N∑
i

uk+1
j s js∗i

(
uq

j

)∗
+

σ2
nδ (k − q − 1) ,k ≥ q

(11)

R3 (k, q) =


x∗q−ky0 =

N∑
i

N∑
j
viuk

i s js∗i
(
uq

i

)∗
,q > k

zk−qy
∗
0 =

N∑
j

N∑
i
viuk

j s js∗i
(
uq

j

)∗
,k ≥ q

(12)

According to (10)–(12), three pseudo-matrix vector ex-
pression forms can be written as:

R1 = AMRS S AH
M + σ2

nIM (13)
R2 = AMΦ1RS S AH

M + σ2
nJT

M (14)
R3 = AMΦ2RS S AH

M (15)

where

Φ1 = diag
(

e−
2πd
λ sin θ1 sinϕ1 , e−

2πd
λ sin θ2 sinϕ2 ,

· · · , e−
2πd
λ sin θN sinϕN

)
(16)

Φ2 = diag
(

e−
2πd
λ cos θ1 sinϕ1 , e−

2πd
λ cos θ2 sinϕ2 ,

· · · , e−
2πd
λ cos θN sinϕN

)
(17)

RS S = diag

s∗1

N∑
i

si, s∗2

N∑
i

si, · · · s∗N
N∑
i

si

 (18)

JM =

[
0 0

IM−1 0

]
M×M

(19)

IM in (13) is the M-dimensional unit matrix and AM
is the array manifold matrix of the array composed of the

first M elements of the subarray 2. Φ1 and Φ2 are both N-
dimensional full-rank diagonal matrices. The rank of RS S is
equal to the number of sources in the single snapshot scene,
it realizes the restoration of the covariance matrix rank. As
a result, the three pseudo-matrices R1, R2 , and R3 must be
full-rank matrices and the rank of the matrix is M.

A large matrix R̄ is constructed by using the three
pseudo-matrices, and the construction form is written as:

R̄ =

 R1
R2
R3

 =

 AM
AMΦ1
AMΦ2

 RS S AH
M + σ2

n

 IM
JT

M
OM

 (20)

OM is an M-dimensional zero matrix.

2.3 ESPRIT-Based Two-Dimensional Angle Parameter
Pairing

By performing singular value decomposition on the matrix
R̄, the signal subspace ES can be obtained as:

ES =

 E1
E2
E3

 =

 AMT
AMΦ1T
AMΦ2T

 (21)

Since T is an N-dimensional invertible matrix, a least-
squares problem based on LS-ESPRIT [22] can be estab-
lished as:

min

∥∥∥∥∥∥∥∥
 E1

E2
E3

 −
 AMT

AMΦ1T
AMΦ2T


∥∥∥∥∥∥∥∥

2

F

= min
∥∥∥ES − ĀT

∥∥∥2

(22)

By solving the least square solution of (22), the rotation
matrix Ψ1 and Ψ2 are obtained as:

Ψ1=T−1Φ1T =
(
EH

1 E1

)−1
EH

1 E2

Ψ2=T−1Φ2T =
(
EH

1 E1

)−1
EH

1 E3

(23)

Since the matrix Φ1 and Φ2 in (20) contain the DOA
information of all input signals, The two eigenvalue diago-
nal matrices obtained by eigen decomposition of the rota-
tion matrices Ψ1 and Ψ2 respectively still contain the an-
gle parameter information of the signal. However, since
the eigen-decomposition process of Ψ1 and Ψ2 is indepen-
dent, it is necessary to determine the correspondence be-
tween the eigenvalues of the two matrices to complete the
two-dimensional angle parameter pairing. The parameter
matching process is as follows:

Perform eigen-decomposition on the rotation matrices
A and B, respectively, and we can get Ψ1 and Ψ2 as:

Ψ1 = T1Φ1T−1
1 = T1


λ1

. . .

λN

 T−1
1 (24)



676
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.4 APRIL 2022

Ψ2 = T2Φ2T−1
2 = T2


γ1

. . .

γN

 T−1
2 (25)

where T1 is the eigenvector matrix obtained by eigen-
decomposition of matrix Ψ1; λ1, · · · , λN represents the
eigenvalue of matrix Ψ1; T2 is the eigenvector matrix ob-
tained by eigen-decomposition of matrix Ψ2; γ1, · · · , γN
represents the eigenvalue of matrix Ψ2.

Calculate the phase angle of the eigenvalue γ1, · · · , γN ,
and sort them from large to small according to the size
of their phase angle, and obtain the sorted eigenvalues
γ1, · · · , γN . Then, use the eigenvector matrix T1 to get the
estimated matrix Φ̂2 of the eigenvalue matrix Φ̂2 as follows:

Φ̂2 = T−1
1 Ψ2T1 (26)

Define u1, · · · , uN are the diagonal elements of Φ̂2.
Take complex phase angles for all diagonal elements, and
sort them from large to small according to the size of their
phase angle to obtain the sorted eigenvalues ū1, · · · , ūN .
Then, there is a pairing relationship as:

γ̄i = ūi, i = 1, 2, · · · ,N (27)

Adjust the eigenvalue order ofΨ1 through the relation-
ship between the diagonal elements ū1, · · · , ūN and its cor-
responding feature vector to obtain the sorted eigenvalues
λ̄1, · · · , λ̄N . Then, we can get the eigenvalue pairing rela-
tionship as:

γ̄i = λ̄i, i = 1, 2, · · · ,N (28)

According to the eigenvalue pairing relationship to
complete the angle parameter pairing, the solution of 2D-
DOA of sources is obtained in (29) as [23]. “∠ “ is the sym-
bol of the complex number to obtain the phase angle.

θ̂
Fuzzy
i = arctan

[
∠λ̄i
∠γ̄i

]
ϕ̂i = arcsin

[
λ

√
(∠λ̄i)2

+(∠γ̄i)2

2πd

] (29)

Since the azimuth angle calculated by the arctangent
function is θ̂Fuzzy

i ∈ (−π/2, π/2), the azimuth angle is blurred
in this signal model. This paper defuzzifies the azimuth an-
gle in (30) by using the positive and negative of the eigen-
value. The accurate direction of arrival estimates can be ob-
tained by (29) and (30). θ̂i = θ̂

Fuzzy
i + kiπ

2

ki = sign
(
∠λ̄i

) (
1 − sign (∠γ̄i)

) (30)

2.4 Algorithm Steps

The steps of this algorithm for single snap-shot 2D-DOA
estimation based on the three-parallel linear array are as fol-
lows:

(i) Construct three pseudo-matrices from the single snap-
shot data received by the array in (7)–(9).

(ii) Construct a large matrix R̄ by using the three pseudo-
matrices in (20).

(iii) Perform singular value decomposition on matrix R̄ to
obtain an estimate of the signal subspace as (21).

(iv) Obtain the least square solution of two rotation matri-
ces Using rotation invarianceΨ1 andΨ2 by using their
rotation invariance in (23).

(v) Determine the correspondence between the eigenval-
ues of Ψ1 and Ψ2, and complete the angle parameter
pairing.

(vi) Calculate the azimuth angle and the elevation angle in
(29) and (30).

3. Algorithm Analysis and Simulation

3.1 Degrees of Freedom of the Algorithm

In this section, we evaluated the loss of the algorithm’s de-
gree of freedom. The loss is bM/2c under the SS-DOAM
method, and its ratio of the degree of freedom to the size of
the corresponding arrays is bM/2c /(2M + 1). By the con-
structed three-parallel linear array and the proposed algo-
rithm, the ratio of the degree of freedom to the number of all
elements turns to M/(3M+1). Obviously, because of M ≥ 2,
the algorithm has less loss of freedom than the SS-DOAM
method. It clearly proves that the proposed algorithm can
effectively reduce the loss of the degree of freedom.

3.2 Computational Complexity Analysis

The computational complexity of the sparse arrays is an-
alyzed in this section. First, we construct three pseudo-
covariance matrices in (7)–(9) with complexity O

(
3M2

)
.

Then, we perform singular value decomposition on the con-
structed pseudo-matrix in (20) and the complexity of the
process is O

(
27M3

)
. The computational complexity re-

quired for the process to obtain the least square solution of
two rotation matrices in (22)–(26) is O

(
2N3 + 6MN2

)
. Fi-

nally, The computational complexity required for the two-
dimensional angle parameter solving and matching process
in (29), (30) is O

(
3N3

)
.

In summary, the computational complexity of the pro-
posed method is O

(
27M3 + 5N3 + 6MN2 + 3M2

)
and it

mainly depends on computation of pseudo-covariance ma-
trices, eigen value decomposition, finding solutions of in-
variance equations and 2D-DOA estimation.

3.3 Simulation Results

In this section, simulations are presented to illustrate the
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proposed method in single snapshot 2D-DOA estimation.
Results on each of the simulations were analyzed with 1000
independent trials.

The statistical performance of the algorithm is evalu-
ated by the mean square error (RMSE) of the angle estimate,
and the mean square error of the two-dimensional angle es-
timate is defined as:

RMSE (θ, ϕ) =

√
E

[(
θ̂k − θ

)2
]

+ E
[
(ϕ̂k − ϕ)2

]
=

√
1
K

K∑
k=1

(
θ̂k − θ

)2
+ (ϕ̂k − ϕ)2

(31)

The estimated mean square error of the azimuth angle
θ is defined as:

RMSE (θ) =

√
E

[(
θ̂k − θ

)2
]
=

√√
1
K

K∑
k=1

(
θ̂k − θ

)2

(32)

The estimated mean square error of the elevation angle
φ is defined as:

RMSE (ϕ)=

√
E

[
(ϕ̂k − ϕ)2

]
=

√√
1
K

K∑
k=1

(ϕ̂k − ϕ)2

(33)

K is the number of independent random experiments, ϕ̂k is
the estimated elevation angle of the kth experiment, θ̂k is the
estimated azimuth angle of the kth experiment.

Simulation I: Assume that the total number of the
three-parallel linear arrays is 37 and the number of subar-
ray 1, 2, and 3 are 12, 13, and 12, respectively. The el-
ements are separated by a half-wavelength in each subar-
ray,i.e., element spacing d = 0.5λ. The proposed method is
compared to the SS-DOAM method proposed by [21]. The
number of parallel linear arrays based on the SS-DOAM
method is also 37, and its two sub-array elements are 19
and 18, respectively. Three far-field narrowband signals im-
pinge on both antenna arrays, and the angles of arrivals are
(40◦,30◦), (50◦,50◦), and (60◦,30◦). The signal-to-noise ra-
tio S NR = 10 dB.

The scatter diagrams of the measured DOA estimation
are shown in Fig. 3 and Fig. 4. From the Fig. 3, it is clear
that the estimated points of multiple independent trials form
three-point “clusters” around the actual position, and there is
a clear distinction between “cluster” and “cluster.” There is
no clear distinction in Fig. 4. Besides, the RMSEs of Fig. 3
and Fig. 4 are 3.1521◦ and 7.3765◦ respectively. By com-
paring Fig. 3 and Fig. 4, it can be seen that the proposed al-
gorithm has a better 2D-DOA estimation performance with
multiple sources than the SS-DOAM method.

Simulation II: Assume that the size of the three-
parallel linear arrays and parallel linear arrays remains un-
changed from that of Simulation I. Then increase the S NR to

Fig. 3 The DOA estimated by the proposed method at SNR=10 dB.

Fig. 4 The DOA estimated by the SS-DOAM method at SNR=10 dB.

20 dB. The result of the update is shown in Fig. 5 and Fig. 6.
It is found that the estimated points are more closely aligned
with the actual point and the RMSEs of Fig. 5 and Fig. 6 are
0.8572◦ and 2.5050◦ respectively. This means that the per-
formance of the algorithm improves as the SNR increases,
and the proposed method still outpeforms the SS-DOAM
method.

Simulation I and Simulation II is done based on multi-
ple target sources. And then we do the following simulations
with a single source impinging on both arrays.

Simulation III: Assume that the total number of the
three-parallel linear arrays is 49 and the number of subarray
1, 2, and 3 are 16, 17, and 16, respectively. The elements
are separated by a half-wavelength in each subarray,i.e., el-
ement spacing d = 0.5λ. The proposed method is compared
to the SS-DOAM method proposed by [21]. The number
of parallel linear arrays based on the SS-DOAM method is
also 49, and its two sub-array elements are 25 and 24, re-
spectively. There is only one far-field narrowband signal
impinges on both antenna arrays, and the angle is (45◦,45◦).

The scatter diagrams of the measured DOA estimation
estimated at S NR = 10dB are shown in Fig. 7 and Fig. 8.
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Fig. 5 The DOA estimated by the proposed method at SNR=20 dB.

Fig. 6 The DOA estimated by the SS-DOAM method at SNR=20 dB.

And the root-mean-squared errors (RMSEs) of the estimates
of the elevation and azimuth DOA estimated are illustrated
at different SNR in Fig. 9 and Fig. 10. As it can be seen, the
proposed algorithm has a better 2D-DOA estimation perfor-
mance than the SS-DOAM method, especially at low S NR.

Simulation IV: Assume that the number of elements of
each sub-array in the three-parallel linear array as M. And
there is only one far-field narrowband signal impinges on
the array, and the angle is (45◦, 45◦). The RMSEs of the
estimates of 2D-DOA estimated are illustrated at different
SNR in Fig. 11. In addition, Assume the total number of the
three-parallel linear array used for the proposed method is
equal to the total number of the parallel linear array under
the SS-DOAM algorithm. As the total number of two arrays
changes, we can see the performance of the two methods
changes in Fig. 12.

It is clear that the 2D-DOA performance of the pro-
posed algorithm increases as the S NR increases. And the
performance becomes better when the total number of the
three-parallel linear array increases. Furthermore, the pro-
posed method outperforms the SS-DOAM with the same
number of arrays.

Fig. 7 The single target’s DOA estimated by the proposed method at
SNR=10 dB.

Fig. 8 The single target’s DOA estimated by the SS-DOAM method at
SNR=10 dB.

Fig. 9 The RMSE comparison for θ versus SNR of SS-DOAM and pro-
posed method.

In summary, the proposed method outperformed the
SS-DOAM method proposed by [21]. Because the proposed
method takes full advantage of all received signal data of
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Fig. 10 The RMSE comparison for φ versus SNR of SS-DOAM and pro-
posed method.

Fig. 11 The RMSE versus M of the proposed method.

Fig. 12 The RMSE versus M of the proposed method and the SS-
DOAM.

the array and effectively reduces the loss of degrees of free-
dom by constructing pseudo matrices and matching two-
dimensional angle parameters.

4. Conclusion

In this paper, we have constructed a three-parallel linear ar-
ray signal receiving model and proposed a novel method for
single snapshot 2D-DOA estimation. The proposed method
constructs three pseudo-matrices by using the single snap-
shot data of the constructed arrays. It is found that the three
pseudo-matrices are full-rank matrices, and the rank is equal
to the number of elements in the corresponding subarray.
Then, the 2D-DOA is obtained by using the rotation in-
variance between the three pseudo-matrices. Compared to
the SS-DOAM method, the proposed method effectively re-
duces the loss of the degree of freedom. Furthermore, results
on simulations showed the performance for 2D-DOA esti-
mation of the proposed method is better than the SS-DOAM
method under the single snapshot scene.
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Appendix: Appendices

For simplicity, we assume that the Gaussian white noise
with zero mean and variance σ. The single snapshot
signal data matrix shows as in Eqs. (4)–(6). Let W =

[ Wx Wy Wz ]T , A = [ A1 A2 A3 ]T and N =

[ N1 N2 N3 ]T . The likelihood function is expressed as:

InL = const−(3M+1)In(σ)−
1
σ

(WH−SHAH)(W−AS)

(A· 1)

The first derivative is:

∂InL
∂ϕi

= 2
σ

Re[si
HdH(ϕi)N]

∂InL
∂θi

= 2
σ

Re[si
HdH(θi)N]

(A· 2)

where, d(θi) = dai/dθi, d(ϕi) = dai/dϕi.
The Fisher information matrix is as follows:

I =

[
C′ U′

V′ D′

]
C′

= 2
σ

Re{GHDH(ϕ)[I − A(AHA)−1AH]D(ϕ)G}
D′

= 2
σ

Re{GHDH(θ)[I − A(AHA)−1AH]D(θ)G}
U′

= 2
σ

Re{GHDH(ϕ)[I − A(AHA)−1AH]D(θ)G}
V′

= 2
σ

Re{GHDH(θ)[I − A(AHA)−1AH]D(ϕ)G}
(A· 3)

where, D(ϕ) = [d(ϕi), . . . ,d(ϕN)], D(θ) = [d(θi), . . . ,d(θN)],
G = diag(s1, . . . , sN).

Then, 0CRB is expressed as:

E = I−1

CRB(ϕi) = Eii,CRB(θi) = EN+i,N+i
(A· 4)
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