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Abstract

To maintain blockchain-based services with ensuring its
security, it is an important issue how to decide a min-
ing reward so that the number of miners participating in
the mining increases. We propose a dynamical model of
decision-making for miners using an evolutionary game
approach and analyze the stability of equilibrium points
of the proposed model. The proposed model is described
by the 1st-order differential equation. So, it is simple
but its theoretical analysis gives an insight into the char-
acteristics of the decision-making. Through the analysis
of the equilibrium points, we show the transcritical bi-
furcations and hysteresis phenomena of the equilibrium
points. We also design a controller that determines the
mining reward based on the number of participating min-
ers to stabilize the state where all miners participate in
the mining. Numerical simulation shows that there is a
trade-off in the choice of the design parameters.

Keywords— B lockchain, Proof-of-work, Decision-

making, Evolutionary Game, Bifurcation, Hysteresis, Feed-

back control.

1 Introduction

Blockchain is a distributed ledger technology for record-
ing transactions that underlies various fields such as dig-
ital currency like Bitcoin [1], data sharing [2], and com-
puter security [3]. Blockchain-based services use cryp-
tography to record transactions as a chain of blocks. A
block consists of a block header and transaction data.
The block header contains a cryptographic hash of its
previous block, which makes blockchain-based services
resistant to tampering. In these services, participants
called miners create blocks in a distributed manner, and
the longest chain of blocks is considered to be legitimate.
When a miner succeeds in creating a block, he/she gets
a reward called a mining reward.

Blockchain-based services approve transactions
through a consensus algorithm. As a consensus al-
gorithm, proof-of-work (PoW) is typically used. In
this algorithm, the mining difficulty is set using a
scalar value called a nonce in the block header. To
create a block, miners must find a nonce such that the

cryptographic hash value for the previous block satisfies
specific conditions. The process of creating blocks is
called a mining. In general, a cryptographic hash value
for a block is unique according to the nonce contained in
the block. Moreover, a nonce that satisfies the specific
conditions cannot be calculated directly. As a result,
an exhaustive search imposes a large computational
cost on miners, which contributes to the resistance to
tampering. Because transaction approvals depend on
miner calculations (such calculations are very costly and
require a lot of energy [4, 5]), the participation of many
miners is needed to maintain blockchain-based services
and ensure blockchain system security [6, 7]. Therefore,
it is important to analyze the decision-making problem
of whether miners participate in the mining according
to the energy consumption and mining rewards.

Game theory is used to analyze interactions among ra-
tional decision-makers. Many studies have adopted game
theory to analyze blockchain-related issues with PoW [8],
such as decision-making problems in the mining con-
sidering the energy consumption [9, 10]. Evolutionary
game theory has been used as a powerful mathematical
tool for analyzing dynamical models of evolutionary se-
lection [11]. Dynamical characteristics of the selection
process are modeled by replicator dynamics. Control
methods for the replicator dynamics have been studied
in [12, 13, 14]. Evolutionary game models and replicator
dynamics are also used in analyzing blockchain-related
issues such as mining pool selection problems [15, 16],
and attack scenarios [17].

We previously focused on a decision-making problem
of whether miners participate in the mining according
to the energy consumption and the mining rewards, and
modeled it as a non-cooperative game. Through theoret-
ical and numerical analysis, we showed the property of
Nash equilibria [18]. However, in this study, we assumed
that, once miners choose a strategy (i.e., participation in
the mining or not), they do not change their strategies.
Practically, the miners may decide to participate in the
mining dynamically based on their current earned min-
ing rewards. It is important to analyze such a dynamical
decision-making process.

In this paper, we propose a dynamical model of the
decision-making problem for miners, by applying an evo-
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lutionary game approach. We analyze the stability of its
equilibrium points and show the existence of transcriti-
cal bifurcations and hysteresis phenomena with the coex-
istence of two asymptotically stable equilibrium points:
one corresponds to the state where all miners partici-
pate in the mining and the other to the state where the
number of participating miners is minimum. The former
equilibrium point is preferable to maintain blockchain-
based services. We propose a controller that determines
the mining reward based on the number of current par-
ticipating miners so as to stabilize the equilibrium point
if at least one miner participates in the initial time.

The remainder of this paper is organized as follows. In
Section 2, we propose an evolutionary game-based dy-
namical model of the decision-making process. In Sec-
tion 3, we analyze the stability of its equilibrium point.
In Section 4, we design a state feedback controller to let
all miners participate in the mining.

2 Dynamical model of decision-
making

We assume that miners in a blockchain network are par-
titioned into two sets M and N , where miners in M al-
ways participate in the mining and those in N have two
strategies, participating in the mining (strategy sk = 1)
and not participating in the mining (strategy sk = 0),
where k ∈ N . Note that M∩ N = ∅. Denoted by m
and n are the cardinalities ofM and N , respectively (we
assume m ≥ 1 and n ≥ 1). We define x0 and x1 as
the ratios of miners in N that choose strategies 0 and 1,
respectively. Note that

x0 + x1 = 1. (2.1)

Miners need to find a nonce such that the first h bits
of the hash of the block are all 0. Then, D = 2h is
the difficulty parameter and 1/D is the probability that
a miner creates a block with one hash calculation [19].
When miner k ∈ M ∪ N participates in the mining,
he/she needs a cost c per unit operating time. The av-
erage number wk = fk(c) of hash queries calculated per
unit operating time by miner k depends on the cost c,
and we assume that fk(c) is the same for all miners. In
this paper, for simplicity, we assume fk(c) = vc (v > 0)
for any k ∈M∪N .

The mining of blocks can be described as a Poisson
process [20, 21]. That is, the block creation time is ex-
ponentially distributed [22]. The rate λk of the Poisson
process of miner k ∈M∪N is given by λk = wk/D [21]1.
If miner k chooses sk = 1, then the rate of the Poisson
process is λk = skfk(c)/D = skc/d (we define d = D/v,
in this paper). Let R be the mining reward. Based on the

1Note that a combination of independent Poisson processes is
still a Poisson process. Thus, the rate of the Poisson process of all
miners is written as

∑
i∈M∪N λi.

previous work [18], the expected reward Rk and the ex-
pected cost CSk for the mining of miner k are calculated
as follows.

Rk =
λk∑

i∈M∪N λi
R =

Rsk
m+ nx1

, (2.2)

CSk =
cλk

(
∑
i∈M∪N λi)

2
=

dsk
(m+ nx1)2

. (2.3)

We define the utility function ui(x0, x1) of miners that
choose the strategy i ∈ {0, 1} as

ui(x0, x1) =

{
0 if i = 0,

1
m+nx1

(
R− d

m+nx1

)
if i = 1,

(2.4)

which means that the utility of a miner who participates
in the mining is the difference between the expected re-
ward Rk and the expected cost CSk. Based on the prin-
ciple of the evolutionary game [11], the dynamics of the
ratio of miners that choose the strategy i is given by

ẋi
xi

= ui(x0, x1)− ū(x0, x1) (i = 0, 1), (2.5)

where ū(x0, x1) =
∑1
i=0 xiui(x0, x1) is the average utility

of all miners. According to (2.4), (2.5) is rewritten as

ẋ1 = −ẋ0 =
x1(1− x1)

m+ nx1

(
R− d

m+ nx1

)
=: ϕR(x1).

(2.6)

Thus, the dynamics of the decision-making of miners
is described by the above 1st-order differential equation
and the reward R plays an important role in the decision-
making of the miners for the participation in the mining.
In the following, we investigate stability and stabiliza-
tion of equilibrium points of (2.6). For that purpose,
the concept of a basin of attraction [23] is important.
Let ξ(t;xinit1 ) be the solution of (2.6) that starts from
an initial state xinit1 at time t = 0. For a given asymp-
totically stable equilibrium point x′1 of (2.6), the basin
of attraction is defined as the set of all initial states
xinit1 such that ξ(t;xinit1 ) is defined for all t ≥ 0 and
limt→∞ ξ(t;xinit1 ) = x′1.

3 Stability analysis

In this section, we investigate the stability of the equi-
librium point x1 = 0, 1, x∗1 of (2.6), where

x∗1 =
1

n

(
d

R
−m

)
. (3.1)

When 1/(m+n) < R/d < 1/m, the equilibrium point x∗1
satisfies 0 < x∗1 < 1. This equilibrium point is the state
where the utility u1(1− x∗1, x∗1) is equal to 0, that is, the
utility for the strategy 0 is equal to that for the strategy
1.

2



Table 1: The relation between R/d and the stability of
equilibrium points.

Condition for R/d x1 = 0 x1 = 1 x1 = x∗1
R/d < 1/(m+ n) S U S

1/(m+ n) < R/d < 1/m S S U
R/d > 1/m U S S

5 10 15 20
m

0.0

0.2

0.4

0.6

0.8

1.0

R
/
d (A)

(B)

(C)

Figure 1: The m−R/d parameter plane where n is fixed
to n = 2.

We investigate the local stability of the three equilib-
rium points. The derivative of ϕR(x1) with respect to x1
is

∂ϕR(x1)

∂x1
=

(
− x1
m+ nx1

+
1− x1
m+ nx1

− nx1(1− x1)

(m+ nx1)2

)
×
(
R− d

m+ nx1

)
+
dnx1(1− x1)

(m+ nx1)3
.

(3.2)

Thus, we obtain

∂ϕR(x1)

∂x1

∣∣∣∣
x1=0

=
1

m

(
R− d

m

)
, (3.3)

∂ϕR(x1)

∂x1

∣∣∣∣
x1=1

= − 1

m+ n

(
R− d

m+ n

)
, (3.4)

∂ϕR(x1)

∂x1

∣∣∣∣
x1=x∗

1

=
R3

nd2

(
d

R
−m

)(
(m+ n)− d

R

)
.

(3.5)

Thus, we have their stability conditions as shown in
Table 1, where S (resp. U) represents an asymptotically
stable (resp. unstable) point.

Fig. 1 shows the m−R/d parameter plane with n = 2
where the meaning of each region is as follows. In the
region (A), both x1 = 1 and x∗1 < 0 are asymptotically
stable equilibrium points, and the basin of attraction of
x1 = 1 is (0, ∞), that is, every solution of (2.6) start-
ing in (0, 1] converges to 1. In the region (B), both
x1 = 0 and x1 = 1 are asymptotically stable equilibrium
points, and basins of attraction of x1 = 0 and x1 = 1 are

0.1 0.2 0.3 0.4 0.5 0.6 0.7
R/d

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
1

Figure 2: The relation between R/d and the stability of
equilibrium points when m = n = 2.

(−∞, x∗1) and (x∗1, ∞), respectively, that is, every solu-
tion of (2.6) starting in [0, x∗1) converges to 0, and every
solution of (2.6) starting in (x∗1, 1] converges to 1. In the
region (C), both x1 = 0 and x∗1 > 0 are asymptotically
stable equilibrium points, and the basin of attraction of
x1 = 0 is (−∞, 1), that is, every solution of (2.6) start-
ing in [0, 1) converges to 0.

Shown in Fig. 2 is a bifurcation diagram with respect
to the bifurcation parameterR/d, wherem = n = 2. The
solid (resp. dashed) line represents an asymptotically
stable (resp. unstable) equilibrium point. Two curves of
equilibrium points pass through (x1, R) = (1, d/(m+n))
(resp. (x1, R) = (0, d/m)), one given by x1 = x∗1, the
other by x1 = 1 (resp. x1 = 0). Both curves exist on
both sides of R = d/(m + n) (resp. R = d/m). The
stability along each curve exchanges on passing through
R = d/(m+ n) (resp. R = d/m). Thus, the exchange of
stability (known as a transcritical bifurcation) [24] is ob-
served when (x1, R) = (0, d/m), (1, d/(m+n)). We show
in A that the vector field (2.6) satisfies the condition of
the transcritical bifurcation shown in [24].

Since the values of xi (i = 0, 1) satisfy 0 ≤ xi ≤ 1,
we observe jump phenomena owing to these transcritical
bifurcations. Moreover, R > d/m needs to be satisfied so
that all miners inN participate in the mining. It is noted
that, once the miners participate in the mining, they
continue to participate in the mining until the reward R
becomes d/(m + n). Thus, a hysteresis phenomenon of
the equilibrium points is observed.

Fig. 3 shows trajectories of (2.6) from an initial state
xinit1 = 0.1 (blue) and xinit1 = 0.9 (red). When d/(m +
n) < R < d/m, both x1 = 0 and x1 = 1 are asymp-
totically stable points whose basins of attraction are
(−∞, x∗1) and (x∗1, ∞), respectively. Thus, the num-
ber of miners who participate in the mining converges to
0 if the initial ratio is less than x∗1 because their utility
is negative and they prefer non-participation.

3
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Figure 3: Trajectories of (2.6) when m = n = 2, d = 100,
and R = 40, from xinit1 = 0.1 (blue) and xinit1 = 0.9 (red).

4 Stabilization

The result in Section 3 implies that no miner inN partic-
ipates in the mining in the steady state when the mining
reward R∗ satisfies R∗ < d/(m + n). When the mining
reward R∗ satisfies d/(m+ n) < R∗ < d/m, miners’ be-
haviors depend on the initial state xinit1 , i.e., no miner in
N participates in the mining in the steady state when
xinit1 < x∗1. We propose a state feedback controller to ad-
just the reward based on the ratio x1 so that all miners
in N participate in the mining, i.e., let every trajectory
of x1 with its initial state in (0, 1] converge to 1.

4.1 Case where R∗ < d/(m+ n)

First, we show that x1 = 1 cannot be stabilized when
R∗ < d/(m+n). We consider the following state feedback
controller R1(x1) that adjusts the reward based on the
ratio x1.

R = R1(x1), R1(1) = R∗ <
d

m+ n
. (4.1)

The controlled trajectory of x1 by (4.1) is described by

ẋ1 =
x1(1− x1)

m+ nx1

(
R1(x1)− d

m+ n

)
=: ψR(x1). (4.2)

The derivative of ψR(x1) with respect to x1 is

∂ψR(x1)

∂x1
=

(
− x1
m+ nx1

+
1− x1
m+ nx1

− nx1(1− x1)

(m+ nx1)2

)
×
(
R1(x1)− d

m+ nx1

)
+
x1(1− x1)

m+ nx1

(
∂R1(x1)

∂x1
+

dn

(m+ nx1)2

)
.

(4.3)

We obtain

∂ψR(x1)

∂x1

∣∣∣∣
x1=1

= − 1

m+ n

(
R1(1)− d

m+ n

)
> 0.

(4.4)

Therefore, the unstable equilibrium point x1 = 1 cannot
be stabilized even if the feedback controller is used.

4.2 Case where d/(m+ n) < R∗ < d/m

Next, we show that x1 = 1 can be an asymptotically sta-
ble equilibrium point whose basin of attraction is (0, 1]
with a state feedback controller. We introduce the follow-
ing state feedback controller R2(x1) to adjust the reward
based on the ratio x1,

R = R2(x1) = R∗ + ∆R(x1), ∆R(1) = 0, (4.5)

and let every trajectory of x1 with its initial state in
(0, 1] converge to 1.

4.2.1 The condition of the feedback gain

We give x̄1 satisfying x∗1 < x̄1 ≤ 1 and ε > 0. For a given
reward R∗ ∈ (d/(m+ n), d/m), let ∆R(x1) be

∆R(x1) =

{
K(x̄1 − x1) if x1 < x∗1 + ε,

0 otherwise,
(4.6)

where K > 0 is a feedback gain. We obtain a condition
for the gain K and ε such that every trajectory of x1 with
its initial state in (0, 1] converges to 1 as in Proposition 1.

Proposition 1. Assume d/(m + n) < R∗ < d/m. Let
ζR(x1) be

ζR(x1) := −Knx21 + (Knx̄1 −Km+R∗n)x1

+ (R∗m+Kmx̄1 − d), (4.7)

and let α, β (α < β) be real solutions of the quadratic
equation ζR(x1) = 0. Then, every trajectory of x1 with
its initial state in (0, 1] converges to 1 if the gain K and
ε satisfy

K >
d−R∗m
mx̄1

(> 0), (4.8)

0 < ε

{
< β − x∗1 if β < 1,

≤ 1− x∗1 if β ≥ 1.
(4.9)

Proof. With the controller (4.5) and (4.6), the dynamics
of x1 (x1 < x∗1 + ε) is given by

ẋ1 = ηR(x1), (4.10)

ηR(x1) :=
x1(1− x1)

m+ nx1

(
R∗ +K(x̄1 − x1)− d

m+ nx1

)
.

(4.11)
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According to (4.7), ηR(x1) can be rewritten as

ηR(x1) =
x1(1− x1)ζR(x1)

(m+ nx1)2
. (4.12)

First, we prove that the quadratic equation ζR(x1) = 0
has two distinct real solutions under (4.8). We have

ζR(x∗1) = K(x̄1 − x∗1)(m+ nx1) > 0, (4.13)

which implies with (4.8) that the quadratic equation
ζR(x1) = 0 has two distinct real solutions α, β satisfy-
ing α < x∗1 < β.

Next, we prove α < 0 under (4.8). We obtain

ζR(0) = mx̄1K − (d−R∗m)

> mx̄1
d−R∗m
mx̄1

− (d−R∗m) = 0, (4.14)

from (4.7) and (4.8). Since ζR(x1) is a convex upward
quadratic function, the smaller solution α of ζR(x1) = 0
satisfies α < 0.

Finally, we prove that the system controlled by (4.5)
satisfies ẋ1 > 0 for any x1 ∈ (0, 1) under (4.8) and (4.9).
When β < 1, ηR(x1) > 0 for any x1 ∈ (0, β) from (4.12).
It is obvious that ẋ1 > 0 for any x1 ∈ (0, x∗1 + ε) from
(4.9). For any x1 ∈ [x∗1 + ε, 1), ẋ1 > 0 because K = 0.
Thus,

ẋ1 > 0 for any x1 ∈ (0, 1). (4.15)

Similary, it is also shown by (4.9) that (4.15) holds for
any β ≥ 1. Therefore, every trajectory of x1 with its
initial state in (0, 1] converges to 1 under (4.8) and (4.9).

It is noted that x̄1 < β since d/(m + n) < R∗. So,
(4.6) is continuous if ε = x̄1 − x∗1.

4.2.2 Performance evaluation

In this section, we provide the numerical analysis of the
controller. We consider the case where m = n = 2,
d = 100, and R∗ = 40. Then, we have x∗1 = 0.25 from
(3.1). Let the initial state of x1 be xinit1 = 0.1. We
consider the following two cases where K and ε satisfy
(4.8) and (4.9).

Case 1) x̄1 = 0.26, ε = 0.005, K = 56.8125.

Case 2) x̄1 = 1, ε = 0.75, K = 10.1.

Fig. 4 shows trajectories of the state and the reward.
The red and blue lines represent the trajectories of Cases
1) and 2), respectively. In Case 1), it takes a longer time
than Case 2) for the state x1 to converge to 1, but the
reward R2(x1) returns to the original value R∗ quickly.
Note that R2(x1) in Case 1) is not continuous because
we switch the input ∆R(x1) to 0 when x1 = x∗1 + ε (see
(4.6)). In Case 2), the state x1 converges to 1 quickly, but
it takes longer time than Case 1) for the reward R2(x1) to
return to its original value R∗. Thus, there is a trade-off
in the choice of the design parameters x̄1 and ε.

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

x
1

x1 = x ∗
1

(a)

0 200 400 600 800 1000
Iteration

40

42

44

46

48

R
2
(x

1
)

(b)

Figure 4: Trajectories of (a) the state x1 and (b) the re-
ward R2(x1) with a feedback controller satisfying Propo-
sition 1, when m = n = 2, d = 100, R∗ = 40, x∗1 = 0.25
from xinit1 = 0.1, where x̄1 = 0.26, ε = 0.005,K =
56.8125 (red) and x̄1 = 1, ε = 0.75,K = 10.1 (blue).

5 Conclusion

We proposed a dynamical model of the decision-making
of miners in the blockchain. The proposed model is de-
scribed by the 1st-order differential equation. So, it is
simple but its theoretical analysis gives an insight into
the characteristics of the decision-making. We analyzed
the stability of its equilibrium points. We showed the
occurrence of the transcritical bifurcations and observed
a hysteresis phenomenon. We also proposed a feedback
controller and showed that it can stabilize the state where
all miners participate in the mining from any non-zero
initial participation ratio of the miners. Our future work
is to extend our model to the case where miners’ compu-
tational performances are different from each other.
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A Transcritical bifurcation

We consider the following system.

ẋ = f(x, µ), x ∈ R, µ ∈ R. (A.1)

We assume that

f(x, µ) = xF (x, µ), (A.2)

where F : R× R→ R satisfies the following condition.

F (x, µ) :=

{
f(x,µ)
x x 6= 0,

∂f(0,µ)
∂x x = 0.

(A.3)

Then, it is shown in [24] that (A.1) undergoes a trans-
critical bifurcation at (x, µ) = (0, 0) if the following three
conditions hold.

(T1) f(0, 0) = 0, ∂f(0,0)
∂x = 0,

(T2) ∂f(0,0)
∂µ = 0,

(T3) ∂2f(0,0)
∂x∂µ 6= 0, ∂2f(0,0)

∂x2 6= 0.

Thus we will show that (2.6) satisfies the above three
conditions at (x1, R) = (0, d/m), (1, d/(m+ n)).

A.1 Case where (x1, R) = (0, d/m)

First, we consider the following coordination transfor-
mation by which (x1, R) = (0, d/m) is transformed to
(x, µ) = (0, 0).(

x1
R

)
=

(
x
µ

)
+

(
0
d
m

)
. (A.4)

Then, we define

f(x, µ) := ϕµ+ d
m

(x)

=
x(1− x)

m+ nx

(
µ+

d

m
− d

m+ nx

)
= xF (x, µ),

(A.5)

where the function F is defined by

F (x, µ) :=
1− x
m+ nx

(
µ+

d

m
− d

m+ nx

)
. (A.6)

Then, we have

∂f(x, µ)

∂x
= F (x, µ) + x

∂F (x, µ)

∂x

=

(
− x

m+ nx
+

1− x
m+ nx

− nx(1− x)

(m+ nx)2

)
×
(
µ+

d

m
− d

m+ nx

)
+
dnx(1− x)

(m+ nx)3
.

(A.7)

It is obvious that

F (x, µ) =
f(x, µ)

x
(A.8)

when x 6= 0 and

F (0, µ) =
µ

m
=
∂f(0, µ)

∂x
(∵ (A.7)) (A.9)

when x = 0. Thus, the function f defined by (A.5)
satisfies (A.2) and (A.3).

Next, we show that f(x, µ) satisfies the conditions (T1)
– (T3). We obtain

∂f(x, µ)

∂µ
=
x(1− x)

m+ nx
, (A.10)

∂2f(x, µ)

∂x∂µ
= − x

m+ nx
+

1− x
m+ nx

− nx(1− x)

(m+ nx)2
,

(A.11)

∂2f(x, µ)

∂x2
=

(
n2x(1− x)

(m+ nx)2
− n(1− x)

m+ nx
+

nx

m+ nx
− 1

)
× 2

m+ nx

(
µ+

d

m
− d

m+ nx

)
+

2dn

(m+ nx)3

×
(
−2nx(1− x)

m+ nx
− x+ (1− x)

)
. (A.12)

Thus, f(x, µ) satisfies the conditions (T1) – (T3) because

f(0, 0) = 0, (A.13)

∂f(0, 0)

∂x
= 0, (A.14)

∂f(0, 0)

∂µ
= 0, (A.15)

∂2f(0, 0)

∂x∂µ
=

1

m
6= 0, (A.16)

∂2f(0, 0)

∂x2
=

2dn

m3
6= 0. (A.17)

A.2 Case where (x1, R) = (1, d/(m+ n))

It is noted that the dynamics of x0 is written as follows.

ẋ0 = − x0(1− x0)

m+ n(1− x0)

(
R− d

m+ n(1− x0)

)
= −ϕR(1− x0) (A.18)

because x0 and x1 satisfies (2.1). Thus, it is sufficient
to show that (A.18) undergoes a transcirtical bifurca-
tion at (x0, R) = (0, d/(m + n)). We consider the fol-
lowing coordination transformation by which (x0, R) =
(0, d/(m+ n)) is transformed to (x, µ) = (0, 0).(

x0
R

)
=

(
x
µ

)
+

(
0
d

m+n

)
. (A.19)
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Then, we define

f(x, µ) := −ϕµ+ d
m+n

(1− x)

= − x(1− x)

m+ n(1− x)

×
(
µ+

d

m+ n
− d

m+ n(1− x)

)
= xF (x, µ), (A.20)

where the function F is defined by

F (x, µ) := − 1− x
m+ n(1− x)

×
(
µ+

d

m+ n
− d

m+ n(1− x)

)
.

(A.21)

Then, we have

∂f(x, µ)

∂x
= −

(
−x+ (1− x)

m+ n(1− x)
+

nx(1− x)

(m+ n(1− x))2

)
×
(
µ+

d

m+ n
− d

m+ n(1− x)

)
+

dnx(1− x)

(m+ n(1− x))3
. (A.22)

It is obvious that

F (x, µ) =
f(x, µ)

x
(A.23)

when x 6= 0 and

F (0, µ) = − µ

m+ n
=
∂f(0, µ)

∂x
(∵ (A.22)) (A.24)

when x = 0. Thus, the function f defined by (A.20)
satisfies (A.2) and (A.3).

In the same way as Appendix A.1, we obtain the par-
tial derivatives of f(x, µ) and show that f(x, µ) defined
by (A.18) satisfies the conditions (T1) – (T3) because

f(0, 0) = 0, (A.25)

∂f(0, 0)

∂x
= 0, (A.26)

∂f(0, 0)

∂µ
= 0, (A.27)

∂2f(0, 0)

∂x∂µ
= − 1

m+ n
6= 0, (A.28)

∂2f(0, 0)

∂x2
=

2dn

(m+ n)3
6= 0. (A.29)

Therefore, (2.6) undergoes transcritical bifurcations at
(x1, R) = (0, d/m), (1, d/(m+ n)).
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