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PAPER
Simple Proof of the Lower Bound on the Average Distance from the
Fermat-Weber Center of a Convex Body

Xuehou TAN†a), Member

SUMMARY We show that for any convex bodyQ in the plane, the aver-
age distance from the Fermat-Weber center ofQ to the points inQ is at least
∆(Q)/6, where ∆(Q) denotes the diameter of Q. Our proof is simple and
straightforward, since it needs only elementary calculations. This simplifies
a previously known proof that is based on Steiner symmetrizations.
key words: computational geometry, Fermat-Weber center, average dis-
tance

1. Introduction

The Fermat-Weber problem is fundamental and important in
both convex geometry and facility location context [11]. Let
Q be a measurable set with positive area in the plane. The
Fermat-Weber center of Q is a point in the plane such that
the average distance from it to the points in Q is minimum.

Let p and q be two points in the plane, and pq the line
segment connecting p and q. Denote by ‖pq‖ the Euclidean
distance between p and q. For a point y ∈ Q, we denote by
µQ(y) the average distance between y and the points x in
Q, that is, µQ(y) =

∫
x∈Q
‖xy‖dx/area(Q), where area(Q)

is the area of Q. Let FWQ be a point for which this average
distance is minimum, namely, µQ(FWQ) = minyµQ(y).
We simply write µ∗Q = µQ(FWQ). The point FWQ is a
Fermat-Weber center of Q. Note that Q may be non-convex,
or even consists of disjoint subregions.

In this paper, we focus our attention on compact convex
bodies. It is well known that FWQ ∈ Q, if Q is convex
[1]. Denote by c∗ the infimum of µ∗Q/∆(Q) over all convex
bodies, where ∆(Q) denotes the diameter of Q. Carmi, Har-
Peled and Katz were the first to show that 1

7 ≤ c∗ ≤ 1
6 , and

they conjectured that c∗ = 1
6 , because a flat rhombus Qε can

be constructed such that µ∗Qε
tends to ∆(Qε )

6 [7]. The lower
bound on c∗ was later improved from 1

7 to
4
25 [1]. Dumitrescu

et al. have eventually proved that c∗ = 1
6 [8], which confirms

the conjecture due to Carmi, Har-Peled andKatz. Their work
is based on two Steiner symmetrizations and a proof that the
inequality c∗ ≥ 1

6 holds for a convex body with two orthog-
onal symmetry axes. The Steiner symmetrizations adopt in
[8] preserve the area and the diameter, and do not increase
the average distance from the corresponding Fermat-Weber
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centers.
The goal of this paper is to provide a simple proof

of c∗ = 1
6 . As compared with the Steiner symmetrization

method adopt in [8], the novelty of themethod used in [1], [7]
is its simplicity, because only elementary calculations (e.g.,
region partitions and recursive calculations) are needed. In
this paper, we show that the simple method given in [1], [7]
can be used to prove c∗ = 1

6 , too. To this end, we make use
of the whole body Q in the calculation of this lower bound,
instead of only a portion of Q used in [1], [7].

The classical Fermat-Weber problem asks for a point
in a set F of feasible facility locations, which minimizes
the average distance to the points in a set D of (possibly
weighted) demand locations. If D is a finite set of points
and F is the entire plane, then the solution is algebraic [4].
Two polynomial-time approximation schemes have also been
proposed [5], [6]. For a survey of the Fermat-Weber problem,
see [11].

The Fermat-Weber center of a body Q, where the set
of demand locations is continuous, is a very important point
of Q. For instance, it is the ideal location for a fire or
railroad station that serves the region Q. Although finding
the Fermat-Weber center of Q is difficult, a simple, linear-
time approximation scheme for the case where Q is a convex
polygon is known [1], [8]. The result of c∗ = 1

6 helps give a
better approximation ratio (Sect. 3).

2. Main Result

Our work is based on a refinement of the analysis of Abu-
Affash and Katz [1]. Differing from the previous work in
which only a portion of a convex body is used, our proof
makes use of the whole body. Wewill first describe amethod
to divide a convex body into subbodies. Next, we establish a
lower bound on the total distance between the Fermat-Weber
center and the points in two particular subbodies, named T
and T ′. Although both T and T ′ are non-convex, all other
subbodies used in our final analysis are convex. These ideas
help give a simple proof of c∗ = 1

6 .
Suppose that P is a convex body. Denote by FWP

a Fermat-Weber center of P. Let p and q be two points
on the boundary of P such that the length of segment pq
is ∆(P). Without loss of generality, assume that segment
pq is horizontal, and p is its left endpoint, see Fig. 1. For
ease of presentation, let P[u, v] denote the clockwise closed
boundary of P from a boundary point u to the other v.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers



854
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.5 MAY 2022

Fig. 1 The convex bodies P, R1, R′1 and R2.

2.1 The Method for Dividing a Convex Body

Let Pα denote the body obtained from P by shrinking it by
a factor α, that is, by applying the transformation f (x, y) =
(x/α, y/α) to the points (x, y) in P. We place two copies R1,
R′1 of P3/2 such that R1 and R′1 are contained in P and have a
common tangent with P at p and q, respectively. See Fig. 1.
Clearly, area(R1) = area(R′1) = 4area(P)/9.

Let R2 = R1 ∩ R′1. We place a copy R3 (resp. R′3)
of R2 such that R3 (resp. R′3) is contained in R1 (resp. R′1)
and has a common tangent with P at the point p (resp. q)
[1]. So, ∆(R2) ≥ ∆(P)/3, Fig. 2. Since P3 is completely
contained in R2, we have area(R2) ≥ area(P)/9. Then,
area(P − (R1 ∪ R′1)) = area(P) − area(R1) − area(R′1) +
area(R2) ≥ 2area(P)/9.

Let R4 = R1 − (R2 ∪ R3) and R′4 = R′1 − (R2 ∪ R′3).
Clearly, area(R4) = area(R′4). Let a and b be the topmost
and bottommost points of P, respectively. (In the case that
a or b is contained in a horizontal edge, we let a or/and b
be the median point(s) of the edge(s).) Also, let c and d be
the topmost and bottommost points of R2, respectively. See
Fig. 2(a). Let e (resp. f ) be the intersection point of P[p,a]
(resp. P[a,q]) with the horizontal line through point c, and e′

(resp. f ′) be the intersection point of P[b, p] (resp. P[q, b])
with the horizontal line through point d. See Fig. 2(a).

The point set P − (R1 ∪ R′1) may consist of two disjoint
regions; each of them is non-convex. So are the point sets
R4 and R′4. Our first idea is to construct at most two convex
subsets from P−(R1∪ R′1), R4 and R′4 such that the diameter
of the regions formed by the point subsets is at least ∆(P)/3.

Denote by R5 (resp. R6) the region formed by the points
of P − (R1 ∪ R′1), which are between e f and e′ f ′, and to the
left (resp. right) of the line through c and d. Let R′5 and R′6
be the copies of R5 and R6, inside R4 and R′4, respectively.
See Fig. 2(a).

Denote by l a point on P[e,a]. Let s and t be the topmost
points of R3 and R′3, respectively. Consider the following
two regions: One is bounded by se, P[e, l], lu and R4[u, s],
and the other is bounded by R4[u, c] and cu, where u is the
intersection point between segment cl and the boundary of
R4. The area of the former increases monotonically in the
interval P[e,a], starting from zero when l = e. And, the
area of the latter decreases monotonically in P[e,a], ending
at zero when l = a. Hence, there exists the point l on P[e,a]

Fig. 2 Illustrating the construction of various regions.

such that two considered regions are of equal area. Denote by
R7 and R′7 the obtained regions (i.e., area(R7) = area(R′7)),
see Fig. 2(b). Similarly, let r be the point on P[a, f ] such
that the regions R8 and R′8 obtained by drawing the segment
cr are of equal area. Region R8 is bounded t f , P[ f ,r], rv
and R′4[v, t], and region R′8 is bounded by R′4[c, v] and vc,
where v is the intersection point between segment cr and the
boundary of R′4. Also, the same treatment is done for the
portions of R4 and R′4 below segment pq. Denote by dl ′ and
dr ′ two introduced segments, and (R9,R′9) and (R10,R′10) two
pairs of obtained regions of equal area. See Fig. 2(b).

Denote by R11 the region bounded by P[l,r] and two
segments cl and cr , and R12 the region bounded by P[r ′, l ′]
and two segments dl ′ and dr ′. See Fig. 3. Note that if pq is
a bounding segment of Q, then one of R11 and R12 is empty.

From the above construction of different regions, the
following observation can be made.

Observation 1: Regions R11, R12 and R2 ∪ R′5 ∪ R′6 are all
convex. Moreover, ∆(R2 ∪ R′5 ∪ R′6) ≥ ∆(P)/3, area(R4) =
area((R4 − R′5 − R′7 − R′9) ∪ R5 ∪ R7 ∪ R9) and area(R′4) =
area((R′4 − R′6 − R′8 − R′10) ∪ R6 ∪ R8 ∪ R10).

Let us now give an important result, i.e., ∆(R11) ≥
∆(P)/3.

Lemma 1: Suppose that region R11 is not empty. Then,
∆(R11) ≥ ∆(P)/3.

Proof. Without loss of generality, assume that the y-
coordinate of point u is smaller than that of v. Recall that
two regions R4 and R′4 are congruent. The copy of v inside
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Fig. 3 Illustrating the regions R11, R12, T and T ′.

R4, denoted by v ′, is then on the boundary of R′7, see also
Fig. 2(b). Thus, ‖vv ′‖ = ∆(P)/3. Since both R′7 (containing
v ′) and R′8 (containing v) are contained in R11 and since R11
is convex, the lemma follows. �

Analogously, we have ∆(R12) ≥ ∆(P)/3, provided that
region R12 is not empty.

Let T = (R4 − R′5 − (R
′
7 ∪ R′9)) ∪ (R5 ∪ R7 ∪ R9), and

T ′ = (R′4 − R′6 − (R
′
8 ∪ R′10)) ∪ (R6 ∪ R8 ∪ R10). See Fig. 3.

In the subsequent section, we establish a lower bound on the
total distance between FWP and the points in T plus the
total distance between FWP and the points in T ′.

2.2 Lower Bound on the Total Distance between FWP

and All Points in T ∪ T ′

Asnoted in [1], [7], regardless of the exact location ofFWP ,
the distance between FWP and any point x in R3 plus the
distance between FWP and the corresponding point x ′ (i.e.,
the copy of x) in R′3 is larger than 2∆(P)

3 . Also, the distance
between FWP and any point x in R4 plus the distance
between FWP and the corresponding point x ′ in R′4 is
larger than ∆(P)3 . Then, we have∫

x∈R3

‖xFWP ‖ dx +
∫
x∈R′3

‖xFWP ‖ dx

≥
2∆(P)

3
area(R3)

and ∫
x∈R4

‖xFWP ‖ dx +
∫
x∈R′4

‖xFWP ‖ dx

≥
∆(P)

3
area(R4).

Analogously, the distance betweenFWP and any point
in (R4 − R′5) ∪ R5 plus the distance between FWP and its
corresponding point in (R′4 − R′6) ∪ R6 is larger than ∆(P)3 .
This is because we can establishes another one-to-one corre-
spondence between any point x ∈ R′5 (resp. R′6) and its copy
x ′ ∈ R5 (resp. R6). Since the distance between a point in R′5
(resp. R′6) and its copy in R5 (resp. R6) is ∆(P)/3, we have∫

x∈(R4−R
′
5)∪R5

‖xFWP ‖ dx

+

∫
x∈(R′4−R

′
6)∪R6

‖xFWP ‖ dx

≥
∆(P)

3
area(R4).

From our construction of regions R7, R′7, R8 and R′8, all
points of R7 (resp. R′7) are to the left (resp. right) of point
u, and all points of R8 (resp. R′8) are to the right (resp. left)
of point v. Let x be a point in R′7 (⊂ R4), and x ′ its copy
in R′4. Then, the distance between x ′ and any point in R7 is
larger than ∆(P)/3. Also, for any point y in R′8 (⊂ R′4) and
its copy y′ in R4, the distance between y′ and any point in
R8 is larger than ∆(P)/3. Moreover, the distance between a
point in R7 and a point in R8 is larger than ∆(P)/3. The same
analysis works for regions R9, R′9, R10 and R′10, too. Again,
by establishing another one-to-one correspondence between
the points in R7 (resp. R9) and those in R′7 (resp. R′9) and
between the points in R8 (resp. R10) and those in R′8 (resp.
R′10), we have∫

x∈(R4−(R
′
7∪R

′
9))∪(R7∪R9)

‖xFWP ‖ dx

+

∫
x∈(R′4−(R

′
8∪R

′
10))∪(R8∪R10)

‖xFWP ‖ dx

≥
∆(P)

3
area(R4).

From the discussion made above, the total distance be-
tween FWP and the points in T plus the total distance be-
tweenFWP and the points inT ′ is larger than ∆(P)3 area(R4).
After the one-to-one correspondence between points of R4
and points R′4 is set, six other one-to-one correspondences
between Ri and R′i , for all 5 ≤ i ≤ 10, are further established;
they assure the correctness of the inequality. More precisely,∫

x∈T

‖xFWP ‖ dx +
∫
x∈T ′
‖xFWP ‖ dx

≥
∆(P)

3
area(R4).

2.3 An Alternative Proof of c∗ = 1/6

In the following, we prove c∗ ≥ 1/6. Since µ∗Qε
tends to

∆(Qε )

6 for a flat rhombus Qε [7], we then obtain c∗ = 1/6.

Theorem 1: Let P be a convex body. Then µ∗P ≥ ∆(P)/6.

Proof. As in [1], [7], the proof proceeds in two stages.
In the first stage, since area(R4) = area(R1) − (area(R2 ∪
R3) =

4
9area(P) − 2area(R3), we can obtain the following

intermediate result (which is the same as that in [1] but the
used set P′ is different)∫

x∈P

‖xFWP ‖ dx

≥

∫
x∈R3

‖xFWP ‖ dx +
∫
x∈R′3

‖xFWP ‖ dx
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+

∫
x∈T

‖xFWP ‖ dx +
∫
x∈T ′
‖xFWP ‖ dx

≥
2∆(P)

3
area(R3) +

∆(P)
3
(
4
9

area(P) − 2area(R3))

=
4∆(P)

27
area(P).

This implies that for any convex body Q, µ∗Q ≥

4∆(Q)/27. In the second stage, we apply this intermedi-
ate result to the whole collection of all convex subsets of
P−P′, which are pairwise disjoint, to obtain the final result,
i.e., µ∗P ≥ ∆(P)/6.

From Observation 1, we can apply the intermediate re-
sult to the remaining regions R11, R12 and R2∪R′5∪R′6. Recall
that area(P)−area(R1)−area(R′1)+area(R2) ≥ 2area(P)/9,
and area(R2) ≥ area(P)/9. So, area(R11∪R12) = area(P)−
area(R1) − area(R′1) + area(R2) − area(R5) − area(R6) ≥
2area(P)/9−area(R5)−area(R6) (= 2area(P)/9−area(R′5)−
area(R′6)). From Lemma 1 and Observation 1, we then have∫

x∈R11

‖xFWP ‖ dx +
∫
x∈R12

‖xFWP ‖ dx

+

∫
x∈(R2∪R

′
5∪R

′
6)
‖xFWP ‖ dx

≥
4∆(R11)

27
area(R11) +

4∆(R12)

27
area(R12)

+
4∆(R2 ∪ R′5 ∪ R′6)

27
(area(R2 ∪ R′5 ∪ R′6))

≥
4∆(P)

81
(area(R11 ∪ R12) + area(R2 ∪ R′5 ∪ R′6))

≥
4∆(P)

81
(
2
9

area(P) + area(R2))

≥
4∆(P)
243

area(P).

Therefore,∫
x∈P

‖xFWP ‖ dx

=

∫
x∈R3

‖xFWP ‖ dx +
∫
x∈R′3

‖xFWP ‖ dx

+

∫
x∈T

‖xFWP ‖dx +
∫
x∈T ′
‖xFWP ‖ dx

+

∫
x∈R11

‖xFWP ‖ dx +
∫
x∈R12

‖xFWP ‖ dx

+

∫
x∈R2∪R

′
5∪R

′
6

‖xFWP ‖ dx

≥
4∆(P)

27
area(P) +

4∆(P)
243

area(P)

=
40∆(P)

243
area(P).

At this point we obtain that for any convex body Q,
µ∗Q ≥ 40∆(Q)/243. Then, we repeat the above calculation
using this slightly stronger result (i.e., µ∗Q ≥ 40∆(Q)/243)
for the regions R11, R12 and R2 ∪ R′5 ∪ R′6 (instead of the

previous result µ∗Q ≥ 4∆(Q)/27). This calculation will yield
a more stronger result, etc. By noticing that 4

27 ×
1
9 =

4
243 ,

the result after the kth iteration is µ∗Q ≥ ck∆(Q), where
ck = 4/27+ck−1/9 and c0 = 4/27. More precisely, we obtain
after the kth iteration that µ∗Q ≥

4
27 (1+

1
9+· · ·+

1
9k )∆(Q). This

sequence of results eventually converges to µ∗Q ≥ ∆(Q)/6.
�

3. Applications

Note first that there exists another constant c∗2 such that the
average distance between a Fermat-Weber center and the
points in Q is at most c∗2∆(Q). Abu-Affash and Katz were
the first to show that c∗2 is between 2

3
√

3
and 1

3 [1]. The
upper bound on c∗2 was later improved to 2(4 −

√
3)/13 in

[8], and further to (99 − 5
√

3)/36 (< 0.3444) in [10]. Since
the average distance between the points in a disk D and the
Fermat-Weber center (i.e., the center) of D is ∆(D)/3, one
may conjecture that c∗2 =

1
3 [7]. Proving this conjecture is an

interesting open problem.
For a convex polygon P, the center o of the smallest

disk enclosing P can be computed in linear-time [9]. Abu-
Affash and Katz [1] showed that point o approximates the
Fermat-Weber center of P, with µP (o)

µ∗P
. Combining Theorem

1 with Tan and Jiang’s result on µP(o) [10] gives us the
approximation ratio (99 − 5

√
3)/6 (< 2.07). This ratio may

be further improved to 2 if µP(o) ≤ ∆(P)/3 could be proved.
As noted in [1], [8], the result of c∗ = 1

6 can also be
applied to the problem of balancing the load among sev-
eral service-providing facilities, while keeping the total cost
low. Let D the demand region, and let p1, p2, . . . , pm be the
points representing m facilities. Aronov, Carmi and Katz
[3] have considered the following load balancing problem:
Subdivide D into m equal-area regions R1,R2, . . . ,Rm, so
that region Ri is served by facility pi , and the total cost of
the subdivision is minimized. Given a subdivision, the cost
µRi (pi) associated with facility pi is the average distance
between pi and the points in Ri , and the total cost of the
subdivision is

∑
i µRi (pi). One of the main results in [3] is

an (8 +
√

2π)-approximation algorithm, under the assump-
tion that D is a rectangle and all regions Ri are convex. The
approximation ratio was later improved to about 9.0344 [8].

The study of the load balancing problem might be re-
lated to crowdsourced package delivery that has gained great
interest from the logistics industry and academe, due to its
significant economic and environmental impact. Suppose
that the package delivery demands and drivers (moving fa-
cilities) are dynamically given in a social region. One may
oftenwant to figure out the (low) cost that represents a state of
balance between the package demand and the driver supply.
Here, a demand is usually associated with a specific location
and time. The cost may be defined to minimize time cost or
maximize the number of transshipments (e.g., [2]). How the
approximation scheme of Aronov, Carmi and Katz [3] or its
variant can be applied is of course an interesting work. We
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are working in this direction.
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