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Upper Bounds on the Error Probability for the Ensemble of Linear
Block Codes with Mismatched Decoding*
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SUMMARY  In channel decoding, a decoder with suboptimal metrics
may be used because of the uncertainty of the channel statistics or the
limitations of the decoder. In this case, the decoding metric is different
from the actual channel metric, and thus it is called mismatched decoding.
In this paper, applying the technique of the DS2 bound, we derive an upper
bound on the error probability of mismatched decoding over a regular
channel for the ensemble of linear block codes, which was defined by Hof,
Sason and Shamai. Assuming the ensemble of random linear block codes
defined by Gallager, we show that the obtained bound is not looser than the
conventional bound. We also give a numerical example for the ensemble of
LDPC codes also introduced by Gallager, which shows that our proposed
bound is tighter than the conventional bound. Furthermore, we obtain a
single letter error exponent for linear block codes.

key words: DS2 bound, ensemble of linear block codes, mismatched de-
coding, regular channel, single letter exponent

1. Introduction

In practical situations, we need to use a decoder with sub-
optimal metrics because of the uncertainty of the channel
statistics or the limitations of the decoder. In such a case, the
decoding metric is different from the actual channel metric.
Such decoding is called mismatched decoding, and several
studies have been conducted form various perspectives.

Among these studies, Shamai and Sason [2] derived
an upper bound on the error probability of the mismatched
decoding for an ensemble of linear codes. In their paper, they
considered the linear code ensemble which was generated
from uniformly interleaved turbo codes. Then, the upper
bound on the error probability was derived using the average
weight distribution and Duman and Salehi’s type 2 (DS2)
upper bounding method.

On the other hand, Hof, Sason and Shamai [3], [4]
derived upper bounds on the error probability for non-binary
linear block codes. In contrast to Shamai and Sason [2],
they considered another ensemble of linear codes and the
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regular channels introduced in [5]. In their derivation, the
DS2 bounding in [6] is also applied as a key technique.

In this paper, we derive an upper bound on the error
probability on mismatched decoding for the ensemble of
linear block codes defined in [3]. Due to the property of
this ensemble and the idea of the DS2 bounding, that is,
choosing a nonnegative function g(-), we derive the new
upper bound. For the ensemble of random linear block
codes defined by Gallager [7], we show that the optimal
function ¢(-) in the sense of minimizing the upper bound
depends on the mismatched decoding metric, but not the
actual channel, and the obtained bound is not looser than the
conventional bound [2]. With the newly derived bound, we
show a numerical example of the bound for the ensemble
of LDPC codes introduced by Gallager, indicating that the
new bound is tighter than the conventional bound. We also
derive exponential upper bounds similar to those derived by
Shulman and Feder [17].

This paper is organized as follows: in Sect. 2 we define
the regular channel and the ensemble of linear block codes
which is called the HSS ensemble. We review the conven-
tional upper bound on the error probability for linear block
codes in Sect.3. Then, the proposed upper bounds and its
numerical examples are presented in Sect.4. In Sect. 5, the
conclusions are presented.

2. Preliminaries
2.1 Regular Channel

In this paper, a class of memoryless symmetric channels,
introduced by Delsarte and Piret [5] and extended by Hof
et al. [3], is assumed. Let x € A be a channel input, and
y € B be a channel output, where A and B are assumed
to be finite**. Let P = {p(y|x) | x € A, y € B} be the
channel matrix of a discrete memoryless channel, where
p(y|x) is the transition probability from x to y. We assume
that the channel input alphabet A = {0,1,---,q — 1} forms
an Abelian group under the addition operation, and there
exists a function 7 : B X A — B satisfying the following
conditions:

1) For every x € A, the function 7(-,x) : B — B is
bijective.

**This assumption is just due to the notational simplicity. All
the results of this paper can be extended to the case of general B as
is argued in [3].
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2) For every x1,x € Aand y € B, p(y|x1) = p(t(y,x2 —
x1)| x2) holds.

We call such a discrete memoryless channel the regular chan-
nel [4]. Any memoryless binary input output symmetric
(MBIOS) channel and memoryless additive noise channel
are regular channels. We consider another regular channel
W ={w(y|x) | x € A, y € B} which indicates a mismatched
metric. Although a mismatched metric is not necessarily a
probability measure nor a regular channel, we assume that
W is a regular channel.

2.2 Weight Distribution and Ensembles of Block Codes

Complete Weight Distribution and Hamming Weight Distri-
bution

We consider a block code C consisting of M code words
whose block length is N and rate is R = ln]\],"’ (nat/symbol).
Let S¢ be the number of code words whose type is t =
(to,t1,- -+ ,tg—1) with t; > 0 for i = 0,1,---,9 — 1 and
Z;’:_OI t; = N, where t; denotes the number of code symbols
equaltoi € A. We call {S;} the complete weight distribution
of the block code C. Let as be the number of code words
whose Hamming weight is £. We call {a,} the Hamming
weight distribution of the block code C. We consider the
ensemble of block codes as below.

The Ensemble of Linear Block Codes (HSS ensemble)

In [3], Hof, Sason and Shamai considered an ensemble of
(N, k) linear block codes. For this ensemble, they assumed
the probability that a sequence is a code word depends only
on its Hamming weight. Then, since the number of se-

quences with Hamming weight £ is ( ]z ) (g -1,

Blar] = P(f)( QY )<q— 1’ (M

holds, where E[-] denotes the expected value over the en-
semble and P(¢) denotes the probability that a sequence of
Hamming weight ¢ is a codeword in a randomly selected
codebook from the ensemble. So, all sequences of a same
type are chosen as code words with an equal probability, be-
cause sequences of the same type have the same Hamming
weight. That is, if Hamming weight of a sequence of type t
is ¢,

B[S = P(f)( Y ) @

holds, where we define

NY_ N
t _to!l‘ll---tq_ll

and
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Blal= ) EISi]

t:N—-tg=C

We call this ensemble the HSS ensemble. We can give two
examples for the HSS ensemble. One is the ensemble of
random linear block codes [7], and the other is the ensemble
of regular LDPC codes by Gallager [7].

Later, we will show numerical examples for the ensem-
ble of regular LDPC codes. In order to obtain a numerical
example, we use the relationship between the average com-
plete weight distribution for the ensemble of regular LDPC
codes and P(€). It was first derived by Hof et al [4]. The
ensemble of the (c, i) regular LDPC codes by Gallager [7]
can be defined as the ensemble in which the parity check
matrix is filled with ¢ nonzero elements in each column and
h nonzero elements in each row. This ensemble is obtained
by the following operations:

1. Construct a matrix D (which is called the base matrix)
whose Hamming weight of each row is 4 and that of
column is one. Then non-zero elements are randomly
selected from g — 1 input letters other than 0.

2. Create c—1 matrices Hy, - - - , H.—1 by randomly permut-
ing the columns of D, and replacing non-zero elements
with ¢ — 1 input letters other than 0.

3. Allocate matrices Hj,--- ,H._; to the bottom of D to
make a parity check matrix

H,
H = .
Hcfl

For this code ensemble, the following lemma has been de-
rived:

Lemma 2.1 (Hof et al. [3]) We consider the g-ary (c,h)
regular LDPC ensemble of Gallager. Then, P({) is given
by

Vi ‘
P(¢) = [—l ,2< (<N,
( v )(q— D¢
where each V; satisfies
D, VX = ()T,
2<l<N
1 h ) ) h )
V=14 (ta =1+ (@@= D=1y ( l. ) X',
=2

From Lemma 2.1 and (1), the average Hamming weight dis-
tribution for the ensemble of regular LDPC codes { E[a¢] }
can be obtained. In addition, from Lemma 2.1 and (2), the
average complete weight distribution { E[S¢] } can be also
obtained.

We also use the average complete weight distribution of
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which the code words of small Hamming weight are expur-
gated as in the same manner in [4]. We review this average
complete weight distribution of the expurgated ensemble in
the following lemma:

Lemma 2.2 (Hof et al. [3]) Consider an expurgation of the
codebooks whose minimum Hamming distance is not larger
than Dy . Assume that the average complete weight distri-
bution of the non-expurgated ensemble satisfies

E[St] < en
tN-to<Dn

for some €y > 0. Letting E[S | dinin > Dn ] be the average
complete weight distribution of the expurgated ensemble
whose minimum Hamming distance is lager than Dy, it is
upper bounded by

E[St]

E[St | dmin > DN] < 1 .
— €N

3. The Conventional Upper Bound on Error Probability
for Linear Block Codes

Let a received word be denoted by y = (y1,y2,- - ,yn) €
BN, let the code word for message m be denoted by x,,, =
X1 Xm2s -+ s Xmn) € ANV, m =0,1,--- ,M — 1 and let the
likelihood of x,,, be denoted by P(y|x;,) = Hf\i 1 P(Yil Xmi).
In mismatched decoding, the decoder operates with a mis-
matched metric W(y|x,,) = Hf\il w(y;|Xmi). So the decision
region A, for x,,, can be defined as

Am ={y € BY| W(ylxm) > W(ylx:). i <m,
W(ylXn) = W(y|x;), i >m } 3)

Equation (3) represents the decoding region of maximum
likelihood decoding (MLD) with the mismatched metric.
For equi-probable messages, the MLD is equivalent to the
maximum a posteriori probability decoding which minimize
the error probability when W = P.

For a given transmitted message m, let P.(m) be the
error probability. Assuming equi-probable messages, the
average of the error probabilities is denoted by

P, = % ; P.(m).

Then the standard Gallager bound [9] on P, (m) can be writ-
ten as

Wyl
Pem) < 3" PyIxm)y Y. (W) . @
yeBN wEm ¥IXm)

120, p20.

We apply the Duman and Salehi’s type 2 bounding technique
[6] to (4). Introducing some probability mass function (pmf)
d)"l\}(y), the right hand side (RHS) of (4) can be rewritten as

365
| Wyl '
Pe(m)< ) DR WP ()™ Pylxn) Z(W)
yeBN Em ¥IXm)
= > <I>N<y>{ > ) P(yIxm)”
yeBN '#m

(W<y|xm )) g
Wy %)

L (WO ||
{y;N DI (o] }

1>0,0<p<l, (5

where the last inequality holds by invoking Jensen’s in-
equality. Hereafter, we consider a g-ary linear block
code transmitted over a regular channel with input alpha-
bet A = {0,1,---,q — 1}. We also assume that ®7(y) for
y = (y1,y2,- -+ ,yn) does not depend on message m and
expressed in a product form as

N
R (y) = [ [ ow)
i=1

with some pmf ¢(-) on B. Without loss of generality, we
can assume that the actual transmitted code word is all zero
xo = (0,0,---,0) with m = 0. Then the term inside the
brackets {-}# in (5) can be rewritten as

N
S S o' E ptwiloyr

Yy €B YN €B m#0 i=1

- w(yi|0)  w(y: | xm i)t

N
211 [ > ¢<yi>1‘np(yi|0>pw(yiw)—ﬂw(yium/i)*l
m'£0

yi€B

Z 1_[ Z¢<y>“x‘7p<y|0>$w(y|0>—*w(y|x>*l ,
t£0 €A |l yeB
©)

where S; is dependent on a code. Since we assumed a linear
code, the error probabilities for all codewords equals P,,
and P, = P.(0), which is the error probability for message
m = 0. Then, from (5) and (6), P, can be upper bounded as

< {Z St H Z ¢(y)1_%p(yl0)%~

tz0 xeA |l yeB

Ix\ P
-w(ylorﬂw(ylx)*l } . (7

Note that, for any a; > 0 indexed by t,

P
(Zat) sZatP, 0<p<l 8)

t t
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holds. Setting

a=5]] [ >, ¢<y>1‘$p<y|0>iw<y|0>*w<y|x>ﬂl

xe€A L yeB
©)

on the RHS of (7), we can derive the following upper bound:

Pe< sy [] [Z o(y)' 7 plyl0)?

t#0 xeA LlyeB
Ixp
-w(yloﬂw(ylx)”l : (10)

If we consider the MBIOS channel, (10) is rewritten as

N
Pe< Y (Sal | D ew) 7 plyl0)e

l(N -d)p
d=dmnin y €B

dp
: [Z ¢<y)1‘ﬂp(y|0)nw<y|0>-*w<y|1>*l :
yeB
' (11)

where S; is the number of code words whose Hamming
weight is d and dy, is the minimum Hamming weight of
the code. Equation (11) coincides with [2, Eqs. (37), (94)
and (95)]. To obtain tight upper bounds for (11), one must
choose good ¢(y) and parameters 4 > 0, 0 < p < 1. Shamai
and Sason [2] determine ¢(y) for given A and p as

o)
p(yl0) (1+ ¥l

o(y) = i (12)
Syen P(yl0) 1+ y(23))
where v is the solution of the equation
)P
Syen P(u10) 1+ ¥ (2L J
=1- ¥ (13)

P
Syen PI0) (1+ 7443

The existence and the uniqueness of y are proved in [2].
After that, A and p are optimized so as to minimize the RHS
of (11).

For the ensemble of binary codes, we use the average
weight distribution E[S;] instead of S;. Invoking Jensen’s
inequality E[ X*] < (E[X])?, 0 < p < 1, (11) is immediately
written as

1 1 (N-d)p
D ¢<y>1‘pp<y|0>p]

yeB

N
E[P] < ), (BISdY

d=dmin

dp
: [Z ¢(y>1‘ip(y|0>$w(y|0>-”w<y|1)*l .

yeB
(14)
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4. The Proposed Upper Bounds for Mismatched Decod-
ing

In Sect.3, Eq.(10) is derived by applying (8) to (7). As
a result, Eq. (10) is a union bound over all subcodes with a
constant Hamming weight, due to the channel symmetry and
the property of the linear codes. Unfortunately, taking union
bounds for each subcode with (8) leads to a looser bound than
(7). Nevertheless, the technique of deriving the union bound
with each subcode is standard and used in many analyzes
of the upper bound on the error probability. For example,
it was used for the convolutional code by Forney [10], [11],
and for the generalized Viterbi algorithm by Hashimoto [12].
Though it is such a standard technique for analyzing the
upper bound of error probability, we avoid using it in this
section. That is, assuming the HSS ensemble, we derive the
so-called direct bound and the Shulman-Feder type bound
without using (8).

4.1 The DS2 Bound for Specific Linear Codes
We derive the upper bound for (7) without using (8). To

begin this derivation, we set

g(y)p(yl0)
Zyes 9y )p(y’l0)

where ¢g(-) is an arbitrary non-negative function which satis-
fies

Py) =

15)

> 9wpy'1x) >0, x € A. (16)
y'eB

Then (7) is rewritten as

N(1-p) p
P, < (Z g(y)p(yIO)) (Z Sth(t)) . an

y€eB t£0

Tyt = [ [ [og(0)]™, (18)

XeA

7y = Y g)' 7 pylOw(yl0) twlyln)t.  (19)
yeB

4.2 The DS2 Bound for HSS Ensemble

In this section, we derive the DS2 bound [13] for the HSS
ensemble from (7) and discuss how to determine reasonable
g(y) via the ensemble of random linear codes.

For the HSS ensemble, we use the average complete
weight distribution E[S] instead of S¢. The first term in (17)
does not depend on a code. So, invoking Jensen’s inequality
E[X*] < (E[X])?, 0 < p < 1 to the term inside the brackets
(-)? in (17), the average error probability over the ensemble
can be expressed as

N(1-p) p
E[Per(Z g(y)p(ym)) (ZE[st]r_(,(t)) :

yeB t£0
(20)
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Assuming the HSS ensemble, we can show the following
lemma.

Lemma 4.1 (The new DS2 bound for mismatched decod-
ing) For any given g-ary input regular channel and the HSS
ensemble m there exists a g-ary (N, k) linear block code
which satisfies:

Pe S Dg(/l’p’CN,k) (21)

where 4 > 0,0 < p <1 and

L N(1-p) P
Dy(4,p, CN,k):[Z 9(y)p(y|0) l Fy(s,p.Cn k)
yeB
' (22)
Fy(A, p,Cn k)
N N-€ ¢
S0 ¥ ) oo 5 i
=1 x€A\0
(23)

Proof: By using (2), the term inside the brackets (-)°
on the RHS of (20) can be rewritten as

D B[S0 = Zp(f) >

t+0 t:N—-ty=

( ) LM, (24

where we use the assumption that the probability that each
sequence of type t is a code word is the same if the Hamming
weight of t is equal to £. Using I';(t) in (18) and o (x) in
(19), the RHS of (24) can be expressed as

Zp(f) > ( )]—[ [y ()]

t:N—tp=C X€EA
N

= ;P(@( y )[crg(O)]N ‘
Z (;1,...{)’%]) l—l [‘Ty(x)]tx

ti+ty+ oty =€ x€A\0

:g (f)( )[crg(O)]N ‘

where the multinomial theorem yields the last equality. Thus
Lemma 4.1 can be proved. O

14

Do), 29

x€A\0

From Lemma 4.1, our task is to find g(y) that minimizes the
RHS of (21). However, it seems difficult to find the optimal
g(y) for an arbitrary average complete weight distribution
described in (2). In the next section, although the ensemble
of random linear block codes [7] is a special subclass of the
HSS ensemble, we derive the optimal g(y) for the ensem-
ble of random linear block codes, whose average complete
weight distribution can be simply described.
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4.3 Optimal g(y) for the Ensemble of Random Linear
Block Codes

In this section, we derive the optimal g(y) for the ensemble
of random linear block codes [7], which is a subclass of the
HSS ensemble. It is known that the average complete weight
distribution for the ensemble of random linear block codes
is an ideal complete weight distribution which maximizes
the single letter exponent derived by Shulman and Feder
[17]. We consider the g-ary (N, k) linear block code. For the
ensemble of random linear block codes, the average complete
weight distribution satisfies P(€) = g~™V=%), which does not
depend on £. Then, the following theorem, which indicates
that the optimal ¢g*(y) depends only on decoding metric W =
{w(y|x),x € A,y € B}, can be shown.

Theorem 4.1 (The optimal g(y) for the ensemble of ran-
dom linear block codes) For the ensemble of random g-ary
(N, k) linear block codes, the optimal g*(y), which mini-
mizes the RHS of (21), is given by

P
g"(y) = w(yl0)™ (Z w<yw) : (26)

XEA

Proof: For the ensemble of random linear block codes which
is g-ary (N, k) linear code, P(£) = g~ N~k holds, which
does not depend on ¢. From the binomial theorem, (23) is
rewritten as

Fg(/lvf)’ CN,k)

N £
_ q—(N—k)Z( 1;’ ) [o-g(O)]N_f Z o) (%)
=1 x€A\0
N
_ q*(N—k) Z Og(x)l ) 27)
X€EA

Then (22) is rewritten as

g NP 1(g) 1V,

(1-p)
I(g) = [Z g(y)p(ylo)l

yeB

Dg(/Lp’ CN,k) =

P
: [Z 9(1) 7 p(yOw(yl0)* w(ywl .
y€eB XEA
(28)
By setting
a(y) = p(y|0)"'*,

b(y) =

P
g(y)ip(y|0>w<y|0>-42w<y|x>ﬂl .9

X€EA

I(g) can be expressed as
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] (1-p) lp
I(g) = [Z g(y)a(y)u—m] D g(y)b(y)pl

yeB yeB

> 3" g(y)aly)b(y)

yeB

with equality if a(y)ﬁ = b( y)%, where the last inequality
1 1

is due to Holder’s inequality [9]. Hence, a(y)™» = b(y)»
leads to the optimal g(y) = g*(y), which is denoted in (26).
m]

Substituting g*(y) noted in (26) to g(y) in (28), the following
corollary can be derived in the same manner as the proof of
[13, Theorem 3.2].

Corollary 4.1 (Upper bound for mismatched decoding
with random linear code ensemble) For the ensemble of
random (N, k) linear block codes, there exists a code which
satisfies

P, < e NIEo(Lp)-»R] (30)
1
Eo(d,p) = —1n[z (Z —p(y|x>w(y|x)-ﬂp)
yEB ‘\xeA
1 P
(Z Ew(ylx)d) l
X€EA

1>0,0<p<1. (3l

Proof: Substituting g*(y) noted in (26) to g(y) in (28), we
obtain the following inequality from (21).

P. < g0V,

0=q"-1g")
P
= > p(ylow(ylo)™ (1 D w<y|x>*) NG
yeB q X€A

Since the regular channels P and W are symmetric,

1 P
-, w(y'|x>*)
q

X€A

0= plylDwy |l

y' €eB

holds for any z € A. In view of |A| = ¢, we obtain

P
a0 =Y " pluly 1) (é > w(yw) |

zeEAy' eB XEA
(33)

Corollary 4.1 can be immediately derived by dividing both
sides of (33) by ¢ and exchanging the order of },, .4 and

Zy'EB' o

The properties of g*(y) are summarized in the following
remarks.

Remark 4.1 In the derivation of Shamai and Sason’s DS2
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bounds (11)—(13), Inequality (8) is used. On the other hand,
we avoid using (8) and use Jensen’s inequality instead. How-
ever, by choosing g*(y) specified in (26) and the special
structure of the ensemble such that P(€) = g~ V=5 the ef-
fect of Jensen’s inequality disappears, and indeed the RHS of
(30) coincides with the one in (7). Noticing that the RHS of
(7) is also the intermediate step during deriving Shamai and
Sason’s DS2 bounds, we can conclude that our upper bound
in Corollary 4.1 is not looser than those previous bounds

(11)-(13).

Remark 4.2 Itis of interest to see the function g*(y), which
maximizes the RHS of (21), depends only on the decoding
metric W, but not the actual channel P. On the other hand,
in the upper bound in Egs. (11)—(13), the optimal @ in ¢(y)
depends not only on the mismatched metric W but also on
the actual channel matrix P. By substituting the obtained
g*(y) into (21), the tightest upper bound on the decoding
error probability (21) can be calculated. The RHS of (21)
is given by the mismatched metric W, the actual channel
matrix P, and optimizing parameters A, p.

4.4 The Direct Bound for HSS Ensemble

In this section, we derive the direct bound [13] from the DS2
bound for mismatched decoding.

Though it is sub-optimal, g*(y) specified in (26) can
be applied to Lemma 4.1 with other HSS ensembles with
arbitrary P(¢) satisfying (2). For example, we can apply it
to the ensemble of LDPC codes introduced by Gallager [7].
Substituting g*(y) to g(y) in (19), a new upper bound on
the error probability can be derived. We call this bound the
direct bound for mismatched decoding.

Theorem 4.2 (The direct bound for mismatched decod-
ing) For any given g-ary input regular channel and the HSS
ensemble Cy , there exists a g-ary (N, k) linear block code
which satisfies:

P, < D*(A4,p,Cn k) (34)

where 4 > 0,0 < p <1and

L N(1-p) P
D*(a,p,cN,w:IZ f(y)l F'(4,p.Cn 0| »
€B
’ N N-¢
F'(4,p,Cn k) = qNZP(f)( ZZ ) : {Z f(y)f(y)}
=1 y€eB
t
-{Zf(y)(l—f(y))} : (35)
yeB

P
f(y) = pylO)w(y|0)™* (é D w(yw) :

X€EA
_ w(yloy!
W)= ot
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Proof: Setting g(y) = g*(y) in (23), we have

o (0) =g ). FyEy),

YyeB
Do) =g ) f)(1-£w).
xe€A\0 yeB

On the other hand, setting g(y) = g*(y) for the term inside
the parentheses [-]V('=?) in (22), we have

D g wpwlo) = > fy).

yeB yEB
Thus, Theorem 4.2 can be proved. O

In contrast to Theorem 4.2, the upper bound on the
decoding error probability with the actual channel metric
was shown by Hof et al. [3, Eq. (16)]. Under the conditions
written in the following remark, upper bound (34) obtained
in Theorem 4.2 coincides with the upper bound [3, Eq. (16)]
of Hof et al. This fact indicates that we have generalized [3,
Eq. (16)] to mismatched decoding for the HSS ensemble in
this paper.

Remark 4.3 If we set 4 = # and replace w(y|x) with

p(y|x) for the RHS of (34), this upper bound coincides with
the bound given in [3, Eq. (16)] for sufficiently small ey .

In the rest of this section, numerical examples of the
bound shown in Theorem 4.2 are given. We consider the
(6,12) LDPC code ensemble of length N = 2004. To cal-
culate the upper bounds, we find P(£) by Lemma 2.1 For
the expurgated ensemble described in Lemma 2.2, we take
Dy = 160, ey = 10713, For the actual channel, we consider
the channel with the additive white Gaussian noise (AWGN)
and using BPSK modulation (¢ = 2) in Fig. 1, which sends
the channel input of {0,1} to the channel as {1, —1} by the
binary bipolar conversion. The channel output y is subject
to the AWGN. On the other hand, we set the channel with
mismatched metric, also described in Fig. 1. The receiving
side determines that “0” is received if y > T (y € rp), deter-
mines erasure “g” if -T < y < T (y € rg), and determines
that “1” is received if y < =T (y € ry), where T > 0 denotes
threshold. Then

(Ol()) (1|1) ‘/OO 1 (y-1)2
w =w =
T V2no?

1 (y=1?

e_ 202 dy’
V2ro?

a =i = [ L5
w =w = e 20 Yy,
—co 2ro2
o* = Eg/N,, (36)

T
w(el0) = w(ell) = [T

where Es/N, is the ratio of the signal power per channel
input to noise.

Now we have prepared an example of the actual channel
metric and the mismatched metric. Then we compare the
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Fig.1  Actual channel model and channel with mismatched metric.
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Fig.2  Pg for the (6,12) LDPC code ensemble of length N = 2004 over
the AWGN channel with BPSK (¢ = 2), T = 0.3. The curve “Proposed”
depicts the RHS of (34), “HSS 2009” depicts the RHS of [3, Eq. (16)] and
“SS 2002 depicts the RHS of (14), respectively.

numerical example of the proposed upper bound denoted
in (34) with the conventional upper bound denoted in (14).
We also compare these bounds with [3, Eq.(16)] of non-
mismatched decoding, which uses the actual metric. In
Fig. 2, each bound is depicted by optimizing A and p within
A>0and0 < p < 1.

Figure 2 shows that upper bound (34) shown in Theo-
rem 4.2 is tighter than the conventional upper bound denoted
in (14). In Eg/N, = —0.50[dB], the value on the RHS of
(34) is 7.25 x 107!, while the value on the RHS of (14) is
1.32x 1078,

The capacity for mismatched decoding has not yet been
known accurately, and lower bounds on the the capacity
for various discrete channels are discussed in [14]-[16].
However, the regular channels are assumed for both the ac-
tual channel and the channel with mismatched metric in
this paper, and therefore the optimum distribution on the
input alphabet is uniform. Then the capacity can be nu-
merically calculated for the example shown in Fig. 1. In
Fig.2, we plot the value of Es/N, such that the capacity
is R = 1/2 for the actual channel and that for the chan-
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nel with mismatched metric. By numerical calculations,
these values are Eg /N, = —2.82 [dB] for actual channel and
E;/N, = —1.92 [dB] for the channel with mismatched met-
ric, respectively. It is interesting to see that these values are
close to Eg/N, at which the the decoding error occurs with
probability almost one for the ensemble of the LDPC codes.

As the value of E;/N, is increased, the values on the
RHS of (34) approaches that of (14). This fact indicates that
the optimal parameter p, which makes the bound tightest,
approaches one by increasing the value of Eg/N,. It is
because, as p approaches one in (8), the value of the RHS
becomes equal to that of the LHS.

4.5 The Shulman-Feder Type Bound for HSS Ensemble

Next, following Shulman and Feder [17], we introduce
@4(Cn ) to simplify the bound at the sacrifice of tightness

of the bound noted in Theorem 4.2, and a,(Cy ) is given
by

—_— E[S
4(Cn k) = max #
0 —(N—k)( N )

4 t

For type t whose Hamming weight equals ¢, the probability
that each sequence of type t is a code word is equi-probable
[4]. That is,

(37

E[S¢]

max
t:N—-ty=C N
(V)

Let £* be the minimum integer which satisfies

= P(0).

*\ _ _—(N-k) 2
P(7) = max P()=q a4 (Cn &)- (38)

Replacing P(¢) in (35) with P(¢*) forall 1 < € < N, we
can derive the Shulman and Feder (SF) type bound via the
binomial theorem. Thus the following theorem can be es-
tablished.

Theorem 4.3 (The SF type bound for mismatched decoding)
For the HSS ensemble Cy x, there exists an (N, k) linear
block code which satisfies

1 .
—N[E,,(/l,p) _ p(R_‘_%NJ\)) ]
e

P, < : (39)
1
Eo(L.p) = —In[z (Z —p<y|x>w<y|x>*")
YyEB ‘\xeA
1 P
-(Z 5w<y|x)”) ,
X€EA

1>20,0<p<1.

Proof:  Replacing P(¢) in (35) with P(£*) given in (38)
forall 1 < ¢ < N, (34) can be rewritten via the binomial
theorem as
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P. < g"P - Py - (6], (40)

where 6 is described in (32). Since 0 satisfies (33), Theorem
4.3 can be proved in the same manner as Corollary 4.1. O

Thus the obtained upper bound leads to a single-letter
expression of the lower bound on the error exponent. It
shows the relation between the random coding exponent of
block codes [18] and that of linear block codes.

Remark 4.4 In [18, Eq. (14)], let us suppose that both the
actual channel and the channel with mismatched metric are
regular channels, and the input assignment is equi-probable.

Setting 1 = 1 and replace R + w with R in (39),
these two bounds coincide.

5. Conclusion

Conventionally, the upper bound on the error probability
for linear codes over a regular channel with mismatched
decoding was discussed in [2]. In this paper, we derive
the new DS2 bound for the HSS ensemble. Then, for the
ensemble of random linear codes, which is a subclass of
the HSS ensemble, we minimize the new upper bound by
choosing optimal ¢g*(y). It is of interest to see that the
optimal g*(y) depends only on the mismatched metric, but
not on the actual one. On the other hand, the optimization of
g(y) for the HSS ensemble, whose average complete weight
distribution is arbitrary, remains for future work. We also
give the numerical example for the ensemble of LDPC codes
also introduced by Gallager, which shows that our proposed
bound is tighter than the conventional bound. Furthermore,
we obtain the Shulman and Feder type bound for mismatched
decoding, which enables us to obtain a single letter error
exponent for linear block codes.
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