
404
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

PAPER Special Section on Information Theory and Its Applications

An Efficient Secure Division Protocol Using Approximate Multi-Bit
Product and New Constant-Round Building Blocks∗

Keitaro HIWATASHI† ,††a), Satsuya OHATA†††, Nonmembers, and Koji NUIDA†† ,††††, Member

SUMMARY Integer division is one of the most fundamental arithmetic
operators and is ubiquitously used. However, the existing division protocols
in secure multi-party computation (MPC) are inefficient and very complex,
and this has been a barrier to applications of MPC such as secure machine
learning. We already have some secure division protocols working in
Z2n . However, these existing results have drawbacks that those protocols
needed many communication rounds and needed to use bigger integers than
in/output. In this paper, we improve a secure division protocol in two ways.
First, we construct a new protocol using only the same size integers as
in/output. Second, we build efficient constant-round building blocks used
as subprotocols in the division protocol. With these two improvements,
communication rounds of our division protocol are reduced to about 36%
(87 rounds→ 31 rounds) for 64-bit integers in comparison with the most
efficient previous one.
key words: secure multi-party computation, division protocol, client-aided
model, constant-round protocols

1. Introduction

Secure multi-party computation (MPC) is a technique that
enables a set of parties to compute a function jointly with-
out revealing their own inputs to the others. MPC has been
actively studied since Yao [2] first advocated it. There are
severalways to realizeMPC; homomorphic encryption (HE),
garbled circuit (GC), fully homomorphic encryption (FHE),
and secret sharing (SS). Among them, some recent research
(e.g., [3], [4]) showed that SS-based MPC could achieve
high-throughput and information-theoretic security. More-
over, there are also some publicly accessible implementa-
tions of SS-based MPC such as ABY [5]∗∗ and SCALE-
MAMBA∗∗∗; such libraries suggest that a real-life use of
SS-based MPC would now be within a practical scope. Ac-
cording to these advantages and recent research trends, in
this paper, we focus on SS-based MPC.

There are somemodels in SS-basedMPC, and we focus

Manuscript received February 14, 2021.
Manuscript revised June 18, 2021.
Manuscript publicized September 28, 2021.
†The author is with The University of Tokyo, Tokyo, 113-8654

Japan.
††The authors are with the National Institute of Advanced In-

dustrial Science and Technology, Tokyo, 135-0064 Japan.
†††The author is with Digital Garage, Inc., Tokyo, 150-0042

Japan.
††††The author is with Institute of Mathematics for Industry (IMI),
Kyushu University, Fukuoka-shi, 819-0395 Japan.
∗A part of this paper was presented at ACNS 2020 [1]. This

paper presents more detailed discussion about the correctness of
proposed protocols.

a) E-mail: keitaro_hiwatashi@mist.i.u-tokyo.ac.jp
DOI: 10.1587/transfun.2021TAP0004

on client-server MPC in this paper. In this model, arbitrary
number of clients split their data into shares and send them
to N(≥ 2) computation parties (CPs). Then, CPs compute
a function jointly and return outputs to the clients. Re-
cent research results on high-speed MPC (e.g., [3], [4]) have
mainly treated three-party computation. However, we focus
on two-party computation in this paper since fewer hardware
resources are better in practice.

There are mainly two types of network environments;
local-area network (LAN) and wide-area network (WAN).
In the LAN setting, since the latency is very small and the
bandwidth is very high, the local computation time affects
the total execution time. On the other hand, in the WAN set-
ting, the time for not computation but communication (i.e.,
latency and data transfer) often occupy most of the total ex-
ecution time. The computation cost of SS-based MPC is
lower than GC-based or (F)HE-based ones since it does not
use any heavy (public key) cryptographic tools in somemod-
els (see the end of this section for more details). On the other
hand, the total latency of GC-based MPC is much smaller
than the SS-based one since it requires fewer communication
rounds. When we only execute secure division protocol in
WAN environments, not SS-basedMPC but GC-based one is
suitable in most cases. However, when we securely compute
some functions in practice, we usually use not only division
but standard arithmetic operations (e.g., addition, multipli-
cation). In these situations, the only usage of GC-based
MPC takes longer execution time than SS-based one since it
is hard to efficiently compute arithmetic operations such as
addition or multiplication using (standard) GC-based MPC.
Moreover, SS-based MPC can achieve information-theoretic
security (as long as the correlated randomness is ideally
generated), which is not achievable by GC-based approach.
Therefore, we consider it is interesting to propose the tai-
lored construction of the SS-based secure division protocol.
To take advantage of SS-based and GC-basedMPC, protocol
mixing has been proposed (e.g., [5]), and this is undoubt-
edly a promising approach. However, conversions are not
free. Moreover, deriving the optimal mixing is hard in gen-
eral [6], [7]. For the above reasons, in this paper, we tackle
the problem of how we securely and efficiently compute the
arithmetic division protocol only using SS.

In this paper, we treat a secure division protocol, which
is an important process for many applications. In the (non-

∗∗https://github.com/encryptogroup/ABY
∗∗∗https://homes.esat.kuleuven.be/˜nsmart/SCALE/

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

HIWATASHI et al.: AN EFFICIENT SECURE DIVISION PROTOCOL USING APPROXIMATE MULTI-BIT PRODUCT
405

privacy-preserving) training of machine learningmodels, for
example, (1) we usually normalize the data distribution to
realize the fast and stable training; and (2) we compute soft-
max functions (in neural networks) to calculate the loss of the
training iteration. In both cases, we cannot avoid calculating
division. In other applications such as k-means clustering or
chi-squared test, we also need to compute division. Hence,
we need to execute a secure division protocol when we con-
struct privacy-preserving machine learning or other above
applications. However, secure division protocols are known
to be muchmore massive than other fundamental secure pro-
tocols like addition, multiplication, etc. Most of the previous
research results on privacy-preserving neural networks treat
not training but inferences. This is (probably) because we
need an extremely high cost for privacy-preserving train-
ing. We cannot doubt that one of the critical reasons for
this is the inefficiency of secure arithmetic division proto-
cols. Although there are some previous research results on
secure division protocols [8]–[14], all of them are not effi-
cient enough in practice. For example, in [12], we need 87
communication rounds to execute the secure division proto-
col for 64-bit integers. Moreover, we also need to expand
the size of integers to 206-bit during the computation for
controlling calculation errors correctly. If we can improve
the efficiency of secure division protocols, we can construct
privacy-preserving applications more and make them more
efficient.

1.1 Our Contribution

We propose an efficient division protocol via the following
two approaches.

1. We propose a new construction strategy for secure di-
vision protocols. In this strategy, we need not bit size
expansion in the protocol; that is, we always treat n-
bit integers in our protocol, where n is the bit length
of input/output values. This is a remarkable advantage
in the ease of implementation (i.e., we do not need to
introduce large arithmetic numbers) as well as the prac-
tice efficiency. In fact, [15] mentioned that modular
addition/multiplication become 100 times slower when
we use the libraries for arbitrary-length integers (e.g.,
GMP, NTL). We can avoid using these libraries and
keep computation fast.

2. We construct new constant-round building blocks for
secure division protocols. Existing constant-round
SS-based protocols (e.g., [16]–[18]) work over Fp .
Our proposed arithmetic overflow detection protocol
Overflow is the first constant-round protocol working
over Z2n , which is a more natural encoding of finite-
precision integers. We can execute our Overflow with
constant (in fact, only three) communication rounds.

With these two approaches, we can obtain an efficient secure
division protocol. Our protocol only requires 31 communi-
cation rounds for 64-bit integers. This is about 64% smaller
(87→ 31) than the previous result [12]. We show the theo-

retical and experimental evaluation of our protocol in Sect. 5.
The technical overview of these results are as follows:

1.1.1 Secure Division Protocol without Bit Expansion

In the same way as the previous results [8]–[10], [12], we
also start from the approach by Goldschmidt [19]. To com-
pute the integer division bN/Dc, the numerator N and the
denominator D are iteratively multiplied by common factors
in a way that the denominator converges to 1 so that the
product at the numerator can be used as an approximated
result. To implement this method, the strategy of the pre-
vious result [12] is to make the approximation as good as
possible and finally add an explicitly estimated correction
term to obtain the exact result. However, the requirement
of highly accurate approximation caused the following two
inefficiency problems; the number of iterated products has
to be large, and; for a better approximation of products of
n-bit values, intermediate values with not only n-bit but 2n-
bit or even higher accuracy have to be handled (e.g., 206-bit
values were needed for 64-bit inputs). To overcome these
issues, the key idea of this paper is the following; even if
the approximation error is not tiny and cannot be explicitly
estimated, once the correct result is guaranteed to be within
a reasonably small range, the correct result will be found by
a kind of (securely implemented) exhaustive search over this
range. Due to the unnecessity of highly accurate approxima-
tion, now the number of iterations is decreased, and a product
of n-bit values may be computed in a less accurate but more
efficient way using only n-bit values; we construct a protocol
for the approximate multiplication. Moreover, the protocol
is also extended to the multiplication of M > 2 values. Here,
as M increases, the number of iterations is reduced further,
while it becomes more difficult to estimate the range of the
error. We determine a value of M with a better trade-off
and perform the (non-trivial) error estimation, then obtain a
more efficient division protocol. See Sect. 3 for more details.

1.1.2 Constant-Round Building Blocks

We construct a constant-round secure overflow detection
protocol Overflow, which is frequently used in the secure
division protocol. We consider x ∈ Z2n and its shares
[[x]]1, [[x]]2. Overflow detects whether [[x]]1 + [[x]]2 ≥ 2n
or not. In the previous results [9], [20], we need Θ(log n)
communication rounds for executingOverflow since we have
to expand the arithmetic share to the binary and check the
carry from a right (= smaller) side. When we come to con-
sider the functionality of Overflow, however, it is enough to
consider whether the following conditions hold or not. First,
we find the leftmost carry position C. Second, we check
the condition whether the carry in C propagates to the left
edge. In this strategy, we do not need to calculate carries
for all bits from the right side. We construct some subpro-
tocols for executing this strategy in practice. Our Overflow
only need three communication rounds. For more details,
see Sect. 4. Note that, although we can construct two-round

406
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Overflow for 64-bit integers [20], the outputs of this protocol
are not arithmetic but bit-wise shares. In many cases, we
convert them to arithmetic ones for the next procedures with
an additional communication round. We do not need this
additional communication since our protocol directly out-
puts arithmetic shares. Note also that, the round-efficient
Overflow in [20] is based on several multi-fan-in AND/OR
gates, which results in larger computation andmemory costs.

1.1.3 A Note on Client-Aided Model

In this paper, we adopt the client-aidedmodel [15], [17], [20]
for client-server SS-based MPC, which is a kind of trusted
dealer setupmodel. More precisely, in this model, the clients
still do not participate in the online computation phase of the
protocol, while in the pre-computation phase, the clients
send to the servers not only their shared inputs but also
certain kinds of auxiliary information (i.e., Beaver triples)
we use in the protocol. Although the clients will have to
perform some more computations and communications, this
model has an advantage that any complicated auxiliary in-
formation required in some advanced protocols can be easily
provided (in comparison to the simple two-server case where
the servers themselves have to generate it by using some ad-
ditional cryptographic machinery), which yields significant
decreases of the communication rounds. We note that the
performance comparison (e.g., for numbers of communica-
tion rounds) in this paper is based on this model.

2. Preliminaries and Settings

In this section, we review basic notations and techniques on
which our secure division protocol is based.

2.1 Notations

x
R
∈ A means x is chosen from set A uniformly at random.

In this paper, we mainly treat n bit integers. x[i] for n-
bit integer x is the i-th least significant bit of x. That is,
x =

∑n
i=1 x[i]2i−1. Also, x[t ...1] for n-bit integer x means

x mod 2t . We use bold letter to express an array. For array
X, X[i] is the i-th element of X. We treat boolean values
True as 1 and False as 0, respectively.

2.2 Secret Sharing

A 2-out-of-2 secret sharing over Z2n consists of two al-
gorithms called Share and Reconst. Share has an input
x ∈ Z2n and computes ([[x]]1, [[x]]2), where [[x]]1

R
∈ Z2n and

[[x]]2 = x−[[x]]1 mod 2n. Reconst has an input ([[x]]1, [[x]]2)
and computes x = [[x]]1 + [[x]]2 mod 2n. [[x]]i is the share of
i-th party.

Using this secret sharing scheme, we can realize affine
operations without any communications†, andmultiplication
†Linear operations are realized by computing the linear oper-

ations locally, and adding some constant a is realized by adding a
share (a,0).

with auxiliary inputs called Beaver triplet. Beaver triplet is
a set of shares ([[a]], [[b]], [[c]]) such that a and b are random
values not known by each party and c equals ab. We use
[[·]] × [[·]] for representing this secure multiplication.

2.3 Adversary Model

In this paper, we assume semi-honest adversaries. That
is, even a corrupted party follows protocols precisely. The
simulation-based security notion in the presence of semi-
honest adversaries is defined as Definition 1 [21].

Definition 1. Let f : ({0,1}∗)2 → ({0,1}∗)2 be a prob-
abilistic 2-ary functionality and fi(®x) denotes the i-th ele-
ment of f (®x) for ®x = (x0, x1) ∈ ({0,1}∗)2 and i ∈ {0,1};
f (®x) = (f0(®x), f1(®x)). Let Π be a 2-party protocol to
compute the functionality f . The view of party Pi for
i ∈ {0,1} during an execution of Π on input ®x = (x0, x1) ∈
({0,1}∗) where |x0 | = |x1 |, denoted by ViewΠi (®x), consists
of (xi,ri,mi,1, . . . ,mi,t), where xi represents Pi’s input, ri
represents its internal random coins, and mi, j represents the
j-th message that Pi has received. The output of all parties
after the execution ofΠ on input ®x is denoted asOutputΠ(®x).
Then for each party Pi , we say that Π privately computes
f in the presence of semi-honest corrupted party Pi if there
exists a probabilistic polynomial-time algorithm S such that

{(S(i, xi, fi(®x)), f (®x))} ≡ {(ViewΠi (®x),OutputΠ(®x))}

where the symbol ≡ means that the two probability distribu-
tions are statistically indistinguishable.

Affine operations and multiplication treated in Sect. 2.2
are known to be semi-honest secure. Also, as described
in [21], Composition Theorem for the semi-honest model
holds; that is, any protocol is privately computed as long as
the protocol is privately computed assuming the ideal sub-
routines and its actual subroutines are privately computed.
For this reason, we do not discuss the security of protocols
in the rest of this paper.

2.4 Building Blocks

Here, we introduce functionalities of protocols and sum-
marize their communication rounds in [22]. MSNZB is an
acronym of Most Significant Non Zero Bit. See [22] for
more details. Note that in [22], shares of a boolean value
were bit-wise shares (that is, x = [[x]]1 ⊕ [[x]]2, where ⊕
means exclusive OR), while these are arithmetic shares in
this paper as mentioned Sect. 2.2.

• Overflow : [[y]] ← Overflow([[x]], i), where y is
the boolean value corresponding to ([[x]]1 mod 2i) +

([[x]]2 mod 2i)
?
≥ 2i . It takes 1 + dlog2 ne rounds.

• ExtractBit : [[y]] ← ExtractBit([[x]], i), where y is equal
to x[i]. It takes 1 + dlog2 ne rounds.

• RightShift : [[y]] ← RightShift([[x]], i), where y is the
i-bit right shift of x. It takes 2 + dlog2 ne rounds.

HIWATASHI et al.: AN EFFICIENT SECURE DIVISION PROTOCOL USING APPROXIMATE MULTI-BIT PRODUCT
407

• Comparison : [[z]] ← Comparison([[x]], [[y]]), where z

is the boolean value corresponding to x
?
< y. It takes

3 + dlog2 ne rounds.
• Equal_zero : [[y]] ← Equal_zero([[x]]), where y is the
boolean value corresponding to x ?

= 0. It takes dlog2 ne
rounds.

• MSNZB : ([[y1]], . . . , [[ym]]) ← MSNZB([[x1]], . . . , [[xm]])
(each xi is equal to 0 or 1), where ([[y1]], . . . , [[ym]]) sat-
isfies the equations below:

yi =

{
1 xi = 1, xj = 0 (∀ j < i)
0 otherwise.

It takes dlog2 ne rounds.

3. Construction of Division Protocol

In this section, we construct a new division protocol. Secure
division takes two shares [[N]], [[D]] as inputs and returns a
share of the quotient bN/Dc. Here, we assume D , 0.

3.1 Goldschmidt’s Method

Existing methods [8]–[10], [12] are based on Goldschmidt’s
division algorithm [21]. Goldschmidt’s division algorithm
computes a quotient by multiplying iteratively both the nu-
merator and denominator by the same factors Yi ,

N
D
=

NY0Y1 · · ·

DY0Y1 · · ·
,

so that the denominator converges to 1. In many cases, Yi is
chosen as below:

1. Y0 = 2−d , where d is the bit length of D.
2. ε = 1 − Y0D, Yi = 1 + ε2i−1 (i ≥ 1).

In this paper, we take Yi (i ≤ dlog2 ne) into consideration,
and approximate the quotient N/D by

N
D
≈ N2−d(1 + ε + · · · + εn).

Technically,Y1Y2 · · ·Ydlog2 ne is equal to 1+ε+· · ·+ε2dlog2 ne−1,
but we ignore terms after εn (note that 0 < ε ≤ 1

2). We
need to deal with decimals in this method, and we express
decimals by rounded integers obtained by multiplying the
decimals by 2n′ for a certain parameter n′. We express the
result integer by ·̂. For example, x̂ = 3 for x = 0.375 and
n′ = 3.

[12] constructed a two-party protocol computing Gold-
schmidt’s method (Protocol 1†).

Here, ReciprocalGuess is a protocol which computes
2n′−d with the same number of communication rounds as
Comparison, where d is the bit length of the input D.

†The symbol ̂̂· in step 7, step 8 and step 12 means the decimal
is multiplied by 22n′ , instead of 2n′

Protocol 1 Divide [12]
Input: [[N]], [[D]], and parameters h0 = dlog2(n + 2)e − 1, n′ = n + 2 +
dlog2(3h0)e, m = n + 2n′

Output: [[Q]], where Q = b ND c
1: [[Ŷ0]] ← ReciprocalGuess([[D]], n′)
2: [[N]] ← CastUp2n→2m ([[N]]), [[D]] ← CastUp2n→2m ([[D]])
3: [[N̂0]] ← [[N]] × [[Ŷ0]], [[D̂0]] ← [[D]] × [[Ŷ0]]
4: [[ε̂]] ← 1̂ − [[D̂0]], where 1̂ = 2n′ · 1
5: [[Ŷ1]] ← 1̂ + ε̂
6: for h = 1, . . . , h0 do

7: [[
̂̂
Nh]] ← [[�Nh−1]] × [[Ŷh]], [[

̂̂
ε2h]] ← [[

�
ε2h−1

]] × [[
�
ε2h−1

]]

8: [[N̂h]] ← RightShift([[̂̂Nh]], n
′), [[ε̂2h]] ← RightShift([[

̂̂
ε2h]], n′)

9: [[�Yh+1]] ← 1̂ + [[ε̂2h]]
10: end for
11: [[∆]] ← 2n′−n[[Ŷ0]] × [[N]], [[

��Nh0+1]] ← [[N̂h0]] × [[
�Yh0+1]]

12: [[Q]] ← RightShift([[��Nh0+1]] + [[∆]], 2n′)

CastUp2n→2m is a protocol which converts a share over Z2n

to a share over Z2m with the same number of communication
rounds as Overflow. See [12] for more details.

[12] used n′ = n+ 2+ dlog2 3(dlog2(n+ 2)e − 1)e as the
parameter for expressing decimals, and needed to deal with
larger integers whose bit length is equal to n+2n′. From now,
we construct a two-party protocol computing Goldschmidt’s
method without bit expansion mentioned above. We let n′

be equal to n††.

3.2 Approximate Multi-Bit Product – MultBit Protocol

We construct MultBit protocol which computes a product of
decimals approximately. In [12], bit expansion was needed
in calculating the product of decimals. The notable point
is that RightShift was applied after the product of decimals.
This is because the product of two decimals is multiplied
by 22n′ , instead of 2n′ . Taking into consideration the fact
that RightShift is applied after product, we can construct
an approximate protocol without bit expansion (Protocol 2).
The idea is, in the equations below, we replace x2−i with
RightShift(x):

xy2−n = x2−n
n∑
i=1

y[n − i + 1]2n−i

=

n∑
i=1

x2−iy[n − i + 1].

However, rounding error in this way becomes bigger than
in computing with bit expansion. This rounding error is
estimated in Sect. 3.5 in detail.

3.3 Multi-Fan-in MultBit Protocol

Though the protocol above has two inputs, we can extend

††As a natural consequence of not expanding bit size, n′ should
be at most n. Hence, we let n′ be equal to n so that a rounding error
is minimal.

408
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Protocol 2 MultBit
Input: [[x]], [[y]]
Output: [[z]], where z ≈ xy2−n
1: for i ∈ {1, 2, . . . , n − 1} do
2: [[xi]] ← RightShift([[x]], i)
3: end for
4: [[z]] ←

∑n
i=1[[xi]]ExtractBit([[y]], n − i + 1)

Protocol 3 M_MultBit
Input: [[x]], [[y1]], . . . , [[yM−1]]
Output: [[z]], where z ≈ x

∏M−1
i=1 (yi2

−n)

1: for i ∈ {1, 2, . . . , n − 1} do
2: [[xi]] ← RightShift([[x]], i)
3: end for
4: [[z]] ←

∑n
i=1

∑
i1+···+iM−1=i [[xi]]

∏M−1
j=1 ExtractBit([[yj]], n − i j + 1)

it for multiple (more than two) inputs. That is, we use the
deformation below:

xyz2−2n =
∑

(i, j)∈{1,...,n}2
x2−i−j y[n − i + 1]z[n − j + 1].

Although this is the case of three inputs, we can do in
the case of M inputs in the same way. Using such multi-
fan-in products, the number of iterations in Goldschmidt’s
method, hence the total communication rounds, are reduced.
However, the computation cost and the communication size
grow exponentially with respect to M . In this paper, we
use M-fan-in MultBit (M_MultBit) for M ≤ 4. The de-
tail of M_MultBit is given in Protocol 3. Also, the term∑

i1+· · ·iM−1=i

∏M−1
j=1 ExtractBit([[yj]],n−ij+1) can be regarded

as a convolution. Therefore, we can compute this term very
efficiently using Number Theoretic Transform (NTT), which
is a kind of discrete Fourier transform. Note that since NTT
is a linear transformation, we can locally compute it. (NTT
is used in other privacy-preserving protocols (e.g., [23]).)
One may think that we cannot compute NTT using shares
over Z2n naively since it is a linear transformation over Fp .
However, since our new ExtractBit can output the shares over
Fp (see Sect. 4 for more details), we can use NTT. Since
we use M_MultBit in the case of y1 = y2 = · · · = yM−1
in this paper, we express M_MultBit([[x]], [[y]], . . . , [[y]]) by
M_MultBit([[x]], [[y]]) for short.

3.4 Goldschmidt’s Method Using Multi-Fan-in MultBit

Here, we construct Goldschmidt’s method with M_MultBit.
First, we construct a protocol Power as in Protocol 4 which
approximately computes the m-th power of the input. Recall
that the output of (j + 1)_MultBit([[x]], [[y]]) is a share of an
approximate value of xy j ·2−(jn). Hence, δ̂4i−1 j+k in step 6 of
Protocol 4 is an approximate value of δ̂k δ̂ j4i−1 ·2−jn and δ̂i is an
approximate value of ε̂i2−(i−1)n for i = 1, . . . ,m inductively.
Second, using Power, we construct a protocol QGuess as
in Protocol 5 which approximately computes Goldschmidt’s
method.

Roughly speaking,QGuess protocol corresponds to the

Protocol 4 Power
Input: [[ε̂]],m
Output: ([[δ̂1]], . . . , [[δ̂m]]), where δ̂i ≈ (ε̂)i2−(i−1)n (i = 1, . . . ,m)
1: [[δ̂1]] ← [[ε̂]]
2: for i = 1, 2, . . . , dlog4 me do
3: for j = 1, 2, 3 do
4: for k = 1, 2, . . . , 4i−1 do
5: if 4i−1 j + k > m then break
6: [[δ̂4i−1 j+k]] ← (j + 1)_MultBit([[δ̂k]], [[δ̂4i−1]])

7: end for
8: end for
9: end for

Protocol 5 QGuess
Input: [[N]], [[D]]
Output: [[Q′]], where Q′ ≈ b ND c
1: [[D̂′]] ← ReciprocalGuess([[D]])
2: [[ε̂]] ← −[[D̂′]] × [[D]]
3: ([[δ̂1]], . . . , [[δ̂n]]) ← Power([[ε̂]], n)
4: [[δ̂]] ←

∑n
i=1[[δ̂i]]

5: [[N ′]] ← 2_MultBit([[N]], [[D̂′]])
6: [[Q′]] ← [[N ′]] + 2_MultBit([[δ̂]], [[N ′]])

for-loop in Protocol 1. The error in the for-loop in Protocol 1
is small enough to the error can be calculated (in step 11
in Protocol 1). On the other hand, the error in our QGuess
protocol is a little bit large. However, we give the upper
bound of the error (instead of the formula of the exact error)
and we can correct the error by the method described in
Sect. 3.6. Also, our QGuess is more round-efficient than the
for-loop in Protocol 1 in return for the large error.

As mentioned in Sect. 3.3, we let the number of inputs
M for M_MultBit be at most 4. Note that ε in step 2 of
QGuess corresponds to ε in Sect. 3.1, because �1 − Y0D =
2n − 2nY0D = 2n − D′D ≡ −D′D mod 2n.

3.5 Error Analysis

The output of QGuess is less than the exact quotient in gen-
eral because of rounding errors in M_MultBit. Here, we esti-
mate the size of error by the following lemmas and numerical
calculations. In this section, we omit the share symbol [[·]]
for short. That is, for example, z ← MultBit(x, y) means
z = [[z]]1+ [[z]]2 mod 2n such that [[z]] ← MultBit([[x]], [[y]]).

Lemma 1. If the non-zero bits of x, y in binary form are in
x[i] (lx ≤ i ≤ ux), y[j] (ly ≤ j ≤ uy), respectively†, then
for z ← M_MultBit(x, y), the equations below hold:

x(y2−n)M−1 − e ≤ z ≤ x(y2−n)M−1,

where

e =
∑

(I1 ,...,IM−1)
∈{u′y ,...,l

′
y }

M−1

x02−s − (x0 � s),

u′y = n − uy + 1, l ′y = n − ly + 1,

†This means that if x[i] , 0, then lx ≤ i ≤ ux (the same also
holds for y). The converse is not assumed.

HIWATASHI et al.: AN EFFICIENT SECURE DIVISION PROTOCOL USING APPROXIMATE MULTI-BIT PRODUCT
409

s =
M−1∑
j=1

Ij, x0 = 2ux − 2lx−1.

Here, “�” means right bit shift. Also, the non-zero bits of
z in binary form are in z[i] (lz ≤ i ≤ uz), where

lz = lx + (M − 1)ly − (M − 1)(n + 1),
uz = ux + (M − 1)uy − n(M − 1).

Proof. Since there does not exist any subtractions in
M_MultBit, underflow such as 1 − 3 = 6 mod 8 does
not occur. Therefore, it is enough to prove the claim for

z′ =
∑

i1+· · ·+iM−1≤n−1
(x � i)

M−1∏
j=1

y[n − ij + 1] calculated in Z

instead of Z2n
†.

First, we define a function f by f (x, i) = x2−i−(x � i).
Then, the following equation holds (since x � i = 0 for any
i ≥ n):

x(y2−n)M−1 − z′ =
∑

(I1 ,...,IM−1)
∈{1,...,n}M−1

f (x, i)
M−1∏
j=1

y[n − Ij + 1],

where

i =
M−1∑
j=1

Ij .

From the assumption about the positions of non-zero bits
of x, we have f (0, i) ≤ f (x, i) ≤ f (x0, i). Also, from the
assumption about the positions of non-zero bits of y, we
can restrict the indices (I1, . . . , IM−1) of the summation to
{u′y, . . . , l

′
y}

M−1. Hence, we obtain

x(y2−n)M−1 − z′ ≤
∑

(I1 ,...,IM−1)
∈{u′y ,...,l

′
y }

M−1

f (x0, i)
M−1∏
j=1

1 = e,

and

x(y2−n)M−1 − z′ ≥
∑

(I1 ,...,IM−1)
∈{u′y ,...,l

′
y }

M−1

f (0, i)
M−1∏
j=1

0 = 0.

Therefore, the inequality holds.
Then, we consider the possible positions of non-zero

bits of z′. The least significant non-zero bit of z′ has to be at
some position to which some non-zero bit of x can be right-
shifted in the expression of z′. The size of bit-shift is at most
(n+ 1− ly)(M − 1), so we can let lz be lx + (M − 1)ly − (M −
1)(n + 1). Also, z′ is smaller than 2ux+(M−1)(uy−n) from the
inequality above and x < 2ux , y < 2uy . Therefore, non-zero
bits of z′ are at most {ux + (M − 1)uy − n(M − 1)}-th bit,

†If the inequality holds for z′, then z′ ≤ x(y2−n)M−1 < x <
2n, and z = (z′ mod 2n) = z′.

and we can let uz be ux + (M − 1)uy − n(M − 1). �

Corollary 1. For ly, uy, l ′y, u′y defined in Lemma 1, if
uy − ly + 1 = m, then we have

xy2−n − m ≤ z ≤ xy2−n, where z ← MultBit(x, y).

Proof. By Lemma 1 (and the proof of Lemma 1), we obtain

xy2−n −
l′y∑

I=u′y

f (x, I) ≤ z ≤ xy2−n.

Since f (x, I) = x2−I − x � I is less than 1, we have

l′y∑
I=u′y

f (x, I) <
l′y∑

I=u′y

1 = m.

Hence, the inequality in the claim hold. �

Lemma 2. For non-negative values a, b, x, y , let x ′, y′, z, z′

be

M ∈ {2, 3, 4},
max{0, x − a} ≤ x ′ ≤ x, max{0, y − b} ≤ y′ ≤ y,

z = x(y2−n)M−1, z′ = x ′(y′2−n)M−1,

then we have

max{z − c,0} ≤ z′ ≤ z,

where

c = (M − 1)xyM−22−(M−1)nb + (y2−n)M−1a.

Proof. z′ ≤ z and 0 ≤ z′ are obvious. We prove z − c ≤ z′.
First, in the case of x − a ≥ 0, y − b ≥ 0, we can deform the
equations as below:

x ′y′M−1 ≥ (x − a)(y − b)M−1

=

xy − ay − bx + ab (M = 2)
xy2 − 2(x − a)yb + (x − a)b2 − ay2 (M = 3)
xy3 − 3(x − a)y2b
+3(x − a)yb2 − (x − a)b3 − ay3 (M = 4)

≥

xy − ay − bx (M = 2)
xy2 − 2xyb − ay2 (M = 3)
xy3 − 3xy2b − ay3 (M = 4)

= xyM−1 − c2(M−1)n.

Therefore, the given inequality holds. Here, we used a ≤
x, b ≤ y in deforming the second line to the third line. In
the case of x − a < 0 or y − b < 0, xyM−1 − c2(M−1)n is
non-positive and z′ is non-negative, so the given inequality
also holds. �

Lemma 3. Assume that D is not a power of 2 and let ε = 1−
2−dD, where d is the bit length of D. Then, for (δ̂1, . . . , δ̂n) ←

410
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Power(ε̂,n), the following inequality holds:

(ε̂)i2−(i−1)n − ai ≤ δ̂i ≤ (ε̂)i2−(i−1)n

Here, ai is defined inductively as follows:

a1 = 0,ai =
(M − 1)a4 j

2k+(M−2)4 j
+

ak
2(M−1)4 j

+ Ei,

where

i = 4j(M − 1) + k

(j = blog4 ic, 1 ≤ k ≤ 4j, M ∈ {2,3,4}),

Ei =
∑

(I1 ,...,IM−1)
∈{n−u4 j +1,...,n−l4 j +1}M−1

xk2−s − (xk � s),

s =
M−1∑
j=1

Ij, xk = 2uk − 2lk−1,

uk = n − k, lk = max{0,n − kd − k + 1}.

Proof. First, we consider the range of non-zero bits of δ̂i .
Since D is not a power of 2 and the bit length of D is equal
to d, the non-zero bits of δ̂1 = ε̂ is in δ̂1[m] (l1 ≤ m ≤ u1),
where l1 = n − d + 1, u1 = n − 1. Also, by Lemma 1, we
obtain for i = 4j(M − 1) + k,

li = lk + (M − 1)l4 j − (M − 1)(n + 1),
ui = uk + (M − 1)l4 j − n(M − 1).

By induction, we get that the range of non-zero bits of δ̂i is
in δ̂i[m] (li ≤ m ≤ ui), where li = n− id − i + 1, ui = n− i†.
Especially, we can let li = max{0,n − id − i + 1}.

Now, we prove the inequality in the claim by induction.
First, in the case of i = 1, the inequality is obvious. It is
enough to prove the inequality for i = 4j(M − 1) + k, (M =
2,3,4, k = 1,2, . . . ,4j) on the assumption that the inequality
holds for i ≤ 4j . by Lemma 1, we obtain

δ̂k(δ̂4 j 2−n)M−1 − Ei ≤ δ̂i ≤ δ̂k(δ̂4 j 2−n)M−1.

From the assumption of induction and the fact that ε̂ < 2n−1,
we get

(ε̂)k2−(k−1)n − ak ≤ δ̂k ≤ (ε̂)k2−(k−1)n,

(ε̂)4
j

2−(4
j−1)n − a4 j ≤ δ̂4 j ≤ (ε̂)4

j

2−(4
j−1)n.

Therefore, by Lemma 2, we obtain

(ε̂)i2−(i−1)n − c′ ≤ δ̂k(δ̂4 j 2−n)M−1 ≤ (ε̂)i2−(i−1)n,

where,

c′ =(M − 1)(ε̂)k2−(k−1)n{(ε̂)4
j

2−(4
j−1)n}M−22−(M−1)na4 j

+ {(ε̂)4
j

2−(4
j−1)n2−n}M−1ak .

†In fact, (n−kd−k+1)+(M−1)(n−4jd−4j+1)−(M−1)(n+1) =
n − id − i + 1 and (n − k) + (M − 1)(n − 4j) − n(M − 1) = n − i.

Here, since ε̂2−n ≤ 1
2 , we get

c′ ≤ (M − 1)2−k2n(2−4 j

2n)M−22−(M−1)na4 j + 2−4 j (M−1)ak

=
(M − 1)a4 j

2k+(M−2)4 j
+

ak
2(M−1)4 j

From these inequalities, we obtain the inequality in the claim.
�

Lemma 4. Assume that ε = 1 − 2−dD, where d is the bit
length of D. If 0 ≤ (

∑n
i=1(ε̂)

i2−(i−1)n) − δ̂ ≤ E , then we have

b
N
D
−

5
2
− 2−dE − nc ≤ Q′ ≤ b

N
D
c,

where

Q′ = N ′ +MultBit(N ′, δ̂),N ′ = MultBit(N,2n−d).

Proof. Since the number of non-zero bits of 2n−d is equal to
one (the (n − d + 1)-th least bit), we have

N2−d − 1 ≤ N ′ ≤ N2−d

by Corollary 1. Also, we have

N ′δ̂2−n − n ≤ MultBit(N ′, δ̂) ≤ N ′δ̂2−n

since the number of non-zero bits is at most n. From these
two inequalities and the assumption about δ̂, we get

Q′ ≤ N2−d + N2−d δ̂2−n ≤ N2−d + N2−d
n∑
i=1

εi

= N2−d
1 − εn+1

1 − ε
< N2−d

1
1 − ε

=
N
D
.

Also, we obtain

Q′ ≥ N2−d − 1 + N ′
n∑
i=1

εi − N ′E2−n − n

≥ N2−d − 1 + (N2−d − 1)
n∑
i=1

εi − N2−dE2−n − n

=
N
D
−

N
D
εn+1 −

1 − εn+1

1 − ε
−

N
2n

2−dE − n

≥
N
D
−

1
2
− 2 − 2−dE − n.

Hence, by applying the floor function, we have the inequality
in the claim. �

Using Lemma 3, we can compute ai recursively by a
numerical experiment. Let n be 64, E be

∑64
i=1 ai , and d

be the bit length of D. (Note that this E corresponds to
E in Lemma 4.) Then we got 2−dE < 24 for d ≥ 12 by
the experiment above. Also, for d ≤ 11 and D = 2i(i =
1, . . . ,64) , we got 2−dE < 40.5. Therefore, with Lemma 4,
Q′ ← QGuess(N,D) satisfies b ND c − 107 < Q′ ≤ b ND c. By
conducting a similar experiment for 32-bit integers (n = 32),
we obtain b ND c − 54 < Q′ ≤ b ND c.

HIWATASHI et al.: AN EFFICIENT SECURE DIVISION PROTOCOL USING APPROXIMATE MULTI-BIT PRODUCT
411

Protocol 6 ErrorCorrect
Input: [[N]], [[D]], [[Q′]], [[A]], where b ND c ∈ {Q

′,Q′ + 1, . . . ,Q′ + A−
1}

Output: [[Q]], where Q = b ND c
1: [[N ′]] ← [[N]] − [[Q′]] × [[D]]
2: [[δ]] ← Equal_zero([[Q′]])
3: for i = 1, 2, . . . , A do
4: [[bi]] ← Comparison([[N ′]], i × [[D]])
5: end for
6: ([[b′1]], . . . , [[b

′
A
]]) ← MSNZB([[b1]], . . . , [[bA]])

7: [[q]] ←
∑A

i=1(i − 1) × [[b′i]]
8: [[Q]] ← [[δ]] × ([[1]] − [[b1]]) + ([[1]] − [[δ]]) × ([[Q′]] + [[q]])

3.6 Correction of Rounding Errors – ErrorCorrect

In [12], the correctness of the protocol was guaranteed by
adding a correction term ∆ for canceling rounding errors.
However, rounding errors in the case using M_MultBit is
larger than in [12], and it seems difficult to find out the
explicit correction term. Here, we construct ErrorCorrect
protocol which computes the exact quotient known to be in
a given range.

We assume that the exact quotient is in {Q′,Q′ +
1, . . . ,Q′ + A − 1}. The idea of ErrorCorrect is that we
compute N

?
< Q′D,N

?
< (Q′ + 1)D, . . . ,N

?
< (Q′ + A − 1)D

and find out the first position of False. However, if we do it
naively, we cannot find out the precise position in the case
of b ND cD ≤ N < 2n ≤ (b ND c + 1)D†.

Here, we can avoid this problem by the following
lemma:

Lemma 5. If Q′ = 0, the exact quotient is equal to 0 or 1.

Proof. If Q′ = 0, then N ′ in step 5 of QGuess is equal to 0
and this means that the bit length of N is at most d, where d
is the bit length of D. Therefore, N is less than 2D and b ND c
is equal to 0 or 1. �

Using this lemma, we can compute the exact quotient by
comparing D,2D, . . . , (A−1)D with N−Q′D and comparing
D with N in parallel, and judging whether Q′ is equal to 0
or not. In the case of Q′ = 0, N

D = 0 or 1 by the lemma, and
this can be computed by comparing D and N . In the case of
Q′ ≥ 1, the problem described above does not occur. This is
because the problemoccurs in the case of (b ND c−Q′)D ≤ N−
Q′D < 2n ≤ (b ND c −Q′+1)D and this never holds ifQ′ ≥ 1.
More specifically, if Q′ ≥ 1 and (b ND c − Q′)D ≤ N − Q′D,
then (b ND c−Q′+1)D ≤ N−(Q′−1)D ≤ N < 2n. Therefore,
(b ND c −Q′)D ≤ N −Q′D and 2n ≤ (b ND c −Q′ + 1)D never
holds at the same time.

The resulting protocol is given in Protocol 6.

3.6.1 Correctness

In the case ofQ′ = 0, b ND c is equal to the value corresponding
†Since we treat integers as elements of Z2n , in the case above,

(b ND c + 1)D is equal to (b ND c + 1)D − 2n and less than N .

Protocol 7 Division
Input: [[N]], [[D]]
Output: [[Q]], where Q = b ND c
1: [[Q′]] ← QGuess([[N]], [[D]])
2: [[Q]] ← ErrorCorrect([[N]], [[D]], [[Q′]], A)

to 1 − (N
?
< D) from the assumption. In the other case, the

minimum index i such that N ′ < iD is equal to q + 1††.
Therefore, qD ≤ N ′ < (q + 1)D and b ND c = Q′ + q holds.
Summarizing the two cases above, b ND c = δ(1 − b1) + (1 −
δ)(Q′ + q) holds.

3.7 Summary of Division Protocol

WithQGuess andErrorCorrect, we can compute our division
protocol (Protocol 7). As discussed in Sect. 3.5, we can set
A = 54 for 32-bit integers and A = 107 for 64-bit integers.

3.8 Division for Fixed-Point Numbers

The division protocol described above can be applied to divi-
sion for fixed point numbers. Let N,D befixed point numbers
with f bit precision. That is, N = N̄ × 2− f ,D = D̄ × 2− f ,
where N̄, D̄ ∈ Z2n . In this case, the fixed point represen-
tation (with f bit precision) of Q = N

D can be expressed
as Q̄ = b N̄×2 f

D̄
c ∈ Z2n . One may think that bit expansion

is needed since N̄ × 2 f does not necessarily belong to Z2n .
However, we can avoid this problem as follows: Let d be the
bit length of D̄ and δ̂ be defined as step 4 of QGuess with
input D̄†††. Then, the following approximation is hold as in
QGuess:

Q̄ ≈ N̄ × 2 f−d + N̄ × δ̂ × 2 f−d−n

≈ N̄ × 2 f−d + N̄ ′ × δ̂ × 2 f−n,

where N̄ ′ = N̄ × 2−d . (Note that the approximation above
is equal to the output of QGuess in the case of f = 0.)
Though 2_MultBit(x, y) computes an approximate value of
xy2−n, we can easily extend it to compute an approximate
value of xy2 f−n (without bit expansion). Therefore, Q̄ can
be computed similarly to QGuess, and error analysis can be
done in the same way.

4. Constant-Round Building Blocks

In this section, we give a constant-round construction of
the protocol Overflow used in RightShift, ExtractBit, and
Comparison. Overflow receives two inputs ([[x]], t), and com-
putes a share (over Z2n) of the boolean value corresponding
to whether [[x]]1[t . . . 1] + [[x]]2[t . . . 1] ≥ 2t or not.

4.1 List of Subprotocols

Here, we introduce subprotocols used in Overflow. Each
††From the assumption that the exact quotient is in {Q′,Q′ +

1, . . . ,Q′ + A − 1}, N ′ ≥ 0 and N ′ < iD holds for some indexes i.
†††Note that δ̂ depends only D in QGuess.

412
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

subprotocol except for assump_Overflow deals with shares
over Fp , where p is an odd prime satisfying n ≤ p <

√
2n.

Note that these subprotocols can be easily implemented
without using integers larger than n-bit. The input of
assump_Overflow is a share over Fp , and the output is a
share over Z2n . To make it easier to understand, we use a
symbol [[·]]〈p〉 for a share over Fp .

• Pow : [[y]]〈p〉 ← Pow([[x]]〈p〉, k), where y is equal to
xk†.

• Equal_one : [[y]]〈p〉 ← Equal_one([[x]]〈p〉), where y
is the boolean value corresponding to x ?

= 1 on the
assumption 0 ≤ x ≤ n.

• assump_Overflow : [[y]] ← assump_Overflow([[x]]〈p〉),
where y is the boolean value corresponding to [[x]]〈p〉1 +

[[x]]〈p〉2
?
≥ p on the assumption x < p

2 .

4.2 Pow

By using ([[a]]〈p〉, [[a2]]〈p〉, . . . , [[ak]]〈p〉) as auxiliary inputs
(with random and unknown value a) instead of standard
Beaver triplet, we can securely compute Pow with one
round. First, each party computes [[x − a]]〈p〉 and then
gets x ′ = x − a by using Reconst. Second, party 1
computes x ′k +

∑k−1
i=0

(k
i

)
x ′i[[ak−i]]

〈p〉
1 and party 2 computes∑k−1

i=0
(k
i

)
x ′i[[ak−i]]

〈p〉
2 . Since

xk = (x ′ + a)k =
k∑
i=0

(
k
i

)
x ′iak−i

=

(
k
k

)
x ′k +

k−1∑
i=0

(
k
i

)
x ′i([[ak−i]]

〈p〉
1 + [[ak−i]]

〈p〉
2)

=

{
x ′k +

k−1∑
i=0

(
k
i

)
x ′i[[ak−i]]

〈p〉
1

}
+

{
k−1∑
i=0

(
k
i

)
x ′i[[ak−i]]

〈p〉
2

}
,

these values are valid shares of xk . (Note that the equation
above is over Fp .)

4.3 Equal_one

This function was constructed in [24] using Fermat’s little
theorem. That is, f (x) := 1 − xp−1 is equal to 1 at x = 0
and equal to 0 at other points. Therefore, f (x − 1) can be
regarded as the boolean value corresponding to x ?

= 1. For
computing f (x − 1), it is enough to compute (x − 1)p−1, and
this can be done with Pow with one round.

4.4 assump_Overflow

If x < p
2 , then

†Though we treat Pow only over Fp , we can construct Pow over
Z2n similarly.

[[x]]〈p〉1 + [[x]]〈p〉2 < p⇔ [[x]]〈p〉1 <
p
2
∧ [[x]]〈p〉2 <

p
2
.

The right side is the product of r1 and r2, where ri is the
boolean value corresponding to [[x]]〈p〉i

?
<

p
2 which can be

computed locally. Since the negation can be computed lo-
cally, we can compute assump_Overflow with one round.

4.5 Overflow

From now, we construct Overflow with subprotocols above.
We show some examples at the end of this section.

Here, we define the arrayXwhose length is n byX[i] =
[[x]]1[i] + [[x]]2[i] (i = 1,2, . . . ,n). For example, in the case
of n = 3, x = 5, [[x]]1 = 6, [[x]]2 = 7, X is (2,2,1)††.

In this setting, [[x]]1[t . . . 1] + [[x]]2[t . . . 1] ≥ 2t if and
only if:

There exists an element 2 in (X[t], ...,X[1]) and
the leftmost non-one element of (X[t], ...,X[1]) is
equal to 2.

This fact can be understood by considering that carrying
up to the (t + 1)-th digit occurs if and only if X[t] = 2 or
“X[t] = 1 and there is carry-up at (t − 1)-th digit”.

The important point is, since each element of X is in
{0, 1, 2} and each share of X[i] (that is, [[x]][i]) is in {0, 1},
we can regard ([[x]]1[i], [[x]]2[i]) as a share of X[i] over Fp .
Based on this fact, we can apply operations over Fp . We set
t = n for simplicity.

4.5.1 First Step

We apply a function, which maps 0, 2 to 1 and 1 to 0, to
each element of X. That is, we compute array Y as follows;
Y[i] = (X[i] − 1)2 (i = 1, . . . , t). This can be computed
with one round. In parallel, we also compute array Y′ by
applying a function which maps 2 to 1 and 0, 1 to 0 to
each element of X; Y′[i] = X[i](X[i]−1)

2 (i = 1, . . . , t). Here,
“/2” means the division by 2 over the field Fp and this can
be computed locally since this operation is equivalent to
constant multiplication.

4.5.2 Second Step

We find out whether the leftmost position (that is, the nearest
to t-th position) of 1 in Y corresponds to 2 in X or not.
First, we compute reverse cumulative sum of Y. That is, we
compute array Z as follows; Z[i] =

∑t
k=i Y[k] (i = 1, . . . , t).

This can be computed locally. Second, we compute
array Z′ by applying Equal_one to each element of Z;
Z′[i] ← Equal_one(Z[i]). Note that any element of Z is
non-negative and at most t ≤ n ≤ p. Finally, we compute
the inner product s of Z′ and Y′. It takes one round to com-
pute Z′, and takes one round to compute the inner product.

††Matching with binary expression, the rightmost component of
X corresponds to X[1].

HIWATASHI et al.: AN EFFICIENT SECURE DIVISION PROTOCOL USING APPROXIMATE MULTI-BIT PRODUCT
413

Protocol 8 Overflow
Input: [[x]], t
Output: [[s]], where s=([[x]]1[t . . . 1] + [[x]]2[t . . . 1]

?
≥ 2t)

1: [[Y[i]]]〈p〉 ← ([[X[i] − 1]]〈p〉) × ([[X[i] − 1]]〈p〉) for i = 1, . . . , t.
2: [[Y′[i]]]〈p〉 ← [[X[i]]]〈p〉×([[X[i]−1]]〈p〉)

2 for i = 1, . . . , t.
3: [[Z[i]]]〈p〉 ←

∑t
k=i [[Y[k]]]

〈p〉 for i = 1, . . . , t.
4: [[Z′[i]]]〈p〉 ← Equal_one([[Z[i]]]〈p〉) for i = 1, . . . , t.
5: [[s]]〈p〉 ←

∑t
i=1[[Z

′[i]]]〈p〉 × [[Y′[i]]]〈p〉

6: [[s]] ← CastUpp→2n ([[s]]
〈p〉)

4.5.3 Third Step

Since the output computed above is a share over Fp , we
need to transform it to a share over Z2n . We do this us-
ing CastUpp→2n which can be constructed in the similar
way to CastUp2n→2m . Also, in this case, we can replace
Overflow in CastUp [12] with assump_Overflow. That is, s
is equal to [[s]]〈p〉1 + [[s]]〈p〉2 − p × b, where b is the boolean

value corresponding to [[s]]〈p〉1 + [[s]]〈p〉2
?
≥ p, and [[b]] can

be computed by assump_Overflow. Note that we can use
assump_Overflow because s is equal to 0 or 1 and less than
p/2.

4.5.4 Summary of Overflow Protocol and Other Building
Blocks

The summary of Overflow is given in Protocol 8. Note that
array X in step 1 is defined at the beginning of Sect. 4.5.
It takes one round in step 1,2 in parallel, and one round in
step 4-6, respectively. Therefore, Overflow can be com-
puted with four rounds in total. Furthermore, by us-
ing ([[a]]〈p〉, . . . , [[ak]]〈p〉, [[b]]〈p〉, [[ba]]〈p〉, . . . , [[bak]]〈p〉) as
auxiliary inputs, we can compute step 4,5 together with one
round in the similar way to Pow. Hence, we can compute
Overflow with three rounds.

Using this Overflow, RightShift and ExtractBit can be
computed in three rounds and Comparison can be computed
in four rounds. Also, Equal_zero and MSNZB can be com-
puted in three rounds in the similar way to Overflow. We
give the detail description of these protocols in Sect. 4.6.

4.5.5 Example

We show an example ofOverflow. Each symbol corresponds
to ones in summary of Overflow. We let n = t = 8. (·)2
means the binary notation.

x = 42,
[[x]]1 = 126 = (01111110)2,
[[x]]2 = 172 = (10101100)2,
X = (1,1,2,1,2,2,1,0),
Y = (0,0,1,0,1,1,0,1), Y′ = (0,0,1,0,1,1,0,0),
Z = (0,0,1,1,2,3,3,4), Z′ = (0,0,1,1,0,0,0,0),
s = 1.

4.6 Other Building Blocks

In this section, we show the construction of RightShift,
ExtractBit, and Comparison using Overflow. (See [22] for
more detail.) Also, we give the construction of Equal_zero
and MSNZB in the similar way to Overflow.

4.6.1 RightShift, ExtractBit

Since Overflow compute the carry bit of [[x]]1 + [[x]]2,
RightShift and ExtractBit can be computed using Overflow
as following:

RightShift([[x]], t) = [[x]] � t + Overflow([[x]], t)
− 2n−t · Overflow([[x]],n),

ExtractBit([[x]], t) = [[x]][t] + Overflow([[x]], t − 1)
− 2 · Overflow([[x]], t).

Here, x � t means the t bits right shift of x (i.e., x � t =
b x2t c). The number of rounds of these protocol are the same
as that of Overflow.

4.6.2 Comparison

Comparison protocol can be computed using ExtractBit. Let
a, b, and c denote the most significant bit of x, y, and x − y.
In the case of a ⊕ b = 1, either one of x and y is less than
2n−1 and the other is greater than or equal to 2n−1. Therefore,
x

?
< y is equal to the most significant bit of y, that is, b. In

the case of a ⊕ b = 0, x
?
< y is equal to the most significant

bit of x− y, that is, c, since (x− y) mod 2n ≥ 2n−1 ⇔ x < y
when the most significant bit of x and y are the same. In
summary, the following holds:

x
?
< y = (a ⊕ b)b + (a ⊕ b ⊕ 1)c
= (a − b)2b + {1 − (a − b)2}c

= (a − b)2(b − c) + c.

Therefore, we can compute Comparison by (i) computing
[[a]], [[b]], [[c]] with ExtractBit and (ii) computing [[a − b]]2 ×
[[b − c]] + [[c]] with the extension of Pow as mentioned in
Sect. 4.5.4. It needs three rounds in (i) and one round in (ii),
and four rounds in total.

4.6.3 Equal_zero

In this section, we construct Equal_Zero protocol in a similar
way to Overflow. First, P2 computes x ′ = −[[x]]2 mod 2n.
Then, x = 0 holds if and only if [[x]]1 = x ′ holds. Let X be
an array whose length is n and X[i] = [[x]]1[i] + x ′[i]. As in
Overflow, ([[x]]1[i], x ′[i]) can be regarded as a share of X[i]
over Fp . Also, the condition [[x]]1 = x ′ holds if and only if
X[i] is equal to 0 or 2 for all i. Therefore, we can compute
Equal_Zero by computing [[Y[i]]]〈p〉 ← 1 − [[X[i] − 1]]〈p〉 ×

414
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Table 1 Execution time of Division.
pre comp [ms] online comp [ms] data trans [KB] comm round est comm time [ms]

32-bit 6.2 1.65 71.8 31 2240
64-bit 21.9 11.6 310 31 2266

Protocol 9 Equal_Zero
Input: [[x]]
Output: [[s]], where s=(x ?

= 0)
1: [[Y[i]]]〈p〉 ← 1 − ([[X[i] − 1]]〈p〉) × ([[X[i] − 1]]〈p〉) for i = 1, . . . , n.
2: [[z]]〈p〉 =

∑n
i=1[[Y[i]]]

〈p〉

3: [[s]]〈p〉 ← Equal_one([[z + 1]]〈p〉)
4: [[s]] ← CastUpp→2n ([[s]]

〈p〉)

Protocol 10 MSNZB
Input: [[x1]], . . . , [[xn]], where each xi is equal to 0 or 1.
Output: ([[y1]], . . . , [[yn]]), where yi = 1 in the case that xi = 1 and

x j = 0 for all j < i and yi = 0 otherwise.
1: [[Y[i]]]〈p〉 ← [[xi]] mod p − 2nassump_Overflow([[xi]]) for i =

1, . . . , n.
2: [[Z[i]]]〈p〉 ←

∑i
k=1[[Y[k]]]

〈p〉 for i = 1, . . . , n.
3: [[Z′[i]]]〈p〉 ← Equal_one([[Z[i]]]〈p〉) for i = 1, . . . , n.
4: [[yi]]〈p〉 ← [[Z′[i]]]〈p〉 × [[Y[i]]]〈p〉 for i = 1, . . . , n.
5: [[yi]] ← CastUpp→2n ([[yi]]

〈p〉) for i = 1, . . . , n.

[[X[i] − 1]]〈p〉 , summing up [[y]]〈p〉 =
∑n

i=1[[Y[i]]]〈p〉 , and
checking y + 1 is equal to 1 or not using Equal_one. The
detailed description of Equal_Zero is given in Protocol 9. It
needs one round in each step 1, step 2, and step 4. Therefore,
the number of rounds of Equal_Zero is three rounds in total.

4.6.4 MSNZB

In this section, we construct MSNZB protocol in a similar
way to Overflow. MSNZB protocol can be understood as
a protocol that detects which is the leftmost non-zero bit.
As mentioned at the beggining of Sect. 4.5, we compute the
leftmost not-one element of an array X and check it is equal
to 2 or not inOverflow protocol. Therefore, we can detect the
leftmost non-zero bit in a similar way. Fisrt, we convert the
the input to the share over Fp . This can be computed using
assump_Overflow. Note that the input of assump_Overflow
is a share over Fp, we can extend this to a share over Z2n with
the same construction. Then, we do the same process as in
steps 3-6 of Protocol 8. We give the detailed description of
MSNZB in Protocol 10.

It needs one round in step 1, one round in step 3-4, and
one round in step 5. Therefore, the number of rounds of
MSNZB is three in total.

4.7 Comparison with Related Works

To the best of our knowledge, our Overflow (and its exten-
sions) are the first constant-round secure protocols that work
not over Fp but over Z2n . Moreover, in comparison with
the state of the art constant-round Comparison protocol in
two-party setting [17], our Comparison protocol is better in

terms of communication rounds and data transfer. In fact,
[17] needs five rounds andO((log q)3) bit data transfer for SS
over Fq , while our protocol needs four rounds and O(n log p)
bit data transfer. Since our protocol is over Z2n , we can set
q ≈ 2n. Moreover, as described at the beginning of this sec-
tion, p ≈ n. In summary, our protocol significantly improve
data transfer (O(n3) → O(n log n)).

5. Evaluations of Efficiency

5.1 Round Complexity

In M_MultBit, we compute RightShift and ExtractBit in par-
allel, and compute a product of M numbers. Therefore,
M_MultBit takes 3 + dlog2 Me rounds†. The number of
communication rounds in Power is equal to dlog4 ne times
the number of communication rounds in 4_MultBit. Tak-
ing into consideration that step 5 in QGuess can be com-
puted in parallel with step 3, we can compute QGuess in
9 + 5dlog4 ne rounds. Also, taking into consideration that
step 2 inErrorCorrect can be computed in parallel with step 3-
6, we can computeErrorCorrect in nine rounds. Furthermore,
by not applying CastUpp→2n in the last step of Comparison
and treating the output of Comparison in step 4 and the
input of MSNZB in step 6 as shares over Fp , we can com-
pute ErrorCorrect in seven rounds. In total, we can compute
Division in 31 rounds for n = 32,64.

5.2 Data Transfer and Execution Time

We implementedDivision protocol in C++ programming lan-
guage. We use a single laptop computer (Core i7-6700
4GHz, 64GB RAM). Instead of using actual networks, we
estimate communication costs according to communication
bits and communication rounds. In the pre-computation
phase, we use fixed-key AES as a pseudorandom generator.
We assume theWAN setting and the bandwidth and network
delay are 9MB/s and 72ms, respectively††.

We use p = 37(67, resp.) in QGuess, and use
p = 59(107, resp.) in ErrorCorrect for 32-bit(64-bit, resp.)
integers. Table 1 shows pre-computation time (pre comp),
online computation time (online comp), data transfer (data
trans), communication rounds (comm round), and estimated
communication time (est comm time). The computation
time is the average time of 100 times executions. In total,
it takes 2246ms, 2357ms to execute Divide for 32-bit, 64-bit
integers, respectively.

†Note that a product of M numbers can be computed by exe-
cuting a product of two numbers dlog2 Me times.
††This setting was used in [15].

HIWATASHI et al.: AN EFFICIENT SECURE DIVISION PROTOCOL USING APPROXIMATE MULTI-BIT PRODUCT
415

5.3 Comparison with Related Works

As described in Sect. 1, we mainly focus on SS-based MPC
and two-party setting. To the best of our knowledge, [12] is
the state of the art in this setting†. In Protocol 1 [12], log-
round building blocks constructed in [22] were used. Now,
we calculate the number of rounds of Protocol 1. In step
1 of Protocol 1, it needed dlog2 ne + 3 rounds. In step 3,
step 7, and step 11, it needed 1 rounds for each step. In step
8 and step 12, it needed dlog2 me + 2 rounds for each step.
Step 2 can be computed with step 1 in parallel and does not
affect on the number of rounds. Considering the for-loop, it
needed dlog2 ne + (h0 + 1)dlog2 me + 3h0 + 7 rounds in total.
Therefore, it needed 69 rounds (87 rounds, resp.) for 32-bit
(64-bit, resp.) integer division. As for the data transfer size,
it needed 6n2(dlog2 ne + 1)+ 4n2 + 2nm bits in step1. In step
2, it needed 4n(dlog2 ne + 1) + 4m bits. In step 3, step 7,
and step 11, it needed 4m bits for each step. In step 8 and
step 12, it needed 4m(dlog2 me + 1) + 4m bits for each step.
Considering the for-loop, it needed (6n2+4n)(dlog2 ne+1)+
4n2 + 4m(dlog2 me + 1)(2h0 + 1) + (2n + 12h0 + 16)m bits.
Therefore, it needed 11.9KB (41.4KB, resp.) for 32-bit
(64-bit, resp.) integer division.

Though our protocol needsmore data transfer, the round
complexity becomes very small. In fact, in the WAN setting
as described above, [12] needs 4968ms (6264ms, resp.) for
32-bit (64-bit, resp.) division only in latency, which is about
2 times slower than our protocol.

6. Future Work

In this section, we show some future work.

1. The necessity of bit expansion is a phenomenon not
only in the division but also in logarithm, square root,
and so on. Hence, there is the possibility to make these
operations more efficient by applying MultBit protocol.

2. In this paper, we treated semi-honest security. Semi-
honest secure protocols having certain properties can
be easily extended to malicious security by using
SPDZ [25] or SPDZ2k [26]. However, it seems dif-
ficult to apply these methods to our protocols because
our new building blocks constructed in Sect. 4 need
some special operations on each shared value (such
as local bit decomposition) and complicated correlated
randomness.

Acknowledgements

This work was partly supported by JST CREST JP-
MJCR19F6, the Ministry of Internal Affairs and Com-
munications SCOPE Grant Number 182103105, JST
CREST JPMJCR14D6, and JSPS KAKENHI Grant Number
JP21J20186.
†Also, [12] constructed an exact division protocol in the semi-

honest model, which is the same setting as our protocol.

References

[1] K. Hiwatashi, S. Ohata, and K. Nuida, “An efficient secure divi-
sion protocol using approximate multi-bit product and new constant-
round building blocks,” Applied Cryptography andNetwork Security
- 18th International Conference, ACNS 2020, Lecture Notes in Com-
puter Science, vol.12146, pp.357–376, Springer, 2020.

[2] A.C. Yao, “How to generate and exchange secrets (extended ab-
stract),” 27th Annual Symposium on Foundations of Computer Sci-
ence, pp.162–167, 1986.

[3] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an hon-
est majority,” 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp.805–817, ACM, 2016.

[4] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell,
and A. Nof, “Fast large-scale honest-majority MPC for malicious
adversaries,” Advances in Cryptology - CRYPTO2018 - 38thAnnual
International Cryptology Conference, Lecture Notes in Computer
Science, vol.10993, pp.34–64, Springer, 2018.

[5] D. Demmler, T. Schneider, andM. Zohner, “ABY—A framework for
efficient mixed-protocol secure two-party computation,” 22nd An-
nual Network and Distributed System Security Symposium, NDSS
2015, 2015.

[6] M. Ishaq, A.L. Milanova, and V. Zikas, “Efficient MPC via program
analysis: A framework for efficient optimal mixing,” 2019 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2019, pp.1539–1556, ACM, 2019.

[7] F. Kerschbaum, T. Schneider, and A. Schröpfer, “Automatic protocol
selection in secure two-party computations,” Applied Cryptography
and Network Security - 12th International Conference, ACNS 2014,
LectureNotes in Computer Science, vol.8479, pp.566–584, Springer,
2014.

[8] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure com-
putation on floating point numbers,” 20th Annual Network and Dis-
tributed System Security Symposium, NDSS 2013, The Internet
Society, 2013.

[9] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson, “High-
performance secure multi-party computation for data mining ap-
plications,” Int. J. Inf. Secur., vol.11, no.6, pp.403–418, 2012.

[10] O. Catrina and A. Saxena, “Secure computation with fixed-point
numbers,” Financial Cryptography and Data Security, 14th Interna-
tional Conference, FC 2010, Lecture Notes in Computer Science,
vol.6052, pp.35–50, Springer, 2010.

[11] R. Lazzeretti and M. Barni, “Division between encrypted integers
by means of garbled circuits,” 2011 IEEE International Workshop
on Information Forensics and Security, WIFS 2011, pp.1–6, IEEE
Computer Society, 2011.

[12] H. Morita, N. Attrapadung, S. Ohata, K. Nuida, S. Yamada,
K. Shimizu, G. Hanaoka, and K. Asai, “Secure division protocol and
applications to privacy-preserving chi-squared tests,” International
Symposium on Information Theory and Its Applications, ISITA
2018, pp.530–534, IEEE, 2018.

[13] T. Veugen, “Encrypted integer division,” 2010 IEEE International
Workshop on Information Forensics and Security, WIFS 2010, pp.1–
6, IEEE, 2010.

[14] T. Veugen, “Encrypted integer division and secure comparison,” Int.
J. Appl. Cryptogr., vol.3, no.2, pp.166–180, 2014.

[15] P.Mohassel andY. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” 2017 IEEE Symposium on Security
and Privacy, S&P 2017, pp.19–38, 2017.

[16] I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft, “Un-
conditionally secure constant-rounds multi-party computation for
equality, comparison, bits and exponentiation,” Theory of Cryptogra-
phy, Third Theory of Cryptography Conference, TCC 2006, Lecture
Notes in Computer Science, vol.3876, pp.285–304, Springer, 2006.

[17] H. Morita, N. Attrapadung, T. Teruya, S. Ohata, K. Nuida, and

http://dx.doi.org/10.1007/978-3-030-57808-4_18
http://dx.doi.org/10.1007/978-3-030-57808-4_18
http://dx.doi.org/10.1007/978-3-030-57808-4_18
http://dx.doi.org/10.1007/978-3-030-57808-4_18
http://dx.doi.org/10.1007/978-3-030-57808-4_18
http://dx.doi.org/10.1109/sfcs.1986.25
http://dx.doi.org/10.1109/sfcs.1986.25
http://dx.doi.org/10.1109/sfcs.1986.25
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.1145/3319535.3339818
http://dx.doi.org/10.1145/3319535.3339818
http://dx.doi.org/10.1145/3319535.3339818
http://dx.doi.org/10.1145/3319535.3339818
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/s10207-012-0177-2
http://dx.doi.org/10.1007/s10207-012-0177-2
http://dx.doi.org/10.1007/s10207-012-0177-2
http://dx.doi.org/10.1007/978-3-642-14577-3_6
http://dx.doi.org/10.1007/978-3-642-14577-3_6
http://dx.doi.org/10.1007/978-3-642-14577-3_6
http://dx.doi.org/10.1007/978-3-642-14577-3_6
http://dx.doi.org/10.1109/wifs.2011.6123132
http://dx.doi.org/10.1109/wifs.2011.6123132
http://dx.doi.org/10.1109/wifs.2011.6123132
http://dx.doi.org/10.1109/wifs.2011.6123132
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.23919/isita.2018.8664337
http://dx.doi.org/10.1109/wifs.2010.5711448
http://dx.doi.org/10.1109/wifs.2010.5711448
http://dx.doi.org/10.1109/wifs.2010.5711448
http://dx.doi.org/10.1504/ijact.2014.062738
http://dx.doi.org/10.1504/ijact.2014.062738
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1109/sp.2017.12
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/978-3-319-98989-1_20

416
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

G. Hanaoka, “Constant-round client-aided secure comparison proto-
col,” Computer Security - 23rd European Symposium on Research
in Computer Security, ESORICS 2018, Lecture Notes in Computer
Science, vol.11099, pp.395–415, Springer, 2018.

[18] T. Nishide and K. Ohta, “Multiparty computation for interval, equal-
ity, and comparisonwithout bit-decomposition protocol,” Public Key
Cryptography - PKC2007, 10th International Conference on Practice
and Theory in Public-Key Cryptography, Lecture Notes in Computer
Science, vol.4450, pp.343–360, Springer, 2007.

[19] R.E. Goldschmidt, “Applications of division by convergence,” Ph.D.
thesis, Massachusetts Institute of Technology, 1964.

[20] S. Ohata and K. Nuida, “Communication-efficient (client-aided) se-
cure two-party protocols and its application,” Financial Cryptogra-
phy andData Security - 24th International Conference, FC2020, Lec-
ture Notes in Computer Science, vol.12059, pp.369–385, Springer,
2020.

[21] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic
Applications, Cambridge University Press, 2004.

[22] S. Siim, “A comprehensive protocol suite for secure two-party com-
putation,” Master’s Thesis, University of Tartu, 2016.

[23] M. Barni, J. Guajardo, and R. Lazzeretti, “Privacy preserving eval-
uation of signal quality with application to ECG analysis,” 2010
IEEE International Workshop on Information Forensics and Secu-
rity, WIFS 2010, pp.1–6, IEEE, 2010.

[24] M.Burkhart,M. Strasser, andX.A.Dimitropoulos, “SEPIA: Security
through private information aggregation,” CoRR, vol.abs/0903.4258,
2009.

[25] I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, Lecture Notes in Computer Science, vol.7417, pp.643–662,
Springer, 2012.

[26] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing,
“SPDZ_2k : Efficient MPC mod 2k for dishonest majority,” Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual Interna-
tional Cryptology Conference, Lecture Notes in Computer Science,
vol.10992, pp.769–798, Springer, 2018.

Keitaro Hiwatashi received the Master’s
degree at The University of Tokyo in 2021. He is
currently a Doctoral course student in Graduate
School of Information Science and Technology,
The University of Tokyo. His research interest is
mainly in cryptography and information security.

Satsuya Ohata received B.Eng. degree at
ChibaUniversity in 2011 and Ph.D. (Information
Science and Technology) degree at The Univer-
sity of Tokyo in 2016. He is currently a senior
researcher at Digital Garage, Inc. His research
interests are cryptography and information secu-
rity.

Koji Nuida received the Ph.D. degree in
Mathematical Science from The University of
Tokyo, Japan, in 2006. Currently, he is mainly
working as a professor at Institute of Mathemat-
ics for Industry (IMI), Kyushu University, Japan.
His research interest is mainly in mathematics
and mathematical cryptography.

http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-319-98989-1_20
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-030-51280-4_20
http://dx.doi.org/10.1007/978-3-030-51280-4_20
http://dx.doi.org/10.1007/978-3-030-51280-4_20
http://dx.doi.org/10.1007/978-3-030-51280-4_20
http://dx.doi.org/10.1007/978-3-030-51280-4_20
http://dx.doi.org/10.1109/wifs.2010.5711460
http://dx.doi.org/10.1109/wifs.2010.5711460
http://dx.doi.org/10.1109/wifs.2010.5711460
http://dx.doi.org/10.1109/wifs.2010.5711460
https://arxiv.org/abs/0903.4258
https://arxiv.org/abs/0903.4258
https://arxiv.org/abs/0903.4258
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-319-96881-0_26
http://dx.doi.org/10.1007/978-3-319-96881-0_26
http://dx.doi.org/10.1007/978-3-319-96881-0_26
http://dx.doi.org/10.1007/978-3-319-96881-0_26
http://dx.doi.org/10.1007/978-3-319-96881-0_26

