
372
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

PAPER Special Section on Information Theory and Its Applications

A Construction of Binary Punctured Linear Codes and
A Supporting Method for Best Code Search∗

Takuya OHARA†a), Nonmember, Makoto TAKITA††, Member, and Masakatu MORII†, Fellow

SUMMARY Reduction of redundancy and improvement of error-
correcting capability are essential research themes in the coding theory. The
best known codes constructed in various ways are recorded in a database
maintained by Markus Grassl. In this paper, we propose an algorithm to
construct the best code using punctured codes and a supporting method for
constructing the best codes. First, we define a new evaluation function to
determine deletion bits and propose an algorithm for constructing punctured
linear codes. 27 new best codes were constructed in the proposed algorithm,
and 112 new best codes were constructed by further modifying those best
codes. Secondly, we evaluate the possibility of increasing the minimum
distance based on the relationship between code length, information length,
and minimum distance. We narrowed down the target (n, k) code to try
the best code search based on the evaluation and found 28 new best codes.
We also propose a method to rapidly derive the minimum weight of the
modified cyclic codes. A cyclic code loses its cyclic structure when it is
modified, so we extend the k-sparse algorithm to use it for modified cyclic
codes as well. The extended k-sparse algorithm is used to verify our newly
constructed best code.
key words: best code, modified code, linear code, weight distribution,
minimum distance

1. Introduction

Error-correcting codes are indispensable technology to en-
sure the reliability of the information. The binary (n, k) linear
code consists of k information bits and n − k check bits. A
major study in coding theory is to construct codes that have a
high coding rate R = k/n and a large error-correcting capa-
bility. The error-correcting capability of a code C is defined
by the minimum Hamming distance between two codewords
in C. The larger the minimum distance is, the more errors
can be corrected. We refer to the code that has the largest
minimumHamming distance d found so far among the codes
of the same code length n and information length k as the
best code. Best known codes are maintained on the web by
Markus Grassl [1]. In Oct. 2020, new best codes were found,
e.g., (207,20) code, (231,21) code, and so on. However, the
minimum distance of many (n, k) codes does not reach a the-
oretical upper bound. Therefore, various methods are still
being tried to construct best codes [2]–[4].

Manuscript received February 19, 2021.
Manuscript revised June 18, 2021.
Manuscript publicized September 14, 2021.
†The authors are with the Graduate School of Engineering,

Kobe University, Kobe-shi, 657-8501 Japan.
††The author is with the School of Social Information Science,

University of Hyogo, Kobe-shi, 651-2197 Japan.
∗Thematerial in this paperwas presented in part at International

Symposium on Information Theory and its Applications 2020 [9].
a) E-mail: oohara@stu.kobe-u.ac.jp
DOI: 10.1587/transfun.2021TAP0007

One of the ways to construct the best code is the modi-
fication of codes. There are four types of modification meth-
ods: shortened codes eliminated information bits, punctured
codes eliminated check bits, lengthened codes attached ad-
ditional information bits, and extended codes attached ad-
ditional check bits. In this paper, we call the codes before
modification as original codes. And original codes are BCH
codes and shortened BCH codes. We focus on the punctured
codes and try to construct the best code. In general, delet-
ing m check bits reduces the minimum distance by m, but
it is possible to reduce the minimum distance to less than
m by carefully selecting deletion bits. Because the number
of combinations to choose m deletion bits from the n − k
check bits is enormous, it is necessary to reduce the amount
of search. Zwanzger [7] defines an evaluation function to
construct extended codes. We try to define the function to
decide the check bits to delete with reference to Zwanzger’s
function.

Zwanzger’s function requires the entire weight distri-
bution, but it is not easy to find the distribution with a large
information length. Therefore, we define a new evaluation
function by using the local weight distribution [6] and pro-
pose a search algorithm to construct the best codes. 27 new
best codes were constructed in the proposed algorithm, and
112 new best codes were constructed by the shortened code
and extended code of those best codes.

Next, we propose a supporting method for constructing
the best codes. The above 139 new best codes were con-
structed by determining the original code and the number of
bits to be modified based on our experiences. We analyze
the relationship among code length, information length, and
minimum distance and propose an evaluation method nar-
rowing down the target (n, k) code to try to construct the best
code without necessary of any experiences. Based on the
evaluation method, 28 new best codes were constructed by
the proposed search algorithm.

We also propose a method to rapidly derive the mini-
mum weights of modified cyclic codes. In general, a cyclic
code loses its cyclic structure when it is modified. Therefore,
we extend the k-sparse algorithm [6] for rapidly deriving the
local weight distribution of a cyclic code and propose an
algorithm that can rapidly derive the minimum weight of a
modified cyclic code. We show algorithms for punctured
and shortened codes of cyclic codes. The algorithm for
punctured codes is used to verify our newly constructed best
code, and the algorithm for shortened codes is used when
shortened BCH codes are used as the original codes.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

OHARA et al.: A CONSTRUCTION OF BINARY PUNCTURED LINEAR CODES AND A SUPPORTING METHOD FOR BEST CODE SEARCH
373

Fig. 1 (231, 21) code registered in the best known code database [1].

The remainder of the paper is organized as follows.
Section 2 describes the best codes. Section 3 reviews the k-
sparse algorithm. Section 4 presents the extended k-sparse
algorithm for punctured and shortened codes. Section 5 pro-
poses an algorithm for constructing best codes using punc-
tured codes and a supporting method for best code search.
Also, it shows our newly constructed best codes.

2. Best Code

The error-correcting capability of a code C is defined by
the minimum value of the Hamming distance between two
codewords in C, i.e., the minimum Hamming distance. Best
code is the code that has the largest minimum distance d
found so far among the codes of the same code length n
and the information length k. Markus Grassl maintains the
best known code in an online database [1]. The database
contains the upper bound of minimum distance, the lower
bound of minimum distance, the construction method, and
the construction date of each (n, k) linear code. Denote (n, k)
codes with minimum distance d as (n, k, d) codes. The upper
bound is a theoretically given value, and the lower bound is
the minimum distance of the constructed code. An example
of the best known code recorded in the database is shown
in Fig. 1. There are codes in the database that the mini-
mum distance does not reach the upper bound. Therefore,
some studies have been carried out to increase the minimum
distance [2]–[4]. The best code construction method using
modified codes [7] is one of them.

3. k-Sparse Algorithm

It is necessary to derive the minimumweight and the number
of codewords of minimum weight when verifying whether
the best code has been constructed, where the weight is
the number of non-zero bits in a codeword. In general,
it is necessary to generate all codewords and count their
weights in order to derive the number of codewords Aw with
weight w for a (n, k) linear code. However, its computational
complexity is O(n · 2k), making it difficult to derive for large
codes. The k-sparse algorithm [6] has been proposed by Li,
Mohri, and Morii as an efficient way to derive weights for
cyclic codes by using their cyclic structure.

In this paper, we give explanations using systematic
cyclic codes whose k × n generator matrix is represented by
G = [IkP], where Ik is a k × k identity matrix and P is the
k × (n − k) matrix of parity check symbols. Let a codeword

of (n, k) cyclic codes C be c = (c0, c1, . . . , cn−1) and a gen-
erator matrix of (n, k) cyclic codes C be Gn,k . We introduce
the theorems and definitions used in k-sparse algorithm as
follows. We explain them with examples using the (7,4,3)
cyclic codewhose generator polynomial is 1101(= 1+x+x3)

and the systematic generator matrix G7,4 =

1000110
0100011
0010111
0001101

 .
Definition 1: [5] The set of codewords cs = (cs, c(s+1) mod n,
. . . , c(s−1) mod n) (0 ≤ s ≤ p − 1) obtained by cyclic shifting
a codeword c of length n and weight w is called the w-class
generated by c where p is the least cycle such that c0 = cp .

For example, if a codeword c0 is (0,0,0,1,1,0,1),
c1 = (0,0,1,1,0,1,0), c2 = (0,1,1,0,1,0,0), . . . , c7 =
(0,0,0,1,1,0,1) = c0. Therefore, p = 7. In cyclic codes, a
codeword of weight w always generates a w-class, so if we
can generate at most one representative codeword from all
the w-class, we can derive Aw without verifying all the code-
words. At this time, the codeword that has the possibility of
becoming the representative codeword is called the candidate
codeword. The more the number of candidate codewords is
reduced, the smaller the computational complexity becomes.

Definition 2: [5] Let c(i | |o) denote the subvector(cj, j ∈
(i | |o)) of a vector c, while (i | |o) is an ordered set of o integers
{i, (i + 1) mod n, . . . , (i + o − 1) mod n}, (1 ≤ o ≤ n).

For example, c(4| |1) = (c4), c(4| |2) = (c4, c5), and
c(4| |3) = (c4, c5, c6).

Theorem 1: [5] Any w-class contains at least one vector cs
with

fi + 1 ≥ diλe,1 ≤ i ≤ w, (1)

where fi denote the position of the i-th symbol “1” in vector
cs and λ = n/w.

For example, any 3-class of G7,4 contains a vector with
f1 ≥ 2, f2 ≥ 4, and f3 ≥ 6.

Definition 3: [5], [6] If a vector u of length l (1 ≤ l ≤ n)
satisfies Wh(u) ≤ bl/λc where Wh(u) is the weight of u
and fi + 1 ≥ diλe,1 ≤ i ≤ w, then u is called l-sparse.
Particularly, for l = k, the vector u is called k-sparse and for
l = n, the vector u is called n-sparse.

For example, in case of 3-class of G7,4, information
sequences of k-sparse are (0,0,1,0) and (0,0,0,1) because
they satisfies f1 ≥ 2. From Definition 3, it can be seen that a
subvector c(0| |k) of a codeword c that is n-sparse is always
k-sparse. Here c(0| |k) denotes the information sequence if
the cyclic code is a systematic code. For i = w, the position
fw of w-th symbol “1” in c satisfies

fw + 1 ≥ dwλe = w · (n/w) = n (0 ≤ fw ≤ n − 1). (2)

That is fw = n − 1, and Theorem 2 holds.

Theorem 2: [6] When the codeword c = (c0, c1, . . . , cn−1)

374
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Algorithm 1 k-sparse algorithm [6]
Input: w, G of a systematic cyclic code
Output: Aw

i ← 1, h[1 . . . n][1 . . . n] ← 0
while (i ≤ bk/λc) do

while Next_k-sparse(i) do
c = Generate(G, w)
if Check_condition(c, w) then

Derive p and q of the w-class generated by c
h[p][q] ← h[p][q] + 1

end if
end while
i ← i + 1

end while
Derive Aw =

∑n
p=1 p

∑n
q=1 h[p][q]/q

return Aw

of weight w is n-sparse,

cn−1 = 1. (3)

Based on Theorem 2, we can determine whether c is
n-sparse by simply checking the cn−1 symbol. If the proba-
bilities of “0” and “1” appearing in cn−1 are approximately
equal, the number of candidate codewords will be about
one-half.

Theorem 3: [6] Let the i-th (0 ≤ i ≤ k − 1) row vector of
the generator matrixG be gi . In particular, let gi with an odd
weight be g∗i , and let the codeword generated by combining
any g∗i s be c

∗. At this time, Wh(c
∗) is odd if combining odd

g∗i s and even if combining even g∗i s.

The codewords of a binary linear code are generated
by multiplying the information sequence by the generator
matrix. This means the XOR operation of row vector gi
of the generator matrix corresponding to the position of the
symbol “1” in the information sequence. In other words, the
parity (even or odd) of generated codeword is determined by
the parity of the gi . w and w + 1 often have the same value
of bk/λc. Based on Theorem 3, it is possible to separate
these codewords. If k-sparse generates an equal number of
odd and even weighted codewords, the number of candidate
codewords will be about one-half.

For example, based on Theorem 3, we only encode
(0,0,0,1) of k-sparse by G7,4 when we generate a codeword
of 3-class because Wh(g2) is even.

Theorem 4: [6] The w-class of a codeword generated from
k-sparse with weight i (i ≤ bk/λc) contains at least one
codeword c satisfying

Wh(c(k | |o)) ≤ b(k + o)/λc − i (4)

for all o (1 ≤ o ≤ n − k).

For example, the codeword c = (0,0,0,1,1,0,1) gen-
erated by multiplying (0,0,0,1) of k-sparse by G7,4 satisfies
Eq. (4) because Wh(c(4| |1)) = 1 ≤ 1, Wh(c(4| |2)) = 1 ≤ 1,
and Wh(c(4| |3)) = 2 ≤ 2. Some of the codewords gen-
erated from k-sparse do not satisfy n-sparse. By checking
Eq. (4), we can early stop computing the codewords that are

not n-sparse.
Algorithm 1 shows k-sparse algorithm. w is the weight

for which we want to obtain the number of codewords in a
cyclic code C, and Aw is the number of codewords of weight
w. We define a functionNext_k-sparse(i) as checking if there
are other k-sparse of weight i and returning True if there are
or False if there are not. We define a function Generate(G,
w) to generate only codeword c whose weight of even or odd
matches w from k-sparse based on Theorem 3. We define
a function Check_condition(c, w) as checking whether c
satisfies the following three equations: Eq. (3), Wh(c) = w,
and Eq. (4). It returns True if all of them are satisfied or False
if any of them are not satisfied. h[p][q] has the number of
n-sparse where p is the least cycle and q is the number of
n-sparse that satisfy Eq. (1) in every cs (0 ≤ s < p).

For example, when we derive A3 of G7,4, the codeword
c = (0,0,0,1,1,0,1) is only n-sparse generated by k-sparse.
By cyclic shifting c and checking Eq. (1) for cs , i,e, f1 ≥ 2,
f2 ≥ 4, and f3 ≥ 6, we get p = 7 and q = 1. Therefore,
A3 = 7 · 1/1 = 7.

4. Extended k-Sparse Algorithm

Cyclic codes are relatively easy to implement for coding and
decoding and have a large minimum distance and excellent
error-correcting capability. Therefore, we can expect to con-
struct new best codes by making some modifications to the
cyclic codes. However, if even a small modification is made
to the generator matrix, the cyclic structure of the cyclic code
is lost. Therefore, the k-sparse algorithm cannot be used to
derive the weight distribution of the modified code, and it is
common to use the exhaustive search method to generate all
the codewords and verify the weights. In this section, we ex-
tend the k-sparse algorithm and propose an efficient method
to derive the number of codewords of minimum weight for
modified cyclic codes. We consider the properties of mini-
mum weights for punctured codes and shortened codes and
show the proposed derivation method. Let the number of
bits to be modified be m.

4.1 AMethod for Deriving the Number of Codewords with
Minimum Weight for Punctured Cyclic Codes

We consider the properties of (n − m, k, d ′) punctured code
CP , which is a modification of (n, k, d) cyclic code C. The
punctured code CP is constructed by deleting m bits from
the check bits of the generator matrix, which is equivalent
to deleting the corresponding m bits from all the codewords
of the original code. Therefore, the weight distribution of
the punctured code can also be derived by examining the
weights of the codewords after deleting the m bits. The
original codeword is c, and the codeword after deleting m
bits from the check symbol of c is c′. In this case,

Wh(c
′) ≥ Wh(c) − m (5)

is established between c and c′. From Eq. (5), to derive
Awmin of a punctured code, we can generate codewords whose

OHARA et al.: A CONSTRUCTION OF BINARY PUNCTURED LINEAR CODES AND A SUPPORTING METHOD FOR BEST CODE SEARCH
375

Algorithm 2 Extended k-sparse algorithm for punctured
codes
Input: w = d, wmin = ∞, G of a systematic cyclic code, m, Position of the
m check bits to be punctured

Output: Awmin
h[1 . . . n][1 . . . n][1 . . . n] ← 0
while (w ≤ wmin +m) do
λ = n/w
i ← 1
while (i ≤ bk/λc) do

while Next_k-sparse(i) do
c = Generate(G, w)
if Check_condition(c, w) then
w′ = Puncturing(cs)
if (w′ < wmin) then
wmin ← w′

end if
Derive p′ and q of the w-class generated by c
h[p′][q][wmin] ← h[p′][q][wmin] + 1

end if
end while
i ← i + 1

end while
w ← w + 1

end while
Derive Awmin =

∑n
p′=1 p

′
∑n

q=1 h[p
′][q][wmin]/q

return Awmin

weights are from d to wmin+m ofC and verify the weights by
deletingm check symbolswhere d and wmin are theminimum
distance of C and CP , respectively.

Algorithm 2 shows how to derive the number of the
minimum weight codewords for a punctured code using the
k-sparse algorithm. We define a function Puncturing(cs)
to generate cs (0 ≤ s < p) from c and calculate w ′, the
weight of the codeword after deleting m check symbols of
cs . h[p′][q][wmin] has the number of n-sparse where p′ is the
number of vectors in cs (0 ≤ s < p) whose weight become
wmin after deleting the m check bits.

We show an example of puncturing the position 6 of
G7,4 and derive A2 of the (6,4,2) punctured code. When
codewords c0 = (0,0,0,1,1,0,1), c1 = (0,0,1,1,0,1,0), . . . ,
c6 = (1,0,0,0,1,1,0) are punctured position 6, the code-
words whose weight becomes 2 are c ′0 = (0,0,0,1,1,0),
c ′4 = (1,0,1,0,0,0), and c ′5 = (0,1,0,0,0,1). Therefore,
p′ = 3. Then, A2 = 3 · 1/1 = 3.

When this algorithm is used for best code verification,
the minimum distance d ′ of the best code is already known,
so the input should be wmin = d ′ instead.

4.2 AMethod for Deriving the Number of Codewords with
Minimum Weight for Shortened Cyclic Codes

We consider the properties of (n−m, k−m, d) shortened code
CS , which is a modification of (n, k, d) cyclic code C. Differ-
ent from punctured codes, shortened codes are constructed
by deleting information bits, so the number of codewords
decreases but the weight of codewords does not change.

Algorithm 3 shows how to derive the number of the
minimum weight codewords for a shortened code using the

Algorithm 3 Extended k-sparse algorithm for shortened
codes
Input: w, G of a systematic cyclic code, Position of m information bits to

be shortened
Output: Aw

i ← 1, h[1 . . . n][1 . . . n] ← 0
while (i ≤ bk/λc) do

while Next_k-sparse(i) do
c = Generate(G, w)
if Check_condition(c, w) then

Derive p′′ and q of the w-class generated by c
h[p′′][q] ← h[p′′][q] + 1

end if
end while
i ← i + 1

end while
Derive Aw =

∑n
p′′=1 p

′′
∑n

q=1 h[p
′′][q]/q

return Aw

k-sparse algorithm. h[p′′][q] has the number of n-sparse
where p′′ is the number of vectors for which all m deleted
symbols are “0”, i.e., vectors that still exist after shortening
in every cs .

We show an example of shortening the position 0 of
G7,4 and derive A3 of the (6,3,3) shortened code. When
codewords c0 = (0,0,0,1,1,0,1), c1 = (0,0,1,1,0,1,0), . . . ,
c6 = (1,0,0,0,1,1,0) are shortened position 0, the codewords
that still exist after shortening are c ′′0 = (0,0,1,1,0,1), c

′′
1 =

(0,1,1,0,1,0), c ′′2 = (1,1,0,1,0,0), and c ′′5 = (1,0,0,0,1,1).
Therefore, p′′ = 4. Then, A3 = 4 · 1/1 = 4.

This algorithm can be used when a shortened code is
used as the original code.

5. Proposed Methods for Searching Best Codes

5.1 A Search Algorithm for Constructing Best Codes Us-
ing Punctured Codes

A punctured code is constructed by deleting the check bits of
the original code. Because theminimumdistance varies with
the chosen deletion bits, the best code may be constructed if
the deletion bits are chosen carefully.

Zwanzger [7] proposes an evaluation function to con-
struct extended codes based on the weight generating func-
tion. Let the generator matrix of the q-ary (n, k) linear code
beG, and let the number of codewords ofHammingweight w
be Aw , where theHammingweight is the number of non-zero
bits in a codeword. Then, the weight generating function is

p(G) = A0x0 + A1x1 + · · · + Anxn, (6)

and the Zwanzger’s evaluation function eval1 is defined by

eval1(G) = −
n∑
i=1

Aiqk(n−i). (7)

A complete weight distribution is required for using
eval1, but it takes too much time to derive the weight distri-
bution of code with large n or k. Therefore, we define a new

376
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Algorithm 4 Construction method of best codes by punctur-
ing
Input: d′, m, G of BCH code, b
Output: G′ of new code

j ← 1
buff[1 . . .m][1 . . . (n − k)], deleteList[1 . . .m], List[1 . . .m][1 . . . b]
Flag← True
Add v(G,m, d′) toV0
while Flag do

while j ≤ m do
for i = 1 to j − 1 do

Puncturing the bit of position deleteList[i] fromV ′
i−1

end for
for r = k to n − j do

buff[j][r − k + 1] ← cal_eval(V ′
j−1, r)

end for
for i = 1 to b do

List[j][i]← preserve(buff[j][1 . . . (n − k)])
end for
deleteList[j]← pop(List[j][1])
j ← j + 1

end while
Derive the minimum distance dmin ofV ′m
if (dmin ≥ d′) then

return G′
end if
Flag← False
while j > 1 do

j ← j − 1
remove deleteList[j]
if List[j][1], φ then

deleteList[j]← pop(List[j][1])
j ← j + 1
Flag← True
Break

end if
end while

end while

evaluation function based on the codewords around the min-
imum distance. Because the minimum distance decrease by
m at most when the check bits are deleted by m bits, we only
consider the codewords whose Hamming weight is less than
d ′ + m when we challenge the construction of a code with a
minimum distance d ′. Therefore, we define the evaluation
function eval2 as

eval2(V ′j−1,r) =
d′+m−(j+1)∑

i=1
Ai2d

′+m−(j+i), (8)

where j (1 ≤ j ≤ m) is the j-th deletion, r is the position
of the j-th deletion bit, V ′

j−1 is a set of codewords v ′ that
are codewords after v ∈ V0 has j − 1 bits removed, and V0
is the set of codewords whose Hamming weights are less
than d ′ + m. eval2 is a weighted addition to the number of
codewords whose Hamming weight is between d − j and
d ′+m−1− j. If there are fewer codewords whose Hamming
weight is d − j after j bits deletion, eval2 will take a smaller
value. After m bits deletion, if eval2 is 0, i.e., there are
no codewords whose weight is less than d ′, then a code
with minimum distance d ′ can be constructed. Because
codewords whose Hamming weight is less than d ′ + m are

obtained by Algorithm 1 [6] or Algorithm 3 and the local
weight distribution of the punctured code is obtained by
Algorithm 2, a computation complexity for calculating eval2
reduced compared with that of eval1.

We propose Algorithm 4 for constructing the best code
based on eval2. Let the Hamming weight of the codeword c
beWh(c) and let the codeword generated by generator matrix
G and satisfying Wh(v) < d ′ + m be v(G,m, d ′). buff[][]
has the value of eval2 of all bits that can be deleted in j-th.
deleteList[] has the deletion bits and List[][] has b candidates
of the j-th deletion bit. A function cal_eval(V ′

j−1,r) means
that the bit of position r is punctured fromV ′

j−1 and calculate
eval2. A function preserve(buff[j][1 . . . (n− k)]) means that
the deletion position with the lowest value out of buff[j][1],
buff[j][2], . . . , buff[j][n − k] is extracted, and then it is
removed from the buff. A function pop(List[j][1]) means
that the first element of List[j] is picked up, and it is removed
from List. Let the set that m bits in deleteList are deleted
from V0 be V ′m.

The proposed algorithm uses the backtracking
method [8]. The number of punctured codes constructed
by m-bit deletion is the number of combinations when se-
lecting m bits from n − k check bits. Since it is difficult to
search all punctured codes, the proposed algorithm reduces
the number of punctured codes to search to bm.

5.2 A Supporting Method for Searching Best Codes

We targeted and searched for the (n, k) codes that were most
likely to discover new best codes based on experience. In this
section, we propose a supporting method for searching the
best code. We analyze the relationship among code length n,
information length k, and minimum distance d and propose
an evaluation method narrowing down the target (n, k) code
that is most likely to construct the best code. We consider
several evaluation values e1, e2, e3, and e4 in [9]. As a result,
we define

E(n, k) = e1(n, k) + e2(n, k) + e3(n, k) + e4(n, k) (9)

by using them. Each evaluation value is given in the follow-
ing sections. Let the minimum distance d of the (n, k) code
be d(n, k).

5.2.1 Evaluation Using the Minimum Distance Difference
between Adjacent Parameters

In the best known code database [1], we can specify any
range of n and k and know the lower bound and upper bound
as shown in Fig. 2. The left value of each square shows
the lower bound, and the right value shows the upper bound
of the minimum distance. As shown in Fig. 2, there are
some codes whose minimum distance does not increase as
n or k increases or decreases. Therefore, if the difference
in the minimum distance between the evaluation target and
the adjacent codes is large, the minimum distance is likely to
be increased. Let the minimum distance difference between

OHARA et al.: A CONSTRUCTION OF BINARY PUNCTURED LINEAR CODES AND A SUPPORTING METHOD FOR BEST CODE SEARCH
377

Fig. 2 Example of e1(207, 20) and e2(207, 20).

Fig. 3 Relationship between code length and minimum distance when
information length is 20.

adjacent parameters of the (n, k) code be e1(n, k) and e2(n, k).
Then, e1(n, k) and e2(n, k) are defined by

e1(n, k) = d(n + 1, k) − d(n, k), (10)
e2(n, k) = d(n, k − 1) − d(n, k). (11)

5.2.2 Evaluation Using the Least-Squares Method

The minimum distance of a linear code is correlated with the
increase or decrease in code length and information length,
as shown in Fig. 3. Focusing on this point, we approximate
the relationship between the code length or the informa-
tion length and the minimum distance by the least-squares
method. For given measurement pairs (xi, yi), the least-
squares method is a method to set the coefficients such that
the sum of squares of the residuals is minimized so that the
function is an appropriate approximation to the measure-
ment.

First, we define a quadratic approximation curve ofmin-
imum distance as fk(n) when information length k is a con-
stant value and code length n is a variable value. We also
define the difference between the approximation fk(n) and
the minimum distance be e3(n, k). For given pairs (i, d(i, k)),
k ≤ i ≤ 255, fk(x) = ak x2 + bk x + ck is given by calculat-
ing ak , bk and ck that minimize the sum of squares of the
residuals Sk defined by

Table 1 Generator polynomials of original BCH codes.
(n, k , d) Generator polynomial

(127, 29, 43) 94725606304a7865e875b608a
(233, 30, 88) f64bd9710988280185c4c489af9910b5099d9395c91923131db
(255, 45, 87) 86ca2a1ec416c37c9f1c940779d83e45fcce824d23872b43a1056
(255, 47, 85) de6355a506c50290c9a61db297cd9307fd08d86759698f02376a8

Table 2 Best codes by modifying (127, 29, 43) BCH code.
Best code Original code m d+ Method

(112, 27, 33) (125, 27, 43) 13 1 Puncturing
12, 13, 19, 22, 27, 39, 52, 53, 55, 78, 79, 80, 95

(113, 27, 34) (112, 27, 33) 1 1 Extending

Table 3 Best codes by modifying (233, 30, 88) BCH code.
Best code Original code m d+ Method

(213, 30, 73)
(233, 30, 88) 20 1 Puncturing
1, 3, 18, 25, 35, 60, 65, 74, 93, 95, 115, 124
128, 153, 159, 161, 170, 174, 194, 198

(214, 30, 74) (213, 30, 73) 1 1 Extending

(216, 30, 75)
(233, 30, 88) 17 1 Puncturing
1, 11, 18, 35, 39, 53, 62, 95, 121
129, 138, 140, 148, 149, 174, 187, 189

(217, 30, 76) (216, 30, 75) 1 1 Extending

Sk =
255∑
i=k

(d(i, k) − ak x2
i − bk xi − ck)2. (12)

Then, e3(n, k) is defined by

e3(n, k) = fk(n) − d(n, k). (13)

Second, we define a quadratic approximation curve of
minimum distance as fn(k) when code length n is a constant
value and information length k is a variable value. We also
define the difference between the approximation fn(k) and
the minimum distance be e4(n, k). For given pairs (i, d(n, i)),
1 ≤ i ≤ n, fn(x) = anx2+bnx+cn is given by calculating an,
bn and cn that minimize the sum of squares of the residuals
Sn defined by

Sn =
n∑
i=1
(d(n, i) − anx2

i − bnxi − cn)2. (14)

Then, e4(n, k) is defined by

e4(n, k) = fn(k) − d(n, k). (15)

5.3 Constructed Best Codes

In this section, we present new codes that we constructed by
using Algorithm 4. To confirm that they are the best codes,
we calculate the minimum distance using the extended k-
sparse algorithms proposed in Sect. 4.

Firstly, we construct the 27 new best codes using Algo-
rithm 4 from four BCH codes in Table 1 and their shortened
codes. Generator polynomials of theseBCHcodes are shown
in hexadecimal, e.g.,

378
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

Table 4 Best codes bymodifying (255, 45, 87)BCHcode (33 ≤ k ≤ 39).
Best code Original code m d+ Method

(230, 33, 77) (243, 33, 87) 13 1 Puncturing
4, 9, 49, 69, 84, 91, 99, 103, 107, 111, 165, 174, 178

(231, 33, 78) (230, 33, 77) 1 1 Extending

(224, 34, 73)
(244, 34, 87) 20 1 Puncturing
1, 8, 52, 58, 83, 99, 100, 102, 103, 104, 106, 107
110, 111, 135, 154, 187, 203, 205, 208

(225, 34, 74) (224, 34, 73) 1 2 Extending
(226, 34, 74) (228, 36, 74) 2 1 Shortening

(228, 34, 75)
(244, 34, 87) 16 1 Puncturing
6, 47, 48, 52, 67, 99, 103, 107, 109, 110
120, 135, 139, 164, 169, 209

(229, 34, 76) (228, 34, 75) 1 1 Extending
(226, 35, 73) (227, 36, 73) 1 1 Shortening
(227, 35, 74) (228, 36, 74) 1 1 Shortening

(229, 35, 75)
(245, 35, 87) 16 1 Puncturing
11, 16, 37, 53, 60, 66, 87, 90, 105
111, 113, 163, 168, 207, 209, 210

(230, 35, 76) (229, 35, 75) 1 1 Extending

(227, 36, 73)
(246, 36, 87) 19 1 Puncturing
9, 11, 15, 40, 43, 63, 103, 104, 134, 137, 145
151, 159, 162, 186, 201, 206, 208, 209

(228, 36, 74) (227, 36, 73) 1 1 Extending
(229, 37, 73) (231, 39, 73) 2 1 Shortening
(230, 37, 74) (232, 39, 74) 2 2 Shortening
(231, 37, 74) (236, 42, 74) 5 1 Shortening

(232, 37, 75)
(247, 37, 87) 15 1 Puncturing
19, 21, 83, 92, 103, 104, 105, 115
137, 145, 170, 176, 201, 206, 208

(233, 37, 76) (232, 37, 75) 1 1 Extending
(230, 38, 73) (231, 39, 73) 1 1 Shortening
(231, 38, 74) (232, 39, 74) 1 2 Shortening
(232, 38, 74) (236, 42, 74) 4 1 Shortening

(224, 39, 69)
(249, 39, 87) 25 1 Puncturing
1, 5, 10, 16, 29, 31, 33, 34, 38, 64, 68, 76, 88, 103, 114
138, 150, 153, 156, 168, 172, 207, 208, 209, 210

(225, 39, 70) (224, 39, 69) 1 2 Extending
(226, 39, 70) (229, 42, 70) 3 2 Shortening
(227, 39, 70) (232, 44, 70) 5 1 Shortening
(228, 39, 71) (230, 41, 71) 2 1 Shortening
(229, 39, 72) (231, 41, 72) 2 2 Shortening
(230, 39, 72) (235, 44, 72) 5 1 Shortening

(231, 39, 73)
(249, 39, 87) 18 1 Puncturing
15, 16, 20, 41, 53, 76, 102, 103, 114, 125
150, 169, 172, 183, 185, 195, 208, 209

(232, 39, 74) (231, 39, 73) 1 2 Extending
(233, 39, 74) (236, 42, 74) 3 1 Shortening

100010111(2) = 8b8(16). (16)

We divide the polynomials into binary blocks of length 4,
fill the last digits with zeros if necessary, and then convert
to hexadecimal as in Eq. (16). Secondly, we find 120 new
best codes by shortening or extending those code. When the
minimum distance of constructed best code is an odd value,
the minimum distance can be increased by 1-bit extended
code. Some best codes are constructed by shortening be-
cause the minimum distance of a shortened code does not
decrease compared with the original code. In addition, we
constructed 28 new best codes by using E(n, k) to choose
(n, k) codes to search. As a result, we found 167 new best
codes.

The parameters of constructed codes are shown in Ta-

Table 5 Best codes bymodifying (255, 45, 87)BCHcode (40 ≤ k ≤ 42).
Best code Original code m d+ Method

(225, 40, 69)
(250, 40, 87) 25 1 Puncturing
8, 14, 24, 28, 49, 58, 77, 83, 85, 88, 89, 100, 101, 113
116, 122, 136, 140, 149, 159, 166, 193, 206, 208, 210

(226, 40, 70) (225, 40, 69) 1 2 Extending
(227, 40, 70) (229, 42, 70) 2 2 Shortening
(228, 40, 70) (232, 44, 70) 4 1 Shortening
(229, 40, 71) (230, 41, 71) 1 1 Shortening
(230, 40, 72) (231, 41, 72) 1 2 Shortening
(231, 40, 72) (235, 44, 72) 4 1 Shortening
(233, 40, 73) (235, 42, 73) 2 1 Shortening
(234, 40, 74) (236, 42, 74) 2 1 Shortening

(219, 41, 65)

(251, 41, 87) 32 1 Puncturing
19, 20, 43, 51, 53, 57, 60, 63, 64, 75, 82, 94, 95
99, 110, 113, 119, 124, 135, 140, 147, 149, 152
162, 176, 177, 180, 189, 190, 192, 208, 209

(220, 41, 66) (219, 41, 65) 1 2 Extending
(221, 41, 66) (219, 41, 65) 2 1 Extending
(223, 41, 67) (224, 42, 67) 1 1 Shortening
(224, 41, 68) (225, 42, 68) 1 2 Shortening
(225, 41, 68) (227, 43, 68) 2 1 Shortening
(227, 41, 69) (228, 42, 69) 1 1 Shortening
(228, 41, 70) (229, 42, 70) 1 2 Shortening
(229, 41, 70) (232, 44, 70) 3 2 Shortening

(230, 41, 71)
(251, 41, 87) 21 3 Puncturing
10, 20, 24, 28, 35, 49, 61, 82, 84, 103, 118, 137
140, 148, 169, 171, 172, 188, 207, 208, 209

(231, 41, 72) (230, 41, 71) 1 3 Extending
(232, 41, 72) (235, 44, 72) 3 2 Shortening
(233, 41, 72) (237, 45, 72) 4 1 Shortening
(234, 41, 73) (235, 42, 73) 1 1 Shortening
(235, 41, 74) (236, 42, 74) 1 1 Shortening
(221, 42, 65) (223, 44, 65) 2 1 Shortening
(222, 42, 66) (224, 44, 66) 2 2 Shortening
(223, 42, 66) (225, 44, 66) 2 2 Shortening

(224, 42, 67)

(252, 42, 87) 28 2 Puncturing
8, 13, 23, 25, 39, 53, 60, 75, 77, 78, 82
83, 97, 104, 110, 115, 139, 148, 153, 154
155, 162, 185, 198, 203, 205, 207, 208

(225, 42, 68) (224, 42, 67) 1 2 Extending
(226, 42, 68) (227, 43, 68) 1 2 Shortening
(227, 42, 68) (228, 43, 68) 1 2 Shortening

(228, 42, 69)
(252, 42, 87) 24 3 Puncturing
11, 12, 16, 32, 39, 60, 65, 72, 79, 82, 83, 109, 115, 120
123, 129, 138, 153, 195, 200, 201, 205, 207, 208

(229, 42, 70) (228, 42, 69) 1 3 Extending
(230, 42, 70) (232, 44, 70) 2 2 Shortening
(231, 42, 70) (234, 45, 70) 3 2 Shortening
(232, 42, 71) (234, 44, 71) 2 2 Shortening
(233, 42, 72) (235, 44, 72) 2 2 Shortening
(234, 42, 72) (237, 45, 72) 3 1 Shortening

(235, 42, 73)
(252, 42, 87) 17 1 Puncturing
8, 10, 24, 26, 30, 35, 49, 53, 63, 82
107, 113, 130, 131, 193, 196, 208

(236, 42, 74) (235, 42, 73) 1 1 Extending

bles 2–7. In Tables 2–7, m is the number of modifying, d+

is the number of increased minimum distances from the best
known code. The punctured positions are shown below each
code in the tables, with the beginning of the check bit being
1. For example, (112, 27, 33) code is constructed by deleting
the 12th, 13th, 19th, . . . , 95th check bits of (125,27,43) code
from Table 2. When we use m-bit shortened BCH codes as

OHARA et al.: A CONSTRUCTION OF BINARY PUNCTURED LINEAR CODES AND A SUPPORTING METHOD FOR BEST CODE SEARCH
379

Table 6 Best codes bymodifying (255, 45, 87)BCHcode (43 ≤ k ≤ 45).
Best code Original code m d+ Method

(222, 43, 65) (223, 44, 65) 1 1 Shortening
(223, 43, 66) (224, 44, 66) 1 2 Shortening
(224, 43, 66) (225, 44, 66) 1 2 Shortening

(226, 43, 67)

(253, 43, 87) 27 2 Puncturing
10, 12, 19, 32, 38, 47, 56, 63, 73, 78
82, 91, 104, 118, 125, 151, 155, 156, 161
167, 180, 191, 193, 198, 206, 207, 208

(227, 43, 68) (226, 43, 67) 1 2 Extending
(228, 43, 68) (226, 43, 67) 2 2 Extending
(229, 43, 68) (226, 43, 67) 3 2 Extending
(230, 43, 69) (231, 44, 69) 1 2 Shortening
(231, 43, 70) (232, 44, 70) 1 2 Shortening
(232, 43, 70) (234, 45, 70) 2 2 Shortening
(233, 43, 71) (234, 44, 71) 1 2 Shortening
(234, 43, 72) (235, 44, 72) 1 2 Shortening
(235, 43, 72) (237, 45, 72) 2 1 Shortening
(237, 43, 73) (239, 45, 73) 2 1 Shortening
(238, 43, 74) (240, 45, 74) 2 1 Shortening

(223, 44, 65)

(254, 44, 87) 31 1 Puncturing
3, 7, 18, 23, 26, 27, 36, 48, 49, 51, 76, 81, 87
92, 98, 109, 117, 121, 126, 135, 136, 168, 169
177, 183, 184, 189, 191, 194, 197, 206

(224, 44, 66) (223, 44, 65) 1 2 Extending
(225, 44, 66) (223, 44, 65) 2 2 Extending

(231, 44, 69)
(254, 44, 87) 23 2 Puncturing
1, 2, 9, 25, 35, 44, 69, 90, 99, 107, 110, 118, 120
130, 132, 140, 149, 172, 176, 180, 200, 203, 206

(232, 44, 70) (231, 44, 69) 1 2 Extending
(233, 44, 70) (234, 45, 70) 1 2 Shortening

(234, 44, 71)
(254, 44, 87) 20 2 Puncturing
1, 7, 12, 34, 39, 65, 67, 76, 92, 110, 111, 120
127, 138, 177, 179, 184, 194, 196, 204

(235, 44, 72) (234, 44, 71) 1 2 Extending
(236, 44, 72) (237, 45, 72) 1 1 Shortening
(238, 44, 73) (239, 45, 73) 1 1 Shortening
(239, 44, 74) (240, 45, 74) 1 1 Shortening

(233, 45, 69)
(255, 45, 87) 22 2 Puncturing
1, 2, 4, 7, 8, 17, 19, 20, 28, 39, 50, 86, 105, 113
124, 135, 157, 171, 183, 190, 199, 209

(234, 45, 70) (233, 45, 69) 1 2 Extending
(235, 45, 70) (233, 45, 69) 2 1 Extending

(236, 45, 71)
(255, 45, 87) 19 1 Puncturing
1, 2, 3, 14, 16, 18, 30, 36, 44, 59, 69, 86
98, 140, 141, 142, 149, 158, 206

(237, 45, 72) (236, 45, 71) 1 1 Extending

(239, 45, 73)
(255, 45, 87) 16 1 Puncturing
1, 2, 6, 18, 20, 26, 36, 38, 42
69, 72, 87, 180, 192, 196, 200

(240, 45, 74) (239, 45, 73) 1 1 Extending

(242, 45, 75) (255, 45, 87) 13 1 Puncturing
1, 2, 4, 22, 42, 68, 86, 89, 166, 171, 183, 190, 198

(243, 45, 76) (242, 45, 76) 1 1 Extending

original codes, the first through them-th information bits are
shortened.

6. Conclusion

In this paper, we proposed an algorithm for constructing the
best codes using punctured codes and a supporting method
for constructing the best codes. First of all, we defined the
evaluation function for puncturing to determine which check
bits to delete based on local weight distribution. We pro-

Table 7 Best codes by modifying (255, 47, 85) BCH code.
Best code Original code m d+ Method

(225, 43, 66) (229, 47, 66) 4 2 Shortening
(226, 44, 66) (229, 47, 66) 3 2 Shortening
(227, 44, 66) (230, 47, 66) 3 1 Shortening
(228, 44, 67) (231, 47, 67) 3 1 Shortening
(229, 44, 68) (232, 47, 68) 3 2 Shortening
(230, 44, 68) (233, 47, 68) 3 2 Shortening
(222, 45, 63) (224, 47, 63) 2 1 Shortening
(223, 45, 64) (225, 47, 64) 2 2 Shortening
(224, 45, 64) (226, 47, 64) 2 2 Shortening
(225, 45, 64) (227, 47, 64) 2 1 Shortening
(226, 45, 65) (228, 47, 65) 2 1 Shortening
(227, 45, 66) (229, 47, 66) 2 2 Shortening
(228, 45, 66) (230, 47, 66) 2 2 Shortening
(229, 45, 67) (231, 47, 67) 2 3 Shortening
(230, 45, 68) (232, 47, 68) 2 3 Shortening
(231, 45, 68) (233, 47, 68) 2 2 Shortening
(232, 45, 68) (234, 47, 68) 2 2 Shortening
(223, 46, 63) (224, 47, 63) 1 1 Shortening
(224, 46, 64) (225, 47, 64) 1 2 Shortening
(225, 46, 64) (226, 47, 64) 1 2 Shortening
(226, 46, 64) (227, 47, 64) 1 2 Shortening
(227, 46, 65) (228, 47, 65) 1 3 Shortening
(228, 46, 66) (229, 47, 66) 1 3 Shortening
(229, 46, 66) (230, 47, 66) 1 2 Shortening
(230, 46, 67) (231, 47, 67) 1 3 Shortening
(231, 46, 68) (232, 47, 68) 1 3 Shortening
(232, 46, 68) (233, 47, 68) 1 2 Shortening
(233, 46, 68) (234, 47, 68) 1 2 Shortening
(234, 46, 69) (235, 47, 69) 1 2 Shortening
(235, 46, 70) (236, 47, 70) 1 2 Shortening
(236, 46, 70) (237, 47, 70) 1 1 Shortening
(237, 46, 71) (238, 47, 71) 1 1 Shortening
(238, 46, 72) (239, 47, 72) 1 1 Shortening
(240, 46, 73) (241, 47, 73) 1 1 Shortening
(241, 46, 74) (242, 47, 74) 1 2 Shortening
(242, 46, 74) (243, 47, 74) 1 1 Shortening

(224, 47, 63)

(255, 47, 85) 31 1 Puncturing
1, 6, 12, 18, 21, 35, 39, 42, 48, 52, 69, 77, 85, 86
103, 120, 122, 137, 144, 152, 154, 156, 158, 171
177, 183, 188, 196, 198, 205, 207

(225, 47, 64) (224, 47, 63) 1 2 Extending
(226, 47, 64) (224, 47, 63) 2 2 Extending
(227, 47, 64) (224, 47, 63) 3 2 Extending

(228, 47, 65)
(255, 47, 85) 27 3 Puncturing
1, 3, 8, 18, 35, 52, 54, 69, 80, 86, 90, 91, 98, 103, 120, 121
136, 137, 142, 154, 157, 166, 171, 178, 188, 202, 205

(229, 47, 66) (228, 47, 65) 1 4 Extending
(230, 47, 66) (228, 47, 65) 2 3 Extending

(231, 47, 67)
(255, 47, 85) 24 3 Puncturing
1, 5, 18, 26, 35, 42, 52, 60, 61, 69, 74, 86, 103, 120
122, 129, 137, 153, 154, 160, 171, 188, 191, 205

(232, 47, 68) (231, 47, 67) 1 3 Extending
(233, 47, 68) (231, 47, 67) 2 2 Extending
(234, 47, 68) (231, 47, 67) 3 2 Extending

(235, 47, 69)
(255, 47, 85) 20 2 Puncturing
1, 2, 10, 18, 49, 52, 69, 72, 83, 86, 103, 108, 120
134, 137, 154, 165, 171, 205, 208

(236, 47, 70) (235, 47, 69) 1 2 Extending
(237, 47, 70) (235, 47, 69) 2 1 Extending

(238, 47, 71)
(255, 47, 85) 17 1 Puncturing
1, 4, 13, 35, 52, 69, 85, 86, 103, 120
136, 137, 154, 171, 188, 205, 207

(239, 47, 72) (238, 47, 71) 1 1 Extending

(241, 47, 73) (255, 47, 85) 14 1 Puncturing
1, 2, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205

(242, 47, 74) (241, 47, 73) 1 2 Extending
(243, 47, 74) (241, 47, 73) 2 1 Extending

380
IEICE TRANS. FUNDAMENTALS, VOL.E105–A, NO.3 MARCH 2022

posed an algorithm for constructing the punctured code with
a large minimum Hamming distance using the backtracking
method based on this evaluation function. It is especially ef-
fective when cyclic codes and the shortened codes are used
as the original code of the punctured code because their
local weight distribution can be derived by the k-sparse al-
gorithm [6] or proposed extended k-sparse algorithm.

Secondly, we proposed the method to evaluate the pos-
sibility of constructing the new best code by analyzing the
information registered in the database. We can easily choose
target (n, k) codes to search by using this method. By search-
ing for the (n, k) codes with high evaluation values, we were
able to construct 167 new best codes.

Our newly constructed best codes are guaranteed to be
the best codes by deriving the minimum weights using the
proposed extended k-sparse algorithm.

Acknowledgments

This work was supported by JSPSKAKENHIGrant Number
JP20K11810.

References

[1] M. Grassl, “Code tables: Bounds on the parameters of various types
of codes,” http://codetables.de, accessed June 2021.

[2] C. Ding, C. Fan, and Z. Zhou, “The dimension and minimum distance
of two classes of primitive BCH codes,” Finite Fields Th. App., vol.45,
pp.237–263, May 2016.

[3] Y. Kageyama and T. Maruta, “On the geometric constructions of op-
timal linear codes,” Des. Codes Cryptogr., vol.81, no.3, pp.469–480,
2016.

[4] N. Aydin and D. Foret, “New linear codes over GF(3), GF(11), and
GF(13),” Journal of Algebra Combinatorics Discrete Structures and
Applications, vol.6, no.1, pp.13–20, 2019.

[5] A.M. Berg and I.I. Dumer, “On computing the weight spectrum of
cyclic codes,” IEEE Trans. Inf. Theory, vol.38, no.4, pp.1382–1386,
1992.

[6] Z. Li, M. Mohri, and M. Morii, “An efficient method for computing
the minimum weight of high rate binary cyclic codes,” ISITA2006,
pp.741–746, Nov. 2006.

[7] J. Zwanzger,“A heuristic algorithm for the construction of good linear
codes,” IEEE Trans. Inf. Theory, vol.54, no.5, pp.2388–2392, 2008.

[8] H.A. Priestley and M.P. Ward, “A multipurpose backtracking algo-
rithm,” J. Symb. Comput., vol.18, no.1, pp.1–40, July 1994.

[9] T. Ohara, M. Takita, and M. Morii, “A construction of binary punc-
tured linear codes and a supporting method for best code search,”
ISITA2020, pp.170–174, Oct. 2020.

Takuya Ohara received his B.E. degree
from Kobe University, Japan in 2020. He is
currently pursuing Master’s degree at Kobe Uni-
versity. His research interests include error cor-
recting codes and their applications.

Makoto Takita received his B.E., M.E.,
and D.E. degrees from Kobe University, Japan,
in 2014, 2015, and 2018, respectively. In 2018,
he was a Researcher at the Graduate School
of Engineering, Kobe University, Japan. Since
2019, he has been an Assistant Professor at the
School of Social Information Science, Univer-
sity of Hyogo, Japan. His research interests in-
clude coding theory, information networks, and
information security.

Masakatu Morii received his B.E. degree
in electrical engineering and his M.E. degree
in electronics engineering from Saga University,
Saga, Japan, and his D.E. degree in communica-
tion engineering from Osaka University, Osaka,
Japan in 1983, 1985, and 1989, respectively.
From 1989 to 1990, he was an Instructor in
the Department of Electronics and Information
Science, Kyoto Institute of Technology, Japan.
From 1990 to 1995, he was an Associate Pro-
fessor in the Department of Computer Science,

Faculty of Engineering at Ehime University, Japan. From 1995 to 2005, he
was a Professor in the Department of Intelligent Systems and Information
Science, Faculty of Engineering, at the University of Tokushima, Japan.
Since 2005, he has been a Professor in the Department of Electrical and
Electronics Engineering, Faculty of Engineering, at Kobe University, Japan.
His research interests include error correcting codes, cryptography, discrete
mathematics, computer networks, and information security. He is a member
of the IEEE.

http://codetables.de
http://codetables.de
http://dx.doi.org/10.1016/j.ffa.2016.12.009
http://dx.doi.org/10.1016/j.ffa.2016.12.009
http://dx.doi.org/10.1016/j.ffa.2016.12.009
http://dx.doi.org/10.1007/s10623-015-0167-2
http://dx.doi.org/10.1007/s10623-015-0167-2
http://dx.doi.org/10.1007/s10623-015-0167-2
http://dx.doi.org/10.13069/jacodesmath.508968
http://dx.doi.org/10.13069/jacodesmath.508968
http://dx.doi.org/10.13069/jacodesmath.508968
http://dx.doi.org/10.1109/18.144721
http://dx.doi.org/10.1109/18.144721
http://dx.doi.org/10.1109/18.144721
http://dx.doi.org/10.1109/tit.2008.920323
http://dx.doi.org/10.1109/tit.2008.920323
http://dx.doi.org/10.1006/jsco.1994.1035
http://dx.doi.org/10.1006/jsco.1994.1035

