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LETTER
Antenna Array Self-Calibration Algorithm with Location Errors
for MUSIC

Jian BAI†a), Member, Lin LIU†, and Xiaoyang ZHANG†, Nonmembers

SUMMARY The characteristics of antenna array, like sensor location,
gain and phase response are rarely perfectly known in realistic situations.
Location errors usually have a serious impact on the DOA (direction of ar-
rival) estimation. In this paper, a novel array location calibration method of
MUSIC (multiple signal classification) algorithm based on the virtual inter-
polated array is proposed. First, the paper introduces the antenna array po-
sitioning scheme. Then, the self-calibration algorithm of FIR-Winner filter
based on virtual interpolation array is derived, and its application restric-
tion are also analyzed. Finally, by simulating the different location errors
of antenna array, the effectiveness of the proposed method is validated.
key words: direction of arrival, location error, virtual interpolated array,
self-calibration

1. Introduction

DOA estimation is one of the major research direction in sig-
nal processing. It is widely used in the field of radar, sonar,
radio astronomy, and seismology to oceanography [1]. The
DOA estimation methods, such as MUSIC (multiple sig-
nal classification), are based on accurate antenna array lo-
cations. While, there are often errors between the actual and
the measured antenna array locations in practical systems,
which will lead to the performance deterioration of these
DOA estimation methods. Moreover, unlike gain and phase
errors, perturbed array manifolds are nonlinear with respect
to the location errors of the antenna array. This nonlinear-
ity makes the analysis of the effect of antenna array location
errors on DOA estimation methods is more difficult [2], [3].

Due to its high resolution properties and accurate per-
formance, the MUSIC, which is based on the specific the-
ory, attracts practical interests. It is implemented in spa-
tial domain by decomposing the signal into two orthogonal
subspaces (signal subspace and noise subspace) and could
be used for parameter estimation, such as the DOA of su-
perposed radio signals on the antenna array. Meanwhile,
compared with the DFT (discrete fourier transform), MU-
SIC method is able to be applied to the DOA estimation and
the spatial sampling of the wavefront both for uniform and
non-uniform arrays. However, the effects of array pertur-
bations caused by the non-uniform array is severe even for
micro perturbations [4]. Thus, the antenna array location
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error is necessary to be calibrated for MUSIC.
There are several solutions have been proposed for

dealing with the antenna array location error [5], [6]. A
improved algorithm (I-NSF) in [7], using the maximum a
posteriori noise subspace fitting (MAP-NSF) algorithm re-
sults as the input to the iterative approach, is proposed to
eliminate sensor location error and remove the sensitivity to
initialization. While, these methods commonly use the aux-
iliary source whose location is known in advance or self-
calibrated, which estimates the source DOA and perturbed
array response vector parameters iteratively. As is revealed
in [8], virtual baseline with the flexible length based on a
two-dimensional (2-D) antenna array is proposed for UWB
(ultra wide band) interferometer DF (direction finding) sys-
tem. It could compensate the fluctuations of the antenna
phase center and provide unambiguous AOA (angle of ar-
rival) during the detection. Furthermore, inspired by the idea
of using antenna array interpolation for virtual baselines,
virtual interpolated antenna array are expected to be able to
calibrate the antenna array location error without auxiliary
sources or parameter iterations.

The remainder of the paper is organized as follows.
Section 2 provides the antenna array locating scheme, and
derives the interpolated array calibration algorithm and ap-
plication restrictions. Then, the effectiveness of the pro-
posed method under different antenna array location errors
is verified by simulations in Sect. 3. Finally, the conclusion
is presented in Sect. 4.

2. Virtual Interpolated Array Algorithm

2.1 Antenna Array Location Scheme

Suppose N incoherent plane waves are incident on an uni-
form linear array of M (N < M) elements. The received
signal vector r(t) is an M × 1 complex vector given by

r(t) = A ∗ s(t) + n(t) (1)

where N × 1 vector s(t) is given by

s(t) = [s1(t), s2(t), . . . . . . , sN(t)]T (2)

with sk(t) being a complex narrow-band amplitude of the k-
th signal, and n(t) is M × 1 complex noise vector. s(t) is N-
dimensional complex Gaussian distribution with mean zero
and covariance matrix Rs. n(t) is a vector Gaussian process,
independent of the signals, with mean zero and covariance
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σ2
n.

The steering matrix A is an M × N matrix such that

A = [a(θ1), a(θ2), . . . . . . , a(θN)] (3)

with steering vector a(θi) being the M × 1 signal direction
vector at angle θi from the array’s boresight, given by

a(θi) = [1, e2π(d/λ) sin(θi), . . . . . . , e2π(M−1)(d/λ) sin(θi)]T (4)

where T denotes the transpose, d denotes the uniform ele-
ment spacing, and λ denotes the wavelength of signals.

When there is only the antenna array location error, it
can be considered as an orientation dependent phase pertur-
bation Γ(θi), that is

Ŵ (θi) = [1 e j2π(∆d2/λ) sin(θi) · · · e j2π(∆dM/λ) sin(θi)]T

(5)

∆dm, 1 ≤ i ≤ M is the location error between actual and
measured positions of the i-th antenna element. Assume that
∆dm is Gaussian distribution, σ2

dm
is the variance of ∆dm, the

probability of ∆dm ∈
[
−3σdm , 3σdm

]
is 99.74%.

where the steering matrix Ã with perturbation matrix
W is

Ã = [ã(θ1), ã(θ2), . . . . . . , ã(θN)] (6)

and

ã(θi) = a(θi) · Ŵ(θi) (7)

and d′m = (m − 1)d + ∆dm, 1 ≤ m ≤ M is the actual spacing
based on nonuniform linear array between the first antenna
element and the m-th.

The covariance matrix of the received signal vector
from the signals model and the above assumptions is

Rx = E[r(t)r(t)H] = ÃRs(Ã)H + σ2
nI (8)

with the superscript H denoting the Hermitian transpose. It
also follows that the rank of WARs(WA)H is N, with the
smallest M − N of its eigenvalues being zero. Therefore,
if the eigenvalues of Rx are ordered in descending order of
magnitudes such that λ1 ≥ λ2 ≥ · · · , then

λN+1 = λN+2 = · · · = σ2
n (9)

The MUSIC spectrum [8], [9] can be expressed in terms of
the signal eigenvectors, as given by

P(θ) =
1

(ã(θ))H(
N∑

n=1
vnvn

H)ã(θ)
(10)

where v1, v2, · · · , vM are the noise eigenvectors.

2.2 Interpolated Array Calibration Algorithm

To deal with the problem mentioned above, a virtual inter-
polation self-calibration algorithm based on Wiener filter

(W-VISC) is proposed based on the nonuniform linear ar-
ray, to construct a virtual uniform linear array and calibrate
the antenna array location error. Assume that, the number
of the virtual elements is M. Thus, the set of the actual
elements coordinate in the x-direction can be expressed as[
x0 + d′1, x0 + d′2, . . . , x0 + d′M

]
, and the coordinate of virtual

elements is x0 + d × (0, 1, . . . . . . ,M − 1). The signal of the
virtual interpolated array with minimum mean square error
(MMSE) interpolation [7] is

x(t) = PTR−T r(t) (11)

where R is M × M matrix, and

R = [Ri j] = [J0(
2π(d′i − d′ j)

λ
)], 1 ≤ i, j ≤ M (12)

where P denote the cross-correlation M×M matrix between
the received signal vector r (t) = [r1 (t) , r2 (t) , · · · , rM (t)]T

and the desired vector x(t).

P = [Pi j] = [J0(
2π(d′i − ( j − 1)d)

λ
)], 1 ≤ i, j ≤ M

(13)

where J0 denotes the first-class Bessel function with zero
order. Equation (11) is actually a M-th order FIR−Winner
filter, with the MMSE

σ2
min = J0(0) − PT R−1P (14)

The interpolation output x(t) can be considered as a virtual
uniform antenna array with M antenna elements.

2.3 Restriction

This algorithm of interpolated array calibration is restricted
to the number and space of antenna elements. In order
to evaluate the performance of the virtual antenna array
above, RMSE (root mean square error) σmin is used, con-
sidering σmin ≤ 10−2. Assume that, the amplitudes of re-
ceived signals are normalized and the frequency is 10 GHz.
As is showed in Fig. 1(a), where the RMSE with different
number of antenna elements is depicted, it can be found
that the RMSE of virtual antennas are all less than 10−2

when M ≥ 40. From Fig. 1(b), the RMSE could be con-
trolled to be less than 10−2 and varying from x0 + d′1 to
x0 + d′40. Moreover, deploying the antenna array only in the
x-direction could not satisfy the antenna array location error
in any attitude. Therefore, the deployment of the antennas
in y-direction is necessary. In addition, as aforementioned,
the virtual interpolated array could be adjusted in real-time
with the change of target frequency.

3. Performance Evaluation

Simulation experiments, compared with I-NSF and MAP-
NSF, are conducted to evaluate the performances of the
proposed interpolated array calibration algorithm under the
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Fig. 1 Evaluation of RMSE. (a) RMSE with different M. (b) RMSE with
d = 0.03 m and M = 40.

Table 1 Simulation parameters.

Parameter Value
Frequency 10 GHz

M 40
N 1 ∼ 2
d 0.0135m
λ 0.03 m

Incident angle 24◦ and 28◦

Number of snapshots K 32 ∼ 1024
S NR 0 ∼ 32 dB

nonuniform antenna array. The parameters of the simulation
are given in Table 1.

In Fig. 2(a), suppose that DOAs of two targets are 24◦

and 28◦ with same SNR (signal to noise ratio) of 5 dB. An-
tenna array location errors with σdi = 20%d obviously de-
teriorate the resolution of MUSIC spectrum, and the target
with DOA of 28◦ could not be effectively distinguished. Af-
ter applying the proposed self-calibration method, DOAs of
the two targets could be accurately estimated and the reso-
lution is greatly improved. As shown in Fig. 2(b), the rela-
tionship between the RMSE of different algorithms and the
number of K is analyzed. in which K is 32, 64, 128, 256, 512

Fig. 2 Evaluation with different antenna array location errors. (a) MU-
SIC spectrum with two targets. (b) RMSE for different K of single target.
(c) RMSE for different S NR of single target.

and 1024, the S NR is 5 dB. In general, with tne increase of
K, the influence of location error decrease gradually. Com-
pared with MAP-NSF and I-NSF, W-VISC method has more
obvious performance improvement with the increase of K.
In addition, the influence of different S NR for algorithms
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under same location error (20%d) is verified. Firstly, under
the same S NR, W-VISC, MAP-NSF and I-NSF have cali-
brated the location error and obtained more accurate AOA
estimation, but W-VISC has better performance under low
S NR.

4. Conclusion

The perturbed array manifolds caused by the antenna ar-
ray location error seriously deteriorates the DOA estima-
tion, and even the MUSIC spectrum is difficult to reflect
the actual angle of multi-target. Hence, it is necessary to
calibrate the antenna array location error. In this paper, the
antenna array models of the MUSIC algorithm with location
error was first established. Then, a novel self-calibration al-
gorithm for MUSIC, which is equivalent to an M-th order
FIR−Winner filter, was proposed and derived based on vir-
tual interpolated under the nonuniform antenna array. Next,
the restrictions in terms of RMSE were verified through sim-
ulation, and the minimum number of antenna elements and
the maximum space are determined. Finally, the simulation
of the location errors of different antenna arrays, compared
with MAP-NSF and I-NSF, proves the effectiveness of the
proposed method.
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