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Doppler Resilient Waveforms Design in MIMO Radar via a
Generalized Null Space Method

Li SHEN†a), Jiahuan WANG††b), Wei GUO††c), Nonmembers, and Rong LUO†d), Member

SUMMARY To mitigate the interference caused by range sidelobes in
multiple-input multiple-output (MIMO) radar, we propose a new method
to construct Doppler resilient complementary waveforms from complete
complementary code (CCC). By jointly designing the transmit pulse train
and the receive pulse weights, the range sidelobes can vanish within a spec-
ified Doppler interval. In addition, the output signal-to-noise ratio (SNR) is
maximized subject to the Doppler resilience constraint. Numerical results
show that the designed waveforms have better Doppler resilience than the
previous works.
key words: Doppler resilient complementary waveforms, complete com-
plementary code (CCC), range sidelobes, MIMO radar

1. Introduction

Multiple-input multiple-output (MIMO) radar systems uti-
lize multiple transmit antennas to transmit independent
waveforms and multiple receive antennas to receive target
echoes. Compared with the traditional phased array radar,
MIMO radar has a better performance in target detection and
parameter estimation due to the configuration of antenna ar-
rays and waveform diversity [1]–[3].

In radar, phase coding [4] is commonly used to gener-
ate waveforms with impulse-like auto-correlation functions
for localizing targets in range. A phase coded waveform
is phase coded by a unimodular sequence and the auto-
correlation function of the coded waveform is controlled by
the auto-correlation function of the unimodular sequence.
An ideal auto-correlation function is an impulse function.
However, it is impossible to reach sidelobes annihilation
with one sequence [5]. Thus, complementary sequence sets
(CSSs) [6] are focused, which are widely used in waveform
design for detection in radar systems [4].

Golay complementary pairs (GCPs), firstly discovered
by Golay, have zero aperiodic auto-correlation sums at
nonzero lags [7]. In radar systems, Golay complementary
waveforms phase coded by GCPs are coherently transmit-
ted to a point target, and the received signals are coherently
processed through the matched filter. If the target is sta-
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tionary, the sum of the matched filter outputs will be free of
range sidelobes. However, the ideal auto-correlation prop-
erty of Golay complementary waveforms is extremely sensi-
tive to Doppler shift, nonzero Doppler shift will destroy the
ideal complementary property. In other words, off the zero
Doppler axis, the sum of the matched filter outputs has quite
large range sidelobes. This means that a weak target near a
strong target with different Doppler shift may be masked by
the range sidelobes of the strong target [5]. Therefore, it is
of great significance for radar to design waveforms with low
range sidelobes at modest Doppler shifts.

More recently, some construction methods of Doppler
resilient waveforms of single-channel radar, full polarimet-
ric radar and MIMO radar have been presented. Suvorova
et al. [8] first proposed to design the transmission of com-
plementary waveforms according to the first order Reed-
Müller codes, for which the range sidelobes at a specific
Doppler shift were suppressed. Pezeshki et al. [5] used
Prouhet-Thue-Morse (PTM) sequences to construct Doppler
resilient Golay complementary waveforms, and the range
sidelobes near zero Doppler were annihilated. On the ba-
sis of [5], Chi et al. [9] designed the transmission scheme of
Doppler resilient Golay complementary waveforms by us-
ing oversampled PTM sequence, so that the range sidelobes
vanished near a rational Doppler shift θ = 2πl/m, where
l , 0 and m , 1 are co-prime integers. Tang et al. [10]
extended the fully polarimetric radar scene in [5] to MIMO
radar and designed the Doppler resilient complete comple-
mentary code (CCC) [11] for MIMO radar based on the gen-
eralized Prouhet-Thue-Morse (GPTM) sequence, where the
range sidelobes can vanish at modest Doppler shifts. There-
after, Nguyen et al. [12] used Equal Sums of Powers (ESP)
sequences to provide the same Doppler resilience as PTM
sequences, but multiple antennas were needed to transmit
the pulse trains. Dang et al. [13]–[15] proposed a method to
jointly design the transmit and receive pulse trains in order
to annihilate the range sidelobes at small Doppler. However,
the decrease in the signal-to-noise ratio (SNR) occured. As
a trade-off, the idea of maximizing SNR under the Doppler
resilience was proposed. Wu et al. [16] constructed Doppler
resilient Golay complementary waveforms which realized
range sidelobes suppression in multiple flexibly-adjustable
Doppler zones, and the controllable loss between Doppler
resolution and SNR. The development in [17] was to pro-
pose a new class of sequence pairs, called “quasi-orthogonal
Z-complementary pairs (QOZCPs)”, which could be applied
to fully polarimetric radar systems. In [18], a null space ap-
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proach for designing Golay complementary waveforms with
Doppler resilience was proposed, and the range sidelobes
were cleared in a specified Doppler interval of interest or
even an overall Doppler interval.

Motivated by the work of Wang et al. [18], we ex-
tend the fully polarimetric radar scene to MIMO radar and
propose a generalized null space method to jointly design
the transmission of the transmit pulse train and the receive
pulse weights. The received pulse weights in the proposed
method are complex-valued. Compared with the integer-
valued weights in [10] and [15], the proposed received pulse
weights are more flexible. In addition, based on the pro-
posed method, the range sidelobes of resulting waveforms
are annihilated in a wider Doppler band than the previous
works.

The rest of this paper is organized as follows. In Sect. 2,
some basic definitions are provided. In Sect. 3, we propose
a method of constructing Doppler resilient waveforms in
MIMO radar. In Sect. 4, some numerical results are given.
Finally, the paper is concluded in Sect. 5.

2. Preliminaries

Let 0, O, j =
√
−1, and Null(G) denote null vector, null

matrix, imaginary unit, and null space of matrix G, respec-
tively. Let (·)T , (·)∗, ‖ · ‖p, b·c, and Diag(·) denote the trans-
pose, complex conjugate, lp-norm, greatest integer no more
than a real variable, and diagonal matrix created from a vec-
tor, respectively.

Definition 1. Let x = (x[0], x[1], · · · , x[L − 1]) and
y = (y[0], y[1], · · · , y[L − 1]) be two complex-valued se-
quences of length-L. The aperiodic cross-correlation func-
tion (ACCF) of x and y at shift k (−L<k<L) is defined as

Cx,y[k] =


L−1−k∑

i=0
x[i]y∗[i + k], 0 ≤ k<L,

L−1+k∑
i=0

x[i − k]y∗[i], −L<k<0.

When x = y, the above definition becomes aperiodic auto-
correlation function (AACF), denoted by Cx[k].

Definition 2. A set with size D of length-L unimodular se-
quences {x0, x1, · · · , xD−1} is called a complementary se-
quence set (CSS) if the sum of aperiodic auto-correlation
functions satisfies

D−1∑
d=0

Cxd [k] = DLδk,

where δk is the Kronecker delta function.
When D = 2, the CSS degenerates to a Golay comple-

mentary pair (GCP).

Definition 3 ([11]). Two CSSs R0 =
{
x0,0, x0,1, · · · , x0,D−1

}
and R1 =

{
x1,0, x1,1, · · · , x1,D−1

}
are called mutually orthog-

onal if

D−1∑
d=0

Cx0,d ,x1,d [k] = 0,∀k.

Definition 4 ([11]). Let Rp =
{
xp,0, xp,1, · · · , xp,D−1

}
be a

CSS with size D of length-L for 0 ≤ p ≤ D− 1, and a matrix
R is given by

R =


x0,0 x0,1 · · · x0,D−1
x1,0 x1,1 · · · x1,D−1
...

...
...

...
xD−1,0 xD−1,1 · · · xD−1,D−1

 .
Then

{
xp,d

}
0≤p,d≤D−1

is a (D,L)-CCC if and only if any two
rows of R are mutually orthogonal.

3. Signal Model

Let xp,d(t) denotes the analog signal phase coded by the
length-L sequence xp,d. In order to analyse the waveform
transmission scheme of a MIMO radar with D transmit an-
tennas and S receive antennas, a complete complementary
code waveform matrix W is given by

W =


x0,0(t) x0,1(t) · · · x0,D−1(t)
x1,0(t) x1,1(t) · · · x1,D−1(t)
...

...
...

...
xD−1,0(t) xD−1,1(t) · · · xD−1,D−1(t)

 .
We use the signal mode given in [15]. Let U = {un}

N−1
n=0

be the order of the transmitted pulses. To allow for indexing
of D different waveforms, we take U to be a D-ary sequence;
that is, defined over the alphabet D = {0, 1, . . . ,D − 1}.
Hence, for p = 0, 1, · · · ,D− 1, the length-N coherent trans-
mit pulse train zp,U(t) of the pth antenna is

zp,U(t) =

N−1∑
n=0

D−1∑
d=0

 1
D

D−1∑
r=0

ωr(un−d)

 xp,d(t − nT )

 ,
where T is the pulse repetition interval (PRI), and

1
D

D−1∑
r=0

ωr(un−d) =

{
1, un = d
0, un , d,

in which ω = e j2π/D and d ∈ {0, 1, · · · ,D − 1}. At the nth
PRI of zp,U(t), xp,d(t) is transmitted if un = d.

Consider a point target with a Doppler shift fd in Hz.
Also, consider the received signal in the sth antenna to illus-
trate the signal processing operation at the receiver, where
s = 0, 1, · · · , S − 1. The received signal of antenna s is
given by

ys(t) =

D−1∑
p=0

hs,pzp,U(t)

 e j2π fd t,

where hs,p denotes the target scattering coefficient from the
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pth transmit antenna to the sth receive antenna.
At the receiver with S antennas, each antenna

has D temporal responses of the receiver filters, i.e.,
z0,V(t), z1,V(t), · · · , zD−1,V(t). For q = 0, 1, · · · ,D − 1, zq,V(t)
is given by

zq,V(t) =

N−1∑
n=0

v∗n

D−1∑
d=0

 1
D

D−1∑
r=0

ωr(un−d)

 xq,d(t − nT )

 ,
where V = {vn}

N−1
n=0 is a complex-valued weight sequence of

the received pulses. If p = q, zq,V(t) is the weighted version
of zp,U(t). For ease of presentation, zp,U(t) and zq,V(t) are
abbreviated as zpU(t) and zqV(t), respectively.

The received signal of the sth antenna passes through
the qth receiver filter, then the output of the receiver filter is
given by

Fs,q(τ, fd) =

∫ +∞

−∞

ys(t)z∗qV(t − τ)dt

=

D−1∑
p=0

hs,pχpU,qV(τ, fd),

where

χpU,qV(τ, fd) =

∫ +∞

−∞

zpU(t)z∗qV(t − τ)e j2π fd tdt.

By selecting the radar parameters carefully, both range and
Doppler aliasing are avoidable, and intrapulse Doppler ef-
fect is negligible. The central lobe of χpU,qV(τ, fd) de-
pends on the discrete-time composite cross-ambiguity func-
tion (CCAF) [15], [16]:

χpU,qV(k, θ) =
1
D

N−1∑
n=0

vne jnθ


D−1∑

d=0

Cxp,d ,xq,d [k]


+

1
D

D−1∑
r=1

S U,V,r(θ)∆p,q,r,

(1)

where τ = kTc, and θ = 2π fdT denotes normalized Doppler
shift in radians,

S U,V,r(θ) =

N−1∑
n=0

ωrunvne jnθ, (2)

and

∆p,q,r =

D−1∑
d=0

ω−rdCxp,d ,xq,d [k].

According to the definition of CCC, we have∑D−1
d=0 Cxp,d ,xq,d [k] = 0. The second part of (1) determines the

range sidelobes around the Doppler shift θ because of ∆p,q,r.
Thus, if the key term (2) is approximately zero in a speci-
fied Doppler interval, then the range sidelobes of CCAF are
suppressed in the specified Doppler interval.

When p = q, (1) is called the discrete-time composite

auto-ambiguity function (CAAF) and can be analysed simi-
larly.

Therefore, we wish to design the order of the transmit-
ted pulses U and the weight sequence of the received pulses
V such that S U,V,r(θ) is almost to zero in a specified Doppler
interval for r = 1, 2, · · · ,D − 1.

To make analysing the key term (2) much easier, we
choose M different Doppler shifts as θm ∈ [0,DI],m =

0, 1, · · · ,M − 1. Then a Doppler Vandermonde matrix B
[18] is constructed as follows

B =


e j0θ0 e j1θ0 · · · e j(N−1)θ0

e j0θ1 e j1θ1 · · · e j(N−1)θ1

...
...

...
...

e j0θM−1 e j1θM−1 · · · e j(N−1)θM−1

 , (3)

where {θ0, θ1, · · · , θM−1} ⊂ [0,DI], and DI is a positive real
number.

In order to eliminate range sidelobes within the speci-
fied Doppler area, we force (2) to zero at all discrete Doppler
shifts {θ0, θ1, · · · , θM−1}, i.e.,

B


ωu0v0 ω2u0v0 · · · ω(D−1)u0v0
ωu1v1 ω2u1v1 · · · ω(D−1)u1v1
...

...
...

...
ωuN−1vN−1 ω2uN−1vN−1 · · · ω(D−1)uN−1vN−1

 = O.

(4)

In fact, (4) can be converted to
B

BA
...

BAD−2

 z = 0, (5)

where z = [z0, z1, · · · , zN−1]T , zn = wunvn for n =

0, 1, · · · ,N − 1, and A = Diag(ωu0 , ωu1 , · · · , ωuN−1 ). Ob-
viously that (5) has nontrivial solutions if M ≤ bN−1

D−1 c.

Remark 1 ([18]). In the specified Doppler interval [0,DI],
we choose the discrete Doppler shifts as θm = mDI/(M −
1) for m = 0, 1, · · · ,M − 1. If S U,V,r(θm) = 0, then the
range sidelobes of χpU,qV(k, θ) can be annihilated for all θ ∈
[0,DI], i.e., χpU,qV(k, θ) tends to 0.

Since it is difficult to solve U and V simultaneously in
(5), we fix U and then solve V. Choose U as an alternating
sequence of length-N (N is an integer multiple of D), i.e.,
u0 = 0, u1 = 1, · · · , uD−1 = D−1, uD = 0, · · · , uN−1 = D−1.
Hence, A is determined. Noted that U can be arbitrarily
chosen. Without loss of generality, a case of selecting U is
given in this paper.

Let G = (BT , (BA)T , · · · , (BAD−2)T )T . After solv-
ing Gz = 0, we find the null space of G. Suppose that
ẑ ∈ Null(G), where ẑ = [ẑ0, ẑ1, ẑ2, · · · , ẑN−1]T . Then we can
obtain V = {vn}

N−1
n=0 as vn = ẑn/w

un .
The proposed generalized null space method for range
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sidelobe suppression can be summarized as the following
steps:

1. Input N,DI , and θm = mDI/(M − 1).
2. Generate B as shown in (3).
3. Choose U = {un}

N−1
n=0 as an alternating sequence of

length-N, i.e., A is determined.
4. Select a solution ẑ from Null(G).
5. Obtain V = {vn}

N−1
n=0 as vn = ẑn/w

un .

Remark 2. When the transmit antennas number is D = 2,
the method proposed in this paper is also applicable to fully
polarimetric radar. In other words, the proposed method
can take the waveform transmission scheme proposed in
[18] for fully polarimetric radar as a special case.

The SNR at the receiver output [13]–[15] is given by

SNR =
Lσ2

b

N0

‖V‖21
‖V‖22

,

whereσ2
b is the power of the target and N0 is the power of the

white Gaussian noise. The SNR can be maximized by max-
imizing ‖V‖21/‖V‖

2
2 under the Doppler resilience constraint:

Gz = 0,

where z = [z0, z1, z2, · · · , zN−1]T , and zn = wunvn. In other
words, the optimization problem is proposed as follows

max
U,V

‖V‖21
‖V‖22

s.t. Gz = 0.
(6)

The optimization problem (6) can be converted to a un-
constrained optimization problem [18] (Due to the page lim-
itation, we omitted the detailed steps):

min
λ

‖Pλ‖22
‖Pλ‖21

, (7)

where P = [z1 z2 · · · zh], {z1, z2, · · · , zh} is an orthonor-
mal basis of Null(G), and λ = [λ1, λ2, · · · , λh]T is an arbi-
trary complex vector. In this paper, we adopt the uncon-
strained Nelder-Mead simplex method [19] to solve the un-
constrained optimization problem (7).

4. Numerical Result

To show the performance of range sidelobe suppression in
the specified Doppler interval based on the proposed method
in MIMO radar, the specified Doppler interval is set to
[0, 0.5] rad, the number of discrete Doppler shifts is M = 21,
and θm = m/40 rad, m = 0, 1, · · · , 20. The radar parameters
are set as follows: the carrier frequency is fc = 5 GHz, the
PRI is T = 40 µs, and the signal bandwidth is B = 20 MHz.
The range resolution is Rr = 7.5 m. To compare with the
previous works, the number of pulses is set to N = 64 and
the number of transmit antennas is set to D = 4. Besides,{
xp,d

}
0≤p,d≤3

is a (4,64)-CCC [20]. Therefore, U and V can

Fig. 1 CAAF and CCAF based on the method in [10].

Fig. 2 CAAF and CCAF based on the method in [15].

Fig. 3 CAAF and CCAF based on the generalized null space method.

be extracted based on the proposed method.
Figure 1 plots the CAAF and CCAF based on the

method in [10], where the range sidelobes of CAAF and
CCAF are eliminated (below −90 dB) inside the Doppler
interval [0, 0.05] rad. The corresponding velocity interval is
[0, 6] m/s according to normalized Doppler shift θ = 2π fdT
and velocity v = c fd/2 fc. Here, c = 3×108 m/s is the speed
of light.

Figure 2 shows the CAAF and CCAF based on the
method in [15]. The range sidelobes of CAAF are no more
than −90 dB within the Doppler interval [0, 0.5] rad (i.e., ve-
locity interval [0, 60] m/s) and the cleared region of CCAF
is the Doppler interval [0, 0.1] rad (i.e., velocity interval
[0, 12] m/s).

Figure 3 shows the CAAF and CCAF based on the
proposed generalized null space method. This brings the
range sidelobes below −90 dB inside the Doppler interval
[0, 0.5] rad (i.e., velocity interval [0, 60] m/s). Therefore,
within the Doppler interval [0, 0.5] rad, the proposed wave-
forms can detect the moving target (see Fig. 3(a)) and have
no inter-waveform interference (see Fig. 3(b)). As is shown
in Fig. 3(a), the proposed method has a wider Doppler re-
silient interval than those shown in Fig. 1(a). Besides, the
peak of CAAF in Fig. 3(a) exists, so that the moving target in
the Doppler interval [0, 0.5] rad can be detected. However,
the CAAF in Fig. 2(a) lacks the peak in the Doppler interval
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of roughly [0.3, 0.4] rad, which is problematic for detecting
the moving target. It can be seen from Fig. 3(b) that the
range sidelobes of CCAF are annihilated in a wider Doppler
interval than those shown in Fig. 1(b) and Fig. 2(b). This
means that the performance of suppressing inter-waveform
interference is improved based on the proposed method.

5. Conclusion

In this paper, we proposed a new Doppler resilient transmit-
receive design, which ensures the range sidelobes of CAAF
and CCAF are eliminated within a specified Doppler in-
terval. Besides, the SNR optimization problem is consid-
ered and solved by the unconstrained Nelder-Mead simplex
method. The proposed method achieves range sidelobes
suppression for a target with velocity in [0, 60] m/s.
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