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LETTER
Wireless-Powered Relays Assisted Batteryless IoT Networks
Empowered by Energy Beamforming∗

Yanming CHEN†a), Nonmember, Bin LYU†, Member, Zhen YANG†, and Fei LI†, Nonmembers

SUMMARY In this letter, we propose an energy beamforming empow-
ered relaying scheme for a batteryless IoT network, where wireless-powered
relays are deployed between the hybrid access point (HAP) and batteryless
IoT devices to assist the uplink information transmission from the devices
to the HAP. In particular, the HAP first exploits energy beamforming to effi-
ciently transmit radio frequency (RF) signals to transfer energy to the relays
and as the incident signals to enable the information backscattering of bat-
teryless IoT devices. Then, each relay uses the harvested energy to forward
the decoded signals from its corresponding batteryless IoT device to the
HAP, where the maximum-ratio combing is used for further performance
improvement. To maximize the network sum-rate, the joint optimization of
energy beamforming vectors at the HAP, network time scheduling, power
allocation at the relays, and relection coefficient at the users is investi-
gated. As the formulated problem is non-convex, we propose an alternating
optimization algorithm with the variable substitution and semi-definite re-
laxation (SDR) techniques to solve it efficiently. Specifically, we prove that
the obtained energy beamforming matrices are always rank-one. Numerical
results show that compared to the benchmark schemes, the proposed scheme
can achieve a significant sum-rate gain.
key words: relaying scheme, energy beamforming, batteryless IoT network,
sum-rate maximization

1. Introduction

With the development of Internet of Things (IoT), IoT de-
vices are deployed throughout our daily life. However, IoT
devices are usually energy-constrained as their battery ca-
pacities are limited, which seriously affects the lifetime of
IoT devices. To address this issue, the way of replacing or
recharging these batteries manually can be considered, but
the cost of which is unacceptable especially when the num-
ber of IoT devices is numerous. Recently, wireless power
transfer (WPT) has been considered as a promising way to
extend the lifetime of IoT devices [1]. In particular, IoT de-
vices can harvest energy from the ambient radio frequency
(RF) signals and store the harvested energy in their batteries
for future usage. However, the WPT efficiency is typically
low due to the severe path-loss. Thus, a long duration of
energy harvesting (EH) is required, which reduces the time
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for IoT devices’ information transmission and limits the im-
provement of network performance.

Recently, batteryless IoT devices based on the backscat-
ter communication (BackCom) technology has received a lot
of attention from industry and academia. For batteryless IoT
devices, the information transmission is achieved by reflect-
ing the incident signals via adjusting their load impedance
periodically [2]. Hence, the circuit power consumption of
batteryless IoT devices is quite small and can be covered by
instantaneously absorbing a portion of incident signal power.
Hence, the duration of EH is not required for batteryless IoT
devices, which thus have been widely applied in practice [3].
However, the main limitation of batteryless IoT devices is the
short transmission range. Thus, how to address this draw-
back is a urgent need to promote the ubiquitous deployment
of batteryless IoT devices in the near future.

Relaying transmission is an efficient way to extend the
transmission range of batteryless IoT devices. In [4], a relay
node enabled by BackComwas adopted to forward the infor-
mation transmission in a batteryless IoT network. However,
as the transmission distance of the relay node is also short,
the extension of network coverage is still limited. Thus,
relaying schemes with satisfying transmission range should
be investigated. In [5], the active relays are employed to
assist the information delivery in batteryless IoT networks.
Specifically, the active relays first harvest energy from a hy-
brid access point (HAP) and then use the harvested energy
to actively forward the information from batteryless IoT de-
vices to the destination, which extends the network coverage
significantly. However, as the HAP is only with single an-
tenna, the efficiency of downlink energy transfer and uplink
information forwarding is low especially if the distance be-
tween the HAP and relays/batteryless IoT devices is large,
which severely degrades the network performance. To deal
with this problem, solutions to enhance energy and com-
munication efficiency of batteryless IoT networks should be
proposed.

In this letter, we propose an energy beamforming em-
powered relaying scheme for batteryless IoT networks, where
wireless-powered relays are adopted to build the uplink trans-
mission links from batteryless IoT devices to the HAP. In
particular, the HAP with multi-antenna first exploits energy
beamforming to transmit RF signals to enable the informa-
tion backscattering of batteryless IoT devices and EH of
wireless-powered relays. Then, the maximum-ratio comb-
ing (MRC) is used at the HAP to enhance the efficiency of
information forwarding from the relays to the HAP by using
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the harvested energy. We aim to maximize the network sum-
rate by jointly optimizing the energy beamforming vectors
at the HAP, time scheduling for network, reflection coef-
ficient of users, and transmit power at the relays. As the
formulated problem is non-convex, we propose an alternat-
ing optimization (AO) algorithm to decompose the original
problem into two sub-problems by introducing some aux-
iliary variables. For the first sub-problem, we first apply
the semi-definite relaxation (SDR) technique to solve it ef-
ficiently. Then, we prove that the optimal energy beam-
forming matrices obtained by SDR are always rank-one. For
the second sub-problem, the standard optimization method
is applied. In addition, the computational complexity of
the proposed algorithm is analyzed. Finally, numerical re-
sults verify the superiority of the proposed scheme over the
benchmark schemes.

2. System Model

As shown in Fig. 1, we consider a wireless-powered relays
assisted batteryless IoT network, in which there exists an
HAP with sufficient energy supply, N users (i.e., batteryless
IoT devices), and N wireless-powered relays. The HAP is
equippedwith M antennas and the other devices each has sin-
gle antenna. Each user is equipped with a BackCom circuit
and delivers its information to the HAP by backscattering
the RF signals from the HAP. However, due to the limited
backscattering range of users, the direct uplink transmission
from the users to the HAP is unavailable†. Thus, the re-
lays supporting the HTT protocol are deployed between the
HAP and users. In particular, the i-th relay (denoted by
Gi, i = 1, . . . ,N) first harvests energy from the HAP and
then uses the harvested energy to forward the information of
the i-th user (denote by Ui i = 1, . . . ,N) to the HAP via the
decode-and-forward (DF) mode.

Denote the downlink channels from the HAP to Gi and
from the HAP to Ui as hH

i,g ∈ C
1×M and hH

i,u ∈ C
1×M , re-

spectively. The uplink channels fromUi toGi and fromGi to
the HAP are denoted by gi,u and gi,g ∈ C

M×1, respectively.
†As the HAP transmits energy signals actively, its transmission

range is much larger than that of the users. Thus, the downlink
transmission links from the HAP to users are available.

Fig. 1 Wireless-powered relays assisted batteryless IoT Network.

We divide the transmission block, normalized to be one, into
two phases, i.e., data backscattering (DB) phase and data
transmission (DT) phase. In the DB phase, the HAP trans-
mits RF signals to enable both EH of relays and information
backscattering of users. Specifically, Ui backscatters infor-
mation by riding over the RF signals from the HAP to the
Gi during bi , while the other relays simultaneously harvest
energy from the HAP. The total EH time of Gi is expressed
as

∑N
j=0 bj − bi , where b0 is a dedicated time slot for energy

harvesting. In the DT phase, Gi forwards its decoded sig-
nal to the HAP during ti . Thus, the time constraint for the
network is given by

∑N
i=0 bi +

∑N
i=1 ti ≤ 1.

The HAP’s transmit signal in bi is denoted by xi(t) =√
PHwis(t), where PH is the maximum transmit power at

the HAP, wi ∈ C
M×1 satisfying | |wi | |

2 ≤ 1 is the energy
beamforming vector in bi , and s(t) is previously generated
sequence with unit power. In the DB phase, the received
signal at Ui is expressed as yi,u =

√
PHhH

i,uwis(t). It is
worth noting that Ui should absorb a part of received signal
to enable the BackCom circuit for the DB [6]. Denote ρ as
the reflection coefficient of Ui , where 0 ≤ ρ ≤ 1. Thus,
the instantaneous absorbed power by Ui , denoted by Pu,i ,
is given by Pi,u = (1 − ρ)PH |h

H
i,uwi |

2. We then have the
power causality constraint at Ui , i.e., Pc,u ≤ Pi,u , where
Pc,u is the circuit power consumption at Ui . The reflected
signal at Ui is expressed as ui =

√
ρ
√

PHhH
i,uwis(t)ci(t),

where ci(t) satisfying E[|ci(t)|2] = 1 denotes the intended
signal needed to be delivered by Ui . The received signal
at Gi during bi is expressed as yi,g =

√
PHhH

i,gwis(t) +
√
ρ
√

PHgi,uh
H
i,uwis(t)ci(t) + ni,g, where ni,g ∼ CN(0, σ2

i,g)

is the noise at Gi . As s(t) can be previously known and
the power of

√
PHhH

i,gwis(t) is much larger than that of
√
ρ
√

PHgi,uh
H
i,uwis(t)ci(t), we employ the self-interference

cancellation technique to cancel the interference from yi,g,
i.e.,
√

PHhH
i,gwis(t). Thus, the signal-to-noise ratio (SNR)

at Gi can be formulated as γi,g = ρPH |gi,u |
2 |hH

i,uwi |
2/σ2

i,g.
Then, the achievable rate from Ui to Gi for i = 1, . . . ,N is
expressed as Ri,1 = bi log2(1 + γi,g). As the backscattering
range of Ui is limited and the distance between Ui and G j

( j , i) can be large, we consider that the reflected signal by
Ui can only be received byGi . Thus,Gi in bj ( j , i) can only
harvest energy from theHAP. The received signal byGi in bj ,
denoted by ŷi,g, is expressed as ŷi,g =

√
PHhH

i,gw j s(t)+ni,g.
Thus, the received power byGi in bj is Pi, j ,g = PH |h

H
i,gw j |

2.
The total harvested energy by Gi is then formulated as Ei =

η
∑N

j=0, j,i Pi, j ,gbj = ηPH (
∑N

j=0 bj |h
H
i,gw j |

2 − bi |hH
i,gwi |

2),
where η is the EH efficiency of Ui .

We consider that Gi decodes its received signal suc-
cessfully and then forwards the decoded signal, i.e., ci(t),
to the HAP during ti by using its harvested energy. De-
note the transmit power of Gi as Pi,g, which satisfies
Pi,gti ≤ Ei . Thus, the received signal by the HAP from
Gi during ti is given by yi,h =

√
Pi,ggi,gci(t)+ nh(t), where

nh(t) ∼ CN(0, σ2
h
) is the noise at the HAP. Denote the SNR

at the HAP as γi,h . By exploiting the MRC technique at the
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HAP, γi,h can be expressed as γi,h = Pi,g | |gi,g | |
2/σ2

h
. Then,

the achievable rate from Gi to the HAP during ti is given
by Ri,2 = ti log2(1 + γi,h). In summary, the achievable rate
from Ui to the HAP in the assistance of Gi is formulated as
Ri = min{Ri,1,Ri,2}.

3. Sum-Rate Maximization

In this section, we study the network sum-rate maximization
problem by jointly optimizing the network’s time allocation,
energy beamforming vectors at the HAP, transmit power
at the relays, and relection coefficient at the users. The
optimization problem is formulated as

max
b,t ,R,wi ,P,ρ

N∑
i=1

Ri,

s.t. C1: Ri ≤ Ri,1,∀i,
C2: Ri ≤ Ri,2,∀i

C3:
N∑
i=0

bi +
N∑
i=1

ti ≤ 1,

C4: 0 ≤ bi, ti ≤ 1, ∀i,
C5: ‖wi ‖

2 ≤ 1, ∀i,
C6: Pi,gti ≤ Ei, ∀i,
C7: Pc,u ≤ Pi,u, ∀i,
C8: 0 ≤ ρ ≤ 1,

(P1)

where b = [b0, b1, . . . , bN ], t = [t1, . . . , tN ], R =

[R1, . . . ,RN ], and P = [P1,g, . . . ,PN ,g]. It can be found P1
is a non-convex optimization problem since the variables are
coupled in both the objective function and constraints. To
address this issue, we first introduce some auxiliary vari-
ables to transform P1. We first introduce ŵi =

√
biwi

and set Wi = ŵi ŵ
H
i , where Rank(Wi) = 1, Wi � 0, and

Tr(Wi) ≤ bi . Then, we introduce ei and xi , which sat-
isfy ei = Pi,gti and xi ≤ ρPH |gi,u |

2Tr(hi,uhH
i,uWi)/σ

2
i,g,

respectively. With these new variables, the constraints
C1, C2, C6 and C7 can be recast as C9: Ri ≤

bi log2(1 +
xi
bi
),∀i, C10: Ri ≤ ti log2(1 +

ei | |gi ,g | |
2

σ2
h
ti
),∀i,

C11: ei ≤ ηPH [
∑N

j=0 Tr(hi,gh
H
i,gWj) − Tr(hi,ghH

i,gWi)], ∀i,
and C12: (1 − ρ)PHTr(hi,uhH

i,uWi) ≥ Pc,u, ∀i, respectively.
Then, P1 can be transformed into the following problem,
which is given by

max
b,t ,R,Wi ,e,x,ρ

N∑
i=1

Ri,

s.t. C3, C4 ,C8 − C12,
C13 : xi ≤ ρPH |gi,u |

2Tr(hi,uhH
i,uWi)/σ

2
i,g,∀i,

C14: Tr(Wi) ≤ bi,∀i,
C15: Wi � 0,∀i,
C16: Rank(Wi) = 1,∀i,
C17:ei ≥ 0, ∀i.

(P2)

where e = [e1, . . . , eN ], and x = [x1, . . . , xN ]. It can be
found that P2 is still non-convex due to the constraints C12
and C13, which cannot be solved by standard convex op-
timization methods. To solve P2, we propose an AO al-
gorithm. First, we optimize {b, t,R,Wi, e, x} with ρ fixed.
Second, we optimize {R, x, ρ} with {b, t,Wi, e} fixed. By
iteratively implementing the above two steps, we can finally
obtain a sub-optimal solution to P2 with satisfying accuracy.

3.1 Optimizing {b, t,R,Wi, e, x} with ρ Fixed

Given ρ, we first optimize {b, t,R,Wi, e, x} in the following
problem

max
b,t ,R,Wi ,e,x

N∑
i=1

Ri,

s.t. C3, C4 , C9 − C17.

(P3)

Proposition 1: After relaxing the constraint C16 by the
SDR technique [7], P3 is a convex optimization problem.

Proof 1: We first define a concave function with respect to
xi as fi(xi) = log2(1+ xi). Due to the fact that the concavity
can be kept by the perspective operation [8], we can obtain
that bi log2(1+

xi
bi
) is concavewith respect to xi and bi . Thus,

the constraint C9 is convex. Similarly, we can prove that the
constraint C10 is convex. It is obvious the other constraints
are affine. In addition, the objective function is linear. Thus,
we can obtain that P3 is a convex optimization problem.

According to Proposition 1, we can use theCVX tool [9]
to solve P3 directly. However, the obtained energy beam-
forming matrices by applying the SDR technique may not
satisfy the rank-one constraint shown in C16. In the fol-
lowing proposition, we will verify the tightness of the SDR
technique.

Proposition 2: The optimal solution to P3, denoted byW ∗i ,
is a rank-one matrix, where i = 1, . . . ,N .

Proof 2: The Lagrangian of P3 is expressed as

L =

N∑
i=1

νiηPH [

N∑
j=0

Tr(hi,ghH
i,gWj) − Tr(hi,ghH

i,gWi)]

+

N∑
i=1
[µiρ|gi,u |

2/σ2
i,g + ϕ(1 − ρ)]PHTr(hi,uhH

i,uWi)

−

N∑
i=0

λiTr(Wi) +

N∑
i=0

Tr(ΩiWi) + ξ (1)

where νi ≥ 0, ϕ ≥ 0, µi ≥ 0, λi ≥ 0, and Ωi � 0 are
the multipliers associated with the constraints C11- C15,
respectively, ξ represents the term unrelated with Wi . The
Karush–Kuhn–Tucker (KKT) conditions of P3 are given by

∂L

∂W0
= Ω∗0 − λ

∗
0IM +

N∑
j=1

ν∗j ηPHh j ,gh
H
j ,g = 0, (2)
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∂L

∂Wi
= Ω∗i − Ai + Bi = 0, i = 1, . . . ,N, (3)

Tr(Ω∗iW
∗
i ) = 0, i = 0,1, . . . ,N, (4)

where Bi = [µiρ|gi,u |
2/σ2

i,g+ϕ(1− ρ)]PHhi,uh
H
i,uWi , Ai =

λ∗i IM + ν
∗
i ηPHhi,gh

H
i,g −

∑N
j=1 ν

∗
j ηPHh j ,gh

H
j ,g, ν

∗
i , µ

∗
i , λ

∗
i ,

and Ω∗i are the optimal multipliers.
We first prove Wi for i = 1, . . . ,N are rank-one. It is

obvious in the optimal condition, the constraints C11 and
C14 hold as equalities. Thus, we can obtain that λ∗i and
ν∗i are all positive. In addition, the channels, i.e., hH

i,g for
i = 1, . . . ,N , are independently distributed. Thus, Ai is a
full-rank matrix, i.e., Rank(Ai) = M . From (3), we can
obtain Rank(Ω∗i ) = Rank(Ai − Bi) ≥ M − 1 because the
rank of Bi is one. If Rank(Ω∗i ) = M , W ∗i = 0 according
to (4). It is obvious W ∗i = 0 is not the optimal solution. If
Rank(Ω∗i ) = M − 1, we can find a vector spanning the null
space of Ωi . Thus, according to (4), we can conclude that
W ∗i is a rank-one matrix. Similarly, we can proveW0 is also
rank-one.

This thus proves Proposition 2.

From Proposition 2, the optimal energy beamform-
ing vectors, denoted by w∗i , can be achieved by applying
Cholesky decomposition of W ∗i .

3.2 Optimization of {R, x, ρ} with {b, t,Wi, e} Fixed

Given {b, t,Wi, e}, we then optimize {R, x, ρ} in the follow-
ing problem

max
R,x,ρ

N∑
i=1

Ri,

s.t. C8, C9, C10, C12, C13.

(P4)

where x = [x1, . . . , xN ]. It can be proved that P4 is a convex
optimization problem and can be solved by the CVX tool.

The algorithm to solve the optimization problem
is shown in Algorithm 1. It can be found that the
objective function’s value of P1 is a non-decreasing
function after each iteration. Hence, the convergence
of Algorithm 1 can be guaranteed. We then an-
alyze the computational complexity of Algorithm 1.
The computational complexities for solving P3 and
P4 are O

(
(N M2 + 5N + 1)2 (M2N2 + N M2 + 11N + 3)

)
O(
√

2N + 1), respectively. Thus, the total computational
complexity of Algorithm 1 is O((N M2 + 5N + 1)2 (M2N2 +

Algorithm 1 The Algorithm for Solving P1.
1: Initialize ρi , where i = 0 is the iteration index for the proposed AO

algorithm.
2: repeat
3: Solve P3 to obtain bi+1, t i+1,W i+1

i , and ei+1.
4: Solve P4 to obtain ρi+1.
5: Update i = i + 1.
6: until the convergence is achieved.

N M2 + 11N + 3)L +
√

2N + 1L), where L is the required
number of iterations to achieve convergence.

4. Numerical Results

In this section, numerical results are provided to show the
superiority of the proposed scheme. The channels are mod-
eled following the setting in [10], which are composed of
the large-scale path-loss and small-scale fading. The large-
scale path-loss model is expressed asC0

(
dm,n/d0

)−α, where
C0 = (ζ/(4π))2 is the path-loss at the reference distance d0
= 1 m, ζ is the wavelength with the carrier frequency of 750
MHz, dm,n denotes the distance between two nodes m and n,
α is the path loss exponent and set at 2. The small-scale fad-
ing model is considered to be Rayleigh fading with circularly
symmetric complex Gaussian random variables with zero
mean and unit variance. Denote the distances between the
HAP and Ui , between the HAP and Gi , and between Ui and
Gi as dHAP,Ui , dHAP,Gi , and dUi ,Gi , respectively. Unless
other stated, the parameters are set as follows: dHAP,Ui = 10
m, dHAP,Gi = 9 m, dUi ,Gi = 2 m, N = 5, η = 0.7, M = 5,
σ2
i,g = σ

2
h
= −70 dBm, and Pc,u = 0.25 µW. The following

schemes are considered for performance comparisons.

• Random energy beamforming scheme: The energy
beamforming vector wi in bi is generated randomly,
while the network time allocation, transmit power at the
relays and reflection coefficient are jointly optimized.

• Equal time allocation scheme: The duration of each
time slot is the same, i.e., bi = ti = 1/(2N +1). In addi-
tion, the energy beamforming vectors, transmit power
at the relays and reflection coefficient are jointly opti-
mized.

Figure 2 investigates the achievable sum-rate versus the
HAP’s transmit power. It can be observed that as the trans-
mit power increases, the sum-rates of all schemes improve.
This is because a higher transmit power can make the re-
lays harvest more energy from the HAP and the users reflect
information with a larger power, which thus enhances the
performance of both DB and DT phases. We can also ob-
serve that the proposed scheme can always achieve the best
performance, which confirms the necessity of optimizing the

Fig. 2 Sum-rate versus transmit power at the HAP.
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Fig. 3 Sum-rate versus number of antennas at the HAP.

Fig. 4 Sum-rate versus number of users.

energy beamforming and time allocation.
Figure 3 shows the effect of the number of antennas

at the HAP on the achievable sum-rate. As the number of
antennas at the HAP increases, the sum-rates of all schemes
improve. The reason is that more diversity can be achieved
for a larger number of antennas. In addition, the number
of the sum-rate gap between the proposed scheme and the
scheme with random energy beamforming is also an increas-
ing function with respect to the number of antennas, which
indicates the importance of energy beamforming optimiza-
tion. When the number of antennas at the HAP is small, e.g.,
M = 2, the sum-rate of the scheme with equal time alloca-
tion is smaller than that of the scheme with random energy
beamforming. However, the sum-rate of the scheme with
equal time allocation is better when the number of antennas
at the HAP become large.

In Fig. 4, we evaluate the achievable sum-rate versus
the number of users (relays). The sum-rates of all schemes
are increasing functions with respect to the number of users.
Again, we find that the proposed scheme can achieve the best

performance compared to the benchmark schemes,
which confirms the superiority of the proposed scheme.

5. Conclusions

In this letter, we have proposed an efficient relaying scheme
for batteryless IoT networks empowered by energy beam-
forming at the HAP, where the information delivery from
the batteryless IoT devices to the HAP is assisted by the
wireless-powered relays. The energy beamforming has been
exploited at the HAP for enhancing the efficiency of energy
transfer to the relays, information backscattering from the
batteryless IoT devices to the relays, and information for-
warding from the relays to the HAP. We have formulated a
problem to maximize the network sum-rate and proposed an
AO algorithm with the variable substitution and SDR tech-
niques to solve it efficiently. In addition, we can proved
the tightness of the SDR technique, i.e., the obtained energy
beamforming matrices are rank-one. Numerical results have
been provided to verify the performance of the proposed
scheme.

References

[1] P. Ramezani and A. Jamalipour, “Toward the evolution of wireless
powered communication networks for the future Internet of Things,”
IEEE Netw., vol.31, no.6, pp.62–69, Nov./Dec. 2017.

[2] C. Boyer and S. Roy, “Backscatter communication and RFID: Cod-
ing, energy, and MIMO analysis,” IEEE Trans. Commun., vol.62,
no.3, pp.770–785, March 2014.

[3] B. Lyu, D.T. Hoang, and Z. Yang, “Backscatter then forward: A
relaying scheme for batteryless IoT networks,” IEEE Wireless Com-
mun. Lett., vol.9, no.4, pp.562–566, April 2020.

[4] S.Gong, X.Huang, J. Xu,W.Liu, P.Wang, andD.Niyato, “Backscat-
ter relay communications powered bywireless energy beamforming,”
IEEE Trans. Commun., vol.66, no.7, pp.3187–3200, July 2018.

[5] B. Lyu and D.T. Hoang, “Optimal time scheduling in relay assisted
batteryless IoT networks,” IEEE Wireless Commun. Lett., vol.9,
no.5, pp.706–710, May 2020.

[6] D.T. Hoang, D. Niyato, P. Wang, D.I. Kim, and Z. Han, “Ambi-
ent backscatter: A new approach to improve network performance
for RF-powered cognitive radio networks,” IEEE Trans. Commun.,
vol.65, no.9, pp.3659–3674, Sept. 2017.

[7] Z.Q. Luo, W.-K. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite re-
laxation of quadratic optimization problems,” IEEE Signal Process.,
vol.27, no.3, pp.20–34, May 2010.

[8] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[9] M. Grant et al., “CVX: Matlab software for disciplined convex pro-
gramming,” Available Online: http://cvxr.com/cvx, Sept. 2013.

[10] Q. Wu and R. Zhang, “Weighted sum power maximization for in-
telligent reflecting surface aided SWIPT,” IEEE Wireless Commun.
Lett., vol.9, no.5, pp.586–590, May 2020.

http://dx.doi.org/10.1109/mnet.2017.1700006
http://dx.doi.org/10.1109/mnet.2017.1700006
http://dx.doi.org/10.1109/mnet.2017.1700006
http://dx.doi.org/10.1109/tcomm.2013.120713.130417
http://dx.doi.org/10.1109/tcomm.2013.120713.130417
http://dx.doi.org/10.1109/tcomm.2013.120713.130417
http://dx.doi.org/10.1109/lwc.2019.2962415
http://dx.doi.org/10.1109/lwc.2019.2962415
http://dx.doi.org/10.1109/lwc.2019.2962415
http://dx.doi.org/10.1109/tcomm.2018.2809613
http://dx.doi.org/10.1109/tcomm.2018.2809613
http://dx.doi.org/10.1109/tcomm.2018.2809613
http://dx.doi.org/10.1109/lwc.2020.2966613
http://dx.doi.org/10.1109/lwc.2020.2966613
http://dx.doi.org/10.1109/lwc.2020.2966613
http://dx.doi.org/10.1109/tcomm.2017.2710338
http://dx.doi.org/10.1109/tcomm.2017.2710338
http://dx.doi.org/10.1109/tcomm.2017.2710338
http://dx.doi.org/10.1109/tcomm.2017.2710338
http://dx.doi.org/10.1109/msp.2010.936019
http://dx.doi.org/10.1109/msp.2010.936019
http://dx.doi.org/10.1109/msp.2010.936019
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1017/cbo9780511804441
http://cvxr.com/cvx
http://cvxr.com/cvx
http://dx.doi.org/10.1109/lwc.2019.2961656
http://dx.doi.org/10.1109/lwc.2019.2961656
http://dx.doi.org/10.1109/lwc.2019.2961656

