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On the Construction of Variable Strength Orthogonal Arrays∗

Qingjuan ZHANG†, Nonmember, Shanqi PANG††a), Member, and Yuan LI†, Nonmember

SUMMARY Variable strength orthogonal array, as a special form of
variable strength covering array, plays an important role in computer soft-
ware testing and cryptography. In this paper, we study the construction of
variable strength orthogonal arrays with strength two containing strength
greater than two by Galois field and construct some variable strength
orthogonal arrays with strength l containing strength greater than l by Fan-
construction.
key words: variable strength orthogonal arrays, Galois field, Fan-
construction, covering array

1. Introduction

An orthogonal array (OA) OA(N,mk1
1 mk2

2 · · ·m
kv
v , t) is an ar-

ray of size N×n, where n = k1+k2+· · ·+kv is the total number
of factors, in which the first k1 columns have symbols from
{0, 1, . . . ,m1 − 1}, the next k2 columns have symbols from
{0, 1, . . . ,m2 − 1}, and so on, with the property that in any
N× t subarray every possible t-tuple occurs an equal number
of times as a row. An OA with m1 = m2 = · · · = mv = m
is called symmetric and denoted by OA(N,mn, t) for short;
otherwise, the array is called asymmetric.

OAs are of great importance in statistics and combina-
torics, and they are widely used in computer science, coding
theory, cryptography, information sciences and quantum
information theory [1]–[6]. Recently, the use of OAs has
been extended to software testing [7], [8]. One of OAs’
advantages is making it relatively easy to identify the partic-
ular combination that caused a failure. Soon covering arrays
(CAs) the natural generalizations of OAs are introduced in
software testing. Motivated by the effectiveness of CAs, a
number of recent studies have focused on the construction
of CAs [9]–[17].

In some complex software testing, interactions do not
often exist uniformly between parameters. Some parameters
have strong interactions with each other while others may
have few or no interactions. For this reason, Cohen et
al. [18] proposed a new object, variable strength covering
array (VCA), which provides a more robust environment
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for software interaction testing. In this case, VCAs may be
more effective and efficient in comparison with CAs. Cohen
et al. [19] developed Simulated Annealing to support VCA
construction. Chen et al. [20] adopted an improved version
of Ant Colony Algorithm in a strategy called Ant Colony
System to support VCA construction. Raaphorst et al. [21]
introduced a special form of VCA, said variable strength
orthogonal array (VOA) and they used linear feedback shift
registers to construct VOAs.

However, above results were focused on strengths of
two and three only. Recent studies demonstrate the need to
go up to t = 6 in order to capture most fault. Other than
the results reported by Ahmed et al. [22], little is known
regarding the construction methods for VCAs including
strength higher than three. Consequently, despite the needs
in practical applications, there are still challenging unsolved
problems in this area. The construction of OAs has been
made new progress recently. New construction methods are
constantly proposed in Pang et al. [29], Wang et al. [30],
Pang et al. [31], Pang et al. [32], Zhang et al. [33], Pang et
al. [34], Du et al. [35], Pang et al. [36] and Pang et al. [37],
which could facilitate the construction of related structures
to OAs. Moreover, communications and computer sciences
often benefit from OAs and related structures. The study
of constructions of VOAs is conducive to promoting the
constructions of such VCAs.

Compared with VOAs presented in [21] whose strength
did not consider higher than three, we extend the strengths
to four, five and even arbitrary strength. And most of VOAs
constructed by Galois field are optimal VCAs, namely N is
equal to the product of the largest t numbers of levels. The
majority of VCAs constructed in [22] comprise strengths
four and five, but there are few results about VCAs contain-
ing strength six. In this paper, we construct three families of
VOAs containing arbitrary strength.

As a special form of VCA, VOA plays an important
role in computer software testing and cryptography. There-
fore, it is not only of theoretical importance but also of
great application value to construct VOAs. In this paper, we
study the construction of VOAs with strength two contain-
ing strength greater than two by Galois field and construct
some VOAs with strength l containing strength greater than
l by Fan-construction.

2. Preliminaries

In this section, we introduce relevant notations, definitions,
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and lemmas.
In this work, 0r represents the r × 1 vector of zeros, for

a matrix A, A
′

denotes its transpose, and we denote a Galois
field of order m by GF(m).

Definition 1: A VOA, denoted by VOA(N; t,mk1
1 mk2

2 · · ·m
kv
v ,

D), is an N × n OA of strength t containing a submatrix D
which is an N × n

′

OA of strength t
′

, where n = k1 + k2 +

· · · + kv, t ≤ t
′

, n
′

≤ n and t
′

≤ n
′

.

Definition 2: ([23]) Let A be an OA(N,mk1
1 · · ·m

kv
v , t) for

n = k1 + k2 + . . . + kv. Suppose that B is an arbitrary F × n
subarray of A. We say that B is a fan of A, if B is an OA
of strength t − 1. And we say that two row-disjoint fans
of A are uniform if any t − 1 columns in both arrays cover
all (t − 1)-tuples of values from the t − 1 columns an equal
number of times. If the N rows of A can be partitioned into
M uniformly row-disjoint fans, then we refer to A as an M-
divisible OA.

Lemma 1: ([24]) Consider an r ×
n∑

i=1
ui matrix C =

[P1
...P2

... · · ·
...Pn], Pi = [pi1,pi2, . . . ,piui

], 1 ≤ i ≤ n, such
that for every choice of t matrices Pi1 , . . ., Pit from P1, . . .,

Pn, the N ×
t∑

j=1
ui j matrix [Pi1

...Pi2

... · · ·
...Pit ] has full column

rank over GF(m). Then an OA(mr, n, (mu1 )(mu2 ) · · · (mun ), t)
can be constructed.

Lemma 2: ([25]) If m ≥ 2 is a prime power, then the array
OA(mt+1, (m2)mm+1, t) can be constructed whenever m ≥ t ≥
1.

Lemma 3: ([26]) An OA(m5, (m2)mm2+m+1, 3) can be con-
structed for any prime power m.

Lemma 4: ([24]) If m is a prime power, then an
OA(m6, (m2)2mm+1, 4) can be constructed.

Lemma 5: ([25]) If m ≥ 4 is a power of two, then the array
OA(m7, (m2)2mm+1, 5) can be constructed.

Lemma 6: ([23])(Fan-construction) Suppose that there is
an M-divisible OA(N,mu1

1 mu2
2 · · ·m

uv
v , t). Then there exist

(i) an OA(N,mu1
1 mu2

2 · · ·m
uv
v M, t);

(ii) an OA(N,mu1
1 mu2

2 · · ·m
uv
v dh1

1 dh2
2 · · · d

hs
s , h) with h =

min{t, l}, provided that an OA(M, dh1
1 dh2

2 · · · d
hs
s , l) exists;

(iii) an OA(N,mu1
1 mu2

2 · · ·m
uv
v dh1

1 dh2
2 · · · d

hs
s , t), if

s∏
i=1

dhi
i |M.

Lemma 7: ([27]) If m ≥ 2 is a prime power, then an
OA(mt,mm+1, t) of index unity exists whenever m ≥ t−1 ≥ 0.

3. Main Results

3.1 Construction of VOAs by Galois Field

Theorem 1: If m ≥ 2 is a prime power and
t ≥ 3 is an integer, then we can construct the
array VOA(mt+1; 2, (m2)mmt+···+m2

,D), where D is an

OA(mt+1, (m2)mm+1, t).

Proof. Let γs = mt + mt−1 + · · · + mt−(s−1) + 2 for

s = 1, 2, . . . , t − 1. Let P1 =

[
1 0 0 · · · 0 0
0 1 0 · · · 0 0

]′
, P2 =[

0 0 0 · · · 0 1
]′

, Pi =
[
αt−2

i−2 α
t−1
i−2 1 αi−2 · · · α

t−2
i−2

]′
for

3 ≤ i ≤ m + 2, where α1, . . . , αm are distinct elements of
GF(m), Pl =

[
x1(l−m−2) · · · x(t+1)(l−m−2)

]′
for m + 3 ≤ l ≤

mt + 2, where x j(l−m−2) ∈ GF(m) is the jth component of the
vector Pl for 1 ≤ j ≤ t + 1, x3(l−m−2) = 1, and Pl , Pi for
3 ≤ i ≤ m + 2, Pq =

[
x1(q−m−2) x2(q−m−2) · · · x(t+1)(q−m−2)

]′
for γp−1 + 1 ≤ q ≤ γp and 2 ≤ p ≤ t − 2, where
x j(q−m−2) ∈ GF(m) is the jth component of the vector Pq
for 1 ≤ j ≤ t + 1, x3(q−m−2) = · · · = x(p+1)(q−m−2) = 0
and x(p+2)(q−m−2) = 1, Pw =

[
x1(w−m−2) · · · x(t+1)(w−m−2)

]′
for γt−1 + 1 ≤ w ≤ γt − 1, where x j(w−m−2) ∈ GF(m) is
the jth component of the vector Pw for 1 ≤ j ≤ t + 1,
x3(w−m−2) = x4(w−m−2) = · · · = xt(w−m−2) = 0, x(t+1)(w−m−2) =

1, and Pw , P2.
From Lemma 2, we know the matrix consisting of any t

of matrices P1, P2, P3, . . ., Pm+2 has full column rank. Next,

we need to prove the matrix [Pi1

...Pi2 ] consisting of any two
of matrices P1, P2, . . ., Pmt+mt−1+···+m2+1 has full column rank.
In the following, we denote x j(i−m−2) by x ji and α j

i−2 by α j
i .

(i) Let i1 = 1 and i2 ∈ {m + 3,m + 4, . . . ,mt + 2}. Then

[Pi1

...Pi2 ] =

 1 0 0 0 · · · 0
0 1 0 0 · · · 0

x1i2 x2i2 1 x4i2 · · · x(t+1)i2


′

.

The determinant of the 3 × 3 submatrix composed of

the first three rows of the matrix [Pi1

...Pi2 ] is 1. Hence, the

matrix [Pi1

...Pi2 ] has full column rank.
(ii) Let i1 = 1 and i2 ∈ {γp−1 + 1, γp−1 + 2, . . . , γp} for

2 ≤ p ≤ t − 2. Then

[Pi1

...Pi2 ] =


1 0 0′p−1 0 0 · · · 0
0 1 0′p−1 0 0 · · · 0

x1i2 x2i2 0′p−1 1 x(p+3)i2 ) · · · x(t+1)i2


′

.

By similar arguments as in (i), the matrix [Pi1

...Pi2 ] has
rank 3.

(iii) Let i1 = 1 and i2 ∈ {γt−2 + 1, γt−2 + 2, . . . , γt−1 − 1}.
Then

[Pi1

...Pi2 ] =

 1 0 0′t−1 0
0 1 0′t−1 0

x1i2 x2i2 0′t−1 1


′

.

It is obvious that this matrix has rank 3.
(iv) Let i1 = 2 and i2 ∈ {m + 3,m + 4, . . . ,mt + 2}. Then

[Pi1

...Pi2 ] =

[
0 0 0 0 · · · 1

x1i2 x2i2 1 x4i2 · · · x(t+1)i2

]′
.

The 2 × 2 submatrix formed by the third and (t + 1)th



ZHANG et al.: ON THE CONSTRUCTION OF VARIABLE STRENGTH ORTHOGONAL ARRAYS
685

rows is clearly nonsingular.
(v) Let i1 = 2 and i2 ∈ {γp−1 + 1, γp−1 + 2, . . . , γp} for

2 ≤ p ≤ t − 2. Then

[Pi1

...Pi2 ] =

[
0 0 0′p−1 0 0 · · · 1

x1i2 x2i2 0′p−1 1 x(p+3)i2 · · · x(t+1)i2

]′
.

The determinant of the 2 × 2 submatrix formed by the
(p + 2)th and (t + 1)th rows is −1.

(vi) Let i1 = 2 and i2 ∈ {γt−2 + 1, γt−2 + 2, . . . , γt−1 − 1}.
Then

[Pi1

...Pi2 ] =

[
0 0 0′t−1 1

x1i2 x2i2 0′t−1 1

]′
.

Without loss of generality, one can assume that x1i2 , 0
since Pi1 , Pi2 . The determinant of the 2 × 2 submatrix
formed by the first and (t + 1)th rows is −x1i2 .

(vii) Let i1 ∈ {3, 4, . . . ,m + 2} and i2 ∈ {m + 3,m +

4, . . . ,mt + 2}. Then

[Pi1

...Pi2 ] =

[
αt−2

i1
αt−1

i1
1 αi1 · · · αt−2

i1
x1i2 x2i2 1 x4i2 · · · x(t+1)i2

]′
.

Naturally, we can suppose that x1i2 , α
t−2
i1

since Pi1 ,
Pi2 for 3 ≤ i1 ≤ m + 2. The 2×2 submatrix given by the first
and third rows is nonsingular.

(viii) Let i1 ∈ {3, 4, . . . ,m+2} and i2 ∈ {γp−1 +1, γp−1 +

2, . . . , γp} for 2 ≤ p ≤ t − 2. Then

[Pi1

...Pi2 ] =

[
αt−2

i1
αt−1

i1
1αi1 · · ·α

p−2
i1

α
p−1
i1

α
p
i1
· · · αt−2

i1
x1i2 x2i2 0 0 · · · 0 1 x(p+3)i2 · · ·x(t+1)i2

]′
.

The 2 × 2 submatrix given by the third and (p + 2)th
rows is seen to be nonsingular.

(ix) Let i1 ∈ {3, 4, . . . ,m + 2} and i2 ∈ {γt−2 + 1, γt−2 +

2, . . . , γt−1 − 1}. Then

[Pi1

...Pi2 ] =

[
αt−2

i1
αt−1

i1
1 αi1 · · · α

t−3
i1

αt−2
i1

x1i2 x2i2 0 0 · · · 0 1

]′
.

The rank of this matrix is 2 since the 2 × 2 submatrix
given by the third and (t + 1)th rows is nonsingular.

(x) Let {i1, i2} ⊆ {m + 3,m + 4, . . . ,mt + 2}. Then

[Pi1

...Pi2 ] =

[
x1i1 x2i1 1 x4i1 · · · x(t+1)i1
x1i2 x2i2 1 x4i2 · · · x(t+1)i2

]′
.

Suppose that x1i1 , x1i2 since Pi1 , Pi2 . The determi-
nant of the 2 × 2 submatrix composed of the first and third

rows of the matrix [Pi1

...Pi2 ] is x1i1 − x1i2 .
(xi) Let i1 ∈ {m + 3,m + 4, . . . ,mt + 2} and i2 ∈ {γp−1 +

1, γp−1 + 2, . . . , γp} for 2 ≤ p ≤ t − 2. Then

[Pi1

...Pi2 ] =

[
x1i1 x2i1 1x4i1 · · ·x(p+1)i1 x(p+2)i1 x(p+3)i1 · · ·x(t+1)i1
x1i2 x2i2 0 0 · · · 0 1 x(p+3)i2 · · ·x(t+1)i2

]′
.

It is easy to observe that the above matrix has rank 2.
(xii) Let i1 ∈ {m + 3,m + 4, . . . ,mt + 2} and i2 ∈ {γt−2 +

1, γt−2 + 2, . . . , γt−1 − 1}. Then

[Pi1

...Pi2 ] =

[
x1i1 x2i1 1 x4i1 · · · xti1 x(t+1)i1
x1i2 x2i2 0 0 · · · 0 1

]′
.

Obviously, the rank of this matrix is 2.
(xiii) Let i1 ∈ {γp1−1 + 1, γp1−1 + 2, . . . , γp1 } and i2 ∈

{γp2−1 + 1, γp2−1 + 2, . . . , γp2 } for {p1, p2} ⊆ {2, . . . , t − 2}
(p1 < p2). Then

[Pi1

.

.

.Pi2 ] =

x1i1 x2i1 0′p1−11x(p1+3)i1 · · ·x(p2+1)i1) x(p2+2)i1 x(p2+3)i1 · · ·x(t+1)i1
x1i2 x2i2 0′p1−10 0 · · · 0 1 x(p2+3)i2 · · ·x(t+1)i2

′ .
Clearly, the determinant of the 2 × 2 submatrix given

by the (p1 + 2)th and (p2 + 2)th rows is 1.
(xiv) Let {i1, i2} ⊆ {γp−1 + 1, γp−1 + 2, . . . , γp} for 2 ≤

p ≤ t − 2. Then

[Pi1

...Pi2 ] =

[
x1i1 x2i1 0′p−1 1 x(p+3)i1 · · · x(t+1)i1
x1i2 x2i2 0′p−1 1 x(p+3)i2 · · · x(t+1)i2

]′
.

Assume that x1i1 , x1i2 , then the determinant of the
2 × 2 submatrix composed of the first and (p + 2)th rows is
x1i1 − x1i2 .

(xv) Let i1 ∈ {γp−1+1, γp−1+2, . . . , γp} for 2 ≤ p ≤ t−2
and i2 ∈ {γt−2 + 1, γt−2 + 2, . . . , γt−1 − 1}. Then

[Pi1

...Pi2 ] =

[
x1i1 x2i1 0′p−1 1 x(p+3)i1 · · · xti1 x(t+1)i1
x1i2 x2i2 0′p−1 0 0 · · · 0 1

]′
.

The determinant of the 2 × 2 submatrix composed of
the (p + 2)th and (t + 1)th rows is 1.

(xvi) Let {i1, i2} ⊆ {γt−2 +1, γt−2 +2, . . . , γt−1−1}. Then

[Pi1

...Pi2 ] =

[
x1i1 x2i1 0′t−2 1
x1i2 x2i2 0′t−2 1

]′
.

Due to Pi1 , Pi2 , we can assume that x1i1 , x1i2 . The
determinant of the 2×2 submatrix composed of the first and
(t + 1)th rows is x1i1 − x1i2 .

(xvii) Let {i1, i2} ⊆ {1, 2, . . . ,m + 2}. From Lemma 2,

we know the matrix [Pi1

...Pi2 ] has full column rank.
The array OA(mt+1, (m2)mmt+mt−1+···+m2

, 2) can be con-
structed via Lemma 1. According to Lemma 2, we know
the matrix D consisting of the first (m + 2) columns of the
OA(mt+1, (m2)mmt+mt−1+···+m2

, 2) is an OA(mt+1, (m2)mm+1, t).
Hence, it is a VOA(mt+1; 2, (m2)mmt+···+m2

,D).

Example 1: Let m = 3 and t = 3. Let B be an 34×4 matrix
whose rows are all possible 4-tuples over GF(3) and C be a

4 × 38 matrix which can be written as C = [P1
...P2

... . . .
...P37].

From Theorem 1, we can take

P1 =

[
1 0 0 0
0 1 0 0

]′
, P2 =

[
0 0 0 1

]′
, P3 =

[
0 0 1 0

]′
,

P4 =
[

1 1 1 1
]′

, P5 =
[

2 1 1 2
]′

, P6 =
[

0 0 1 1
]′

,

P7 =
[

0 0 1 2
]′

, P8 =
[

0 1 1 0
]′

, P9 =
[

0 1 1 1
]′

,

P10 =
[

0 1 1 2
]′

, P11 =
[

0 2 1 0
]′

, P12 =
[

0 2 1 1
]′

,
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P13 =
[

0 2 1 2
]′

, P14 =
[

1 0 1 0
]′

, P15 =
[

1 0 1 1
]′

,

P16 =
[

1 0 1 2
]′

, P17 =
[

1 1 1 0
]′

, P18 =
[

1 1 1 2
]′

,

P19 =
[

1 2 1 0
]′

, P20 =
[

1 2 1 1
]′

, P21 =
[

1 2 1 2
]′

,

P22 =
[

2 0 1 0
]′

, P23 =
[

2 0 1 1
]′

, P24 =
[

2 0 1 2
]′

,

P25 =
[

2 1 1 0
]′

, P26 =
[

2 1 1 1
]′

, P27 =
[

2 2 1 0
]′

,

P28 =
[

2 2 1 1
]′

, P29 =
[

2 2 1 2
]′

, P30 =
[

0 1 0 1
]′

,

P31 =
[

0 2 0 1
]′

, P32 =
[

1 0 0 1
]′

, P33 =
[

1 1 0 1
]′

,

P34 =
[

1 2 0 1
]′

, P35 =
[

2 0 0 1
]′

, P36 =
[

2 1 0 1
]′

,

P37 =
[

2 2 0 1
]′

.
Then, on computing BC and replacing the 9 combi-

nations (0, 0), (0, 1), . . ., (2, 2) under the first two columns
of BC by 9 distinct symbols 0, 1, · · · , 8, we can obtain the
OA(34, (9)1336, 2). From Lemma 2, we know the matrix D
consisting of the first five columns of the OA(34, (9)1336, 2)
is an OA(34, (9)134, 3). Thus the array OA(34, (9)1336, 2) is
a VOA(34; 2, 91336,D).

Theorem 2: A VOA(m5; 2, (m2)mm4+···+m2
,D) can be con-

structed for any prime power m, where D is an
OA(m5, (m2)mm2+m+1, 3).

Proof. Let τ = (m2 + m + 2). Let P1 =

[
1 0 0 0 0
0 1 0 0 0

]′
,

P2 =
[

1 0 0 0 1
]′

, Pi =
[

1 α2
i−2 0 1 αi−2

]′
for 3 ≤ i ≤

m + 2, where α1, . . . , αm are distinct elements of GF(m),
P j =

[
0 f (β j−(m+2), ξ j−(m+2)) 1 β j−(m+2) ξ j−(m+2)

]′
for m +

3 ≤ j ≤ m2+m+2, where f is an irreducible binary quadratic
form over GF(m) and β j−(m+2) and ξ j−(m+2) denote any two
elements of GF(m), Pk =

[
x1(k−τ) x2(k−τ) 1 x4(k−τ) x5(k−τ)

]′
for m2 + m + 3 ≤ k ≤ m4 + m + 2, where xp(k−τ) ∈ GF(m)
is the pth component of the vector Pk for 1 ≤ p ≤ 5,
x3(k−τ) = 1, and Pk , P j for m + 3 ≤ j ≤ m2 + m + 2,
Pq =

[
x1(q−τ) x2(q−τ) 0 1 x5(q−τ)

]′
for m4 + m + 3 ≤ q ≤

m4 + m3 + 2, where xp(q−τ) ∈ GF(m) is the pth component
of the vector Pq for 1 ≤ p ≤ 5, x3(q−τ) = 0, x4(q−τ) = 1, and
Pq , Pi for 3 ≤ i ≤ m + 2, Pu =

[
x1(u−τ) x2(u−τ) 0 0 1

]′
for

m4 + m3 + 3 ≤ u ≤ m4 + m3 + m2 + 1, where xp(u−τ) ∈ GF(m)
is the pth component of the vector Pu for 1 ≤ p ≤ 5,
x3(u−τ) = x4(u−τ) = 0, x5(u−τ) = 1, and Pu , P2.

Suppose Pi1 , Pi2 are any two of P1, . . . , Pm4+m3+m2+1.

The proof that the matrix [Pi1

...Pi2 ] has full column rank
follows as it did in Theorem 1. Thus we can de-
rive the array OA(m5, (m2)mm4+m3+m2

, 2). We know the
matrix D given by the first (m2 + m + 2) columns of
the OA(m5, (m2)mm4+m3+m2

, 2) is an OA(m5, (m2)mm2+m+1, 3)
from Lemma 3. Therefore, the array we derived is a
VOA(m5; 2, (m2)mm4+m3+m2

,D).

Example 2: Let m = 2 and t = 3. Let B be an 25×5 matrix
whose rows are all possible 5-tuples over GF(2) and C be a
5 × 30 matrix. From Theorem 2, we can take

C =



1000010111111111111111000000000000000111111110000000111100110
0100010111111100000000111111110000000111100001111000110011101
0010010111000011110000111100001111000110011001100110101010111
0001010100110011001100110011001100110101010101010101111111000
0000011111111111111111111111111111111000000000000000000000000
0000110010101010101010101010101010101111111111111111000000000


.

Then, we can obtain the array VOA(25; 2, 41228,D)
using the same methodology as used in Example 1, where
the matrix D given by the first eight columns of the
VOA(25; 2, 41228,D) is an OA(25, (4)127, 3).

Theorem 3: A VOA(m6; 2, (m2)2mm5+m4+m3+m2−m−1,D) can
be constructed for any prime power m, where D is an
OA(m6, (m2)2mm+1, 4).

Proof. Let τ = m + 3 and 1 ≤ p ≤ 6. Let

P1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]′
, P2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]′
, P3 =[

0 0 0 0 0 1
]′

, Pi =
[
αi−3 α

2
i−3 α

2
i−3 α

3
i−3 1 αi−3

]′
for

4 ≤ i ≤ m + 3, where α1, . . . , αm are distinct elements of
GF(m), P j =

[
x1( j−τ) x2( j−τ) x3( j−τ) x4( j−τ) 1 x6( j−τ)

]′
for

m + 4 ≤ j ≤ m5 + 3, where xp( j−τ) ∈ GF(m) is the pth
component of the vector P j, x5( j−τ) = 1, and P j , Pi for
4 ≤ i ≤ m + 3, Pk =

[
x1(k−τ) x2(k−τ) x3(k−τ) x4(k−τ) 0 1

]′
for

m5 + 4 ≤ k ≤ m5 + m4 + 2, where xp(k−τ) ∈ GF(m) is the
pth component of the vector Pk, x5(k−τ) = 0, x6(k−τ) = 1,
and Pk , P3, Pu =

[
x1(u−τ) x2(u−τ) x3(u−τ) 1 0 0

]′
for

m5 + m4 + 3 ≤ u ≤ m5 + m4 + m3 − m + 2, where xp(u−τ) ∈

GF(m) is the pth component of the vector Pu, x4(u−τ) = 1,
x5(u−τ) = x6(u−τ) = 0, and (x1(u−τ), x2(u−τ)) , (0, 0), Pv =[

x1(v−τ) x2(v−τ) 1 0 0 0
]′

for m5 + m4 + m3 − m + 3 ≤ v ≤
m5 + m4 + m3 + m2 −m + 1, where xp(v−τ) ∈ GF(m) is the pth
component of the vector Pv, x3(v−τ) = 1, x4(v−τ) = x5(v−τ) =

x6(v−τ) = 0, and (x1(v−τ), x2(v−τ)) , (0, 0).

The proof that the matrix [Pi1

...Pi2 ] has full col-
umn rank is perfectly analogous to the argument
used in the proof of Theorem 1, where Pi1 , Pi2 are
any two of P1, . . . , Pm5+m4+m3+m2−m+1. Then the array
OA(m6, (m2)2mm5+m4+m3+m2−m−1, 2) can be obtained. By ap-
plying Lemma 4, we have that the matrix D, the first
(m+3) columns of the OA(m6, (m2)2mm5+m4+m3+m2−m−1, 2), is
an OA(m6, (m2)2mm+1, 4). Thus we get a VOA(m6; 2, (m2)2

mm5+m4+m3+m2−m−1,D).

Example 3: Let m = 2 and t = 4. Let B be an 26×6 matrix
whose rows are all possible 6-tuples over GF(2) and C be a
6 × 61 matrix. From Theorem 3, we can take

C =



1000010111111111111111000000000000000111111110000000111100110
0100010111111100000000111111110000000111100001111000110011101
0010010111000011110000111100001111000110011001100110101010111
0001010100110011001100110011001100110101010101010101111111000
0000011111111111111111111111111111111000000000000000000000000
0000110010101010101010101010101010101111111111111111000000000


.

With the similar method presented in Example 1,
we can then get the array VOA(26; 2, (4)2257,D), more
specifically, the matrix D, the first five columns of the
VOA(26; 2, (4)2257,D), is an OA(26, (4)223, 4).

Theorem 4: A VOA(m7; 2, (m2)2mm6+m5+m4+m3+m2−m−1,D)
can be constructed if m ≥ 4 is a power of two, where D
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is an OA(m7, (m2)2mm+1, 5).

Proof. Let τ = m + 3. Let P1 =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]′
,

P2 =

[
0 0 1 0 0 0 0
0 0 0 1 0 0 0

]′
, P3 =

[
0 0 0 0 0 0 1

]′
, Pi =[

α3
i−3 αi−3 α

3
i−3 α

4
i−3 1 α2

i−3 αi−3

]′
for 4 ≤ i ≤ m + 3,

where α1, . . . , αm are distinct elements of GF(m), P j =[
x1( j−τ) . . . x4( j−τ) 1 x6( j−τ) x7( j−τ)

]′
for m+4 ≤ j ≤ m6 +3,

where xp( j−τ) ∈ GF(m) is the pth component of the vector
P j for 1 ≤ p ≤ 7, x5( j−τ) = 1, and P j , Pi for 4 ≤ i ≤
m + 3, Pk =

[
x1(k−τ) x2(k−τ) x3(k−τ) x4(k−τ) 0 1 x7(k−τ)

]′
for

m6 + 4 ≤ k ≤ m6 + m5 + 3, where xp(k−τ) ∈ GF(m) is the
pth component of the vector Pk for 1 ≤ p ≤ 7, x5(k−τ) = 0,
x6(k−τ) = 1, Pu =

[
x1(u−τ) x2(u−τ) x3(u−τ) x4(u−τ) 0 0 1

]′
for

m6 + m5 + 4 ≤ u ≤ m6 + m5 + m4 + 2, where xp(u−τ) ∈ GF(m)
is the pth component of the vector Pu for 1 ≤ p ≤ 7,
x5(u−τ) = x6(u−τ) = 0, x7(u−τ) = 1, and Pu , P3, Pv =[

x1(v−τ) x2(v−τ) x3(v−τ) 1 0 0 0
]′

for m6 + m5 + m4 + 3 ≤
v ≤ m6 + m5 + m4 + m3 −m + 2, where xp(v−τ) ∈ GF(m) is the
pth component of the vector Pv for 1 ≤ p ≤ 7, x4(v−τ) = 1,
x5(v−τ) = x6(v−τ) = x7(v−τ) = 0, and (x1(v−τ), x2(v−τ)) , (0, 0).
Pw =

[
x1(w−τ) x2(w−τ) 1 0 0 0 0

]′
for m6+m5+m4+m3−m+

3 ≤ w ≤ m6+m5+m4+m3+m2−m+1, where xp(w−τ) ∈ GF(m)
is the pth component of the vector Pw for 1 ≤ p ≤ 7,
x3(w−τ) = 1, x4(w−τ) = x5(w−τ) = x6(w−τ) = x7(w−τ) = 0, and
(x1(w−τ), x2(w−τ)) , (0, 0).

Let Pi1 , Pi2 be any two of P1, . . ., Pm6+m5+m4+m3+m2−m+1.

The matrix [Pi1

...Pi2 ] has full column rank by similar ar-
guments as in Theorem 1. Then we can construct the
array OA(m7, (m2)2mm6+m5+m4+m3+m2−m−1, 2). By Lemma
5, we know the matrix D formed by the first (m + 3)
columns of the OA(m7, (m2)2mm6+m5+m4+m3+m2−m−1, 2) is an
OA(m7, (m2)2mm+1, 5). Consequently, a VOA(m7; 2, (m2)2

mm6+m5+m4+m3+m2−m−1,D) can be constructed.
From Theorem 4, we can construct a VOA(47; 2, (16)2

45453,D) when m = 4, where D is an OA(47, (16)245, 5).

3.2 Construction of VOAs by Fan-Construction

Theorem 5: Let m ≥ 2 be a prime power, and let u, l and
t be positive integers such that u|m and m ≥ t − 1. For any
positive integer l ≤ t, if there is an OA(u, wk1

1 w
k2
2 · · ·w

ks
s , l),

then a VOA(mt; l,mmwk1
1 w

k2
2 · · ·w

ks
s ,D) exists, where D is an

OA(mt,mm, t).

Proof. For stated values of m and t, an m-divisible
OA(mt,mm, t) exists from Lemma 7. By assumption, we
know that an OA(u, wk1

1 w
k2
2 · · ·w

ks
s , l) exists and u|m. Hence,

the OA(m, wk1
1 w

k2
2 · · ·w

ks
s , l) exists. By Lemma 6 (ii), we

can obtain a VOA(mt; l,mmwk1
1 · · ·w

ks
s ,D), where D is an

OA(mt,mm, t).

Example 4: Let m = 16, t = 4, u = 16, and l =

3. From Lemma 7, an OA(164, 1617, 4) exists. Hence, a

16-divisible OA(164, 1616, 4) exists. From [28], we know
that the array OA(16, 4123, 3) exists. We can obtain a
VOA(164; 3, 16164123,D) from Theorem 5, where D is an
OA(164, 1616, 4).

Theorem 6: Let m ≥ 2 and u ≥ 2 be prime powers, and
let l and t be positive integers such that ul|m, m ≥ t − 1
and u ≥ l − 1. Then for any positive integer l ≤ t a
VOA(mt; l,mmuu+1,D) exists, where D is an OA(mt,mm, t).

Proof. For stated values of m, u, t and l, both an
m-divisible OA(mt,mm, t) and an OA(ul, uu+1, l) exist from
Lemma 7. Since ul|m by assumption, we know that an
OA(ul, uu+1, l) implies the existence of an OA(m, uu+1, l).
We now start with an m-divisible OA(mt,mm, t) and ap-
ply Lemma 6 (ii) with an OA(m, uu+1, l). This gives a
VOA(mt; l,mmuu+1,D), where D is an OA(mt,mm, t).

Example 5: Let m = 8, t = 5, u = 2, and l = 3.
From Lemma 7, both an OA(85, 89, 5) and an OA(23, 24, 3)
exist. We know that an OA(85, 89, 5) implies the exis-
tence of an 8-divisible OA(85, 88, 5). Start with an 8-
divisible OA(85, 88, 5) and apply Lemma 6 (ii) with an
OA(23, 24, 3). This gives a VOA(85; 3, 8824,D), where D is
an OA(85, 88, 5).

4. Conclusion

VOA, a special form of VCA, has the potential for use in
software testing, allowing the engineer to omit the parameter
combinations known to not interact in order to reduce the
number of tests required. To capture most fault in computer
software testing, we study the construction of VOAs by
Galois field and Fan-construction and obtain some VOAs
with strength l (l ≥ 2) containing strength greater than l.
In the future, we will construct VOAs with more different
numbers of levels.
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