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Conflict Reduction of Acyclic Flow Event Structures
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SUMMARY Event structures are a well-known modeling formalism for
concurrent systems with causality and conflict relations. The flow event
structure (FES) is a variant of event structures, which is a generalization
of the prime event structure. In an FES, two events may be in conflict
even though they are not syntactically in conflict; this is called a semantic
conflict. The existence of semantic conflict in an FES motivates reducing
conflict relations (i.e., conflict reduction) to obtain a simpler structure. In
this paper, we study conflict reduction in acyclic FESs. A necessary and
sufficient condition for conflict reduction is given; algorithms to compute
semantic conflict, local configurations, and conflict reduction are proposed.
A great time reduction was observed in computational experiments when
comparing the proposed with the naive method.
key words: flow event structures, reduction of conflict relation, semantic
conflict, local configuration

1. Introduction

Event structures [1] are a well-known modeling formalism
for concurrent systems with causality and conflict relations.
An event structure is composed of a set of events and two
dependency relations on events: causality and conflict rela-
tions. If events a and b are in a causality relation, event a
must occur before b. If two events are in a conflict relation,
the occurrence of one is prohibited by the other.

The most fundamental class of event structures is the
prime event structure (PES) [1]. Since its creation, many
other variants have been proposed: the asymmetric event
structure (AES) [2], flow event structure (FES) [3], [4], bun-
dle event structure (BES) [5], and context-dependent event
structure (CDES) [6].

Event structures have been used in studies to check
the properties of concurrent/distributed systems. Armas-
Cervantes et al. use PES and AES for the diagnosis of busi-
ness processes [7]. Garcia-Bañuelos et al. present a method
for checking the conformance of business processes using
PES [8]. Izawa and Miyamoto use an FES for the choreog-
raphy realization problem [9], [10] in service-oriented archi-
tecture (SOA) in [11]. Van Beest et al. describe an approach
that represents different business process variants in a PES
and provide amethod to subsequently derive variability rules
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[12]. De León et al. propose a test generation algorithm for
concurrent systems using a PES [13]. Kienzle et al. use
a PES for model composition in model-driven engineering
[14].

Our research uses FES as a modeling formalism for
distributed systems, where multiple peers are processing in-
dependently and interacting via communication among them
[11]. Suppose that an FES defines the specification of a dis-
tributed system. If a conflict exists between two events in
different peers, the specification is not realizable without
introducing an additional peer for the control of exclusive
occurrence or by modifying the specification. Therefore, the
non-existence of conflicts over peers is a necessary condi-
tion for the realizability of the specification. In the FES,
two events may be in conflict. In other words, there exists
no computation that contains both events even though they
are not syntactically in conflict; such a conflict is called a
semantic conflict. The existence of semantic conflict in an
FES means the existence of a minimal conflict relation; this
requires a reduction of conflict relations (conflict reduction)
in the FES for the realizability checking of a specification.

The objective of this paper is to derive a conflict-
reduction algorithm for FESs. Some research on the re-
duction or minimization of event structures already exists.
Armas-Cervantes et al. [15] address the problem of reducing
the size of an event structure for an AES and FES, where the
reduction is done by merging events to reduce their number.
Baldan and Raffaetà have studied the notion of folding [16].
This research focuses on reducing event structures by merg-
ing events. In contrast, conflict reduction in this paper is
accomplished by removing conflicts, which are syntactically
in conflict and remain in semantic conflict when they are
removed, from the FES.

The rest of this paper is organized as follows. Sec-
tion 2 recalls the PES and FES. The motivation for conflict
reduction is described in Sect. 3. Section 4 provides a nec-
essary and sufficient condition for conflict reduction and
algorithms to compute the semantic conflict and conflict re-
duction. Computational experiments that were conducted
are described in Sect. 5. Finally, Sect. 6 draws some conclu-
sions.

2. Event Structures

2.1 Prime Event Structures

Most studies on event structures use the PES [1], whereas
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Fig. 1 PES P1 (a) and its configuration space (b).

this paper uses a variant of event structures: FES [3], [4]. To
make the difference clear, we recall the formal definition of
the PES using the notation in [15].

Definition 1 (prime event structure): A prime event struc-
ture (PES) is a tuple P = (E,≤, # ), where E is a set of events,
≤ is a causality relation, and ] is a conflict relation such that

1. the causality relation ≤ is a partial order, i.e., ≤ is re-
flexive, anti-symmetric, and transitive, and bec = {e′ ∈
E | e′ ≤ e} is finite for all e ∈ E;

2. the conflict relation # is irreflexive, symmetric, and
hereditary with respect to causality, i.e., for all e, e′,
e′′ ∈ E , if e # e′ ≤ e′′ then e # e′′.

The computations of a PES are described in terms of
configurations, in other words, sets of events that are closed
with respect to causality and conflict-free.

Definition 2 (configuration): The configuration of a PES
P = (E,≤, # ) is a finite set of events C ⊆ E such that

1. for all e ∈ C, bec ⊆ C, and
2. for all e, e′ ∈ C, ¬(e # e′).

The set of configurations of a PES P is denoted by
Con f (P).

Figure 1(a) depicts a PES P1. The first condition in Def-
inition 2 means that when e ∈ C, then all the ≤-predecessors
of the event e must be contained inC. Therefore, any config-
uration containing d of the PES P1 must contain the events
a and b. The second condition in Definition 2 means that
any configuration must be conflict-free. In the PES P1, since
b # c, there is no configuration that contained b and c.

Let T be the transition relation on the set Con f (P) of
configurations. A pair (C,C ′) of configurations C and C ′

is in T when the configuration changes from C to C ′ by the
occurrence of an event. The graph CS = (Con f (P),T) is
called a configuration space. The configuration space of the
PES in Fig. 1(a) is depicted in Fig. 1(b).

2.2 Flow Event Structures

Definition 3 (flow event structure): A flow event structure

Fig. 2 FES F1 (a) and its configuration space (b).

(FES) is a tuple F = (E,≺, # ), where E is a set of events, ≺
is a flow relation, and # is a conflict relation such that

1. the flow relation ≺⊆ E × E is irreflexive;
2. the conflict relation # ⊆ E × E is symmetric.

The ≺-predecessors of an event e ∈ E are defined as
•e = {e′ | e′ ≺ e}.

Figure 2(a) depicts an FES. A flow relation is repre-
sented with a double-headed arrow, and a conflict relation is
represented with a dotted line labeled by a sharp ( # ).

In a PES, the causality relation is transitive; all the
events in bec \ {e} must precede the occurrence of e. How-
ever, the flow relation in an FES is not required to be tran-
sitive. The ≺-predecessors •e of an event e can be seen as
a set of possible immediate causes for e in an FES. In an
FES, conflicts can exist in •e; the event e needs to be pre-
ceded by a maximal and conflict-free subset of •e. The set
of maximal and conflict-free ≺-predecessors of an event e is
denoted by Φ(e). In the FES in Fig. 2(a), events b and c are
in conflict; ≺-predecessors of event d are •d = {a, b, c} and
the set of maximal and conflict-free ≺-predecessors of d is
Φ(d) = {{a, b}, {a, c}}. Thus, the occurrence of d must be
preceded by either {a, b} or {a, c}.

In a PES, the causality relation is a partial order; in
other words, the causality relation is acyclic. In an FES,
the flow relation is required to be irreflexive only; thus, it
could be cyclic. An FES is called acyclic when the flow
relation is acyclic. We study conflict reduction of FESs.
For cyclic FESs, conflict reduction must be checked for each
occurrence of conflict pairs. Therefore, we assume any FES
to be acyclic in this paper.

The notion of configuration in an FES is defined in
[3], [4], [15] as follows:

Definition 4 (configuration): The configuration of an FES
F is a finite set of events C ⊆ E such that

1. (conflict-freeness) ¬(e # e′) for all e, e′ ∈ C;
2. (≺-closedness) ≺∗

|C
is a partial order;

3. (maximality) for all e ∈ C and e′ < C s.t. e′ ≺ e, there
exists an e′′ ∈ C such that e′ # e′′ ≺ e,
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Fig. 3 An example of semantic conflict. Events a and c are in seman-
tic conflict because no configuration that contains both a and c exists in
Conf (F2).

where ≺∗ is the reflexive and transitive closure of ≺; ≺ |C is
the restriction of ≺ to the relation on C.

The set of all configurations of an FES F is denoted by
Con f (F).

A configuration is a conflict-free and ≺-closed subset of
events. The third condition means that given an event e ∈ C,
for any ≺-predecessor e′ ≺ e, either e′ ∈ C or it is excluded
by the existence of e′′ ∈ C such that e′ # e′′ ≺ e. Thus,
for any e ∈ C, the configuration C must include a maximal
and conflict-free subset of the ≺-predecessors of e. The
configuration space of the FES F1 is depicted in Fig. 2(b).

In the FES in Fig. 3(a), events a and c are not syntac-
tically in conflict; however, there is no configuration that
contains both a and c. Thus, a and c are semantically in
conflict.

Definition 5 (semantic conflict): The events e and e′ in an
FES F are in semantic conflict, which is denoted by e #S e′,
when for all configurations C ∈ Con f (F), it does not hold
that {e, e′} ⊆ C.

Clearly, # ⊆ #S . Moreover, e #S e could be possible; in this
case, e never occurs and is called dead.

Configurations C1 and C2 are in conflict, which is de-
noted by C1 # C2, when there exist any conflict events in C1
and C2:

C1 # C2 ⇔ ∃e1 ∈ C1,∃e2 ∈ C2 : e1 # e2 (1)

3. Motivation for Conflict Reduction

The motivation for conflict reduction comes from the exis-
tence of semantic conflicts in FESs.

Consider a designing problem, which is called the
choreography realization problem (CRP) [9], of a distributed
system that is composed of two peers: p1 and p2. Suppose
that the specification of the entire system is given by the FES
in Fig. 4(a), which is called choreography. The objective of
the CRP is to obtain the specification for each peer that acts
along with the choreography.

The realizability of choreography depends on the al-
location of events to peers. If two events that are in flow

Fig. 4 An FES contains reducible conflicts.

relation are allocated on different peers, the flow relation can
be realized by inserting send and receive events of a message
between the two events. On the other hand, if two events that
are in conflict relation are allocated on different peers, the
conflict relation cannot be realized in general.

If events a, b, and c are the events of peer p1 and event
d is the event of peer p2, the choreography is realizable
because both of the two dependency, (a, d) and (c, d), are in
flow relation.

If event a is the event of peer p1 and events b, c, and d
are the events of peer p2, the choreography is not realizable
because the exclusive occurrence of a or b cannot be realized
without introducing an additional peer for the control of
exclusive occurrence or by modifying the choreography.

From the discussion of the two cases, one may raise
the idea that non-existence of conflicts among peers is a
necessary condition for realizability. However, this is not
true. Consider the case where events a and b are the events of
peer p1 and events c and d are the events of peer p2. Because
a and c are in semantic conflict regardless of the presence
or absence of a # c, we do not have to consider a # c for the
checking of realizability. In this case, the choreography is
realizable.

The motivation for conflict reduction comes from the
necessity of obtaining reduced conflict relation for the check-
ing of realizability.

Note that, as shown in Fig. 3(b) and Fig. 4(b), the con-
figuration spaces of FESsF2 andF3 are different. Thatmeans
that the conflict reduction causes a change in the configura-
tion space. To avoid this problem, we have to use the original
maximal and conflict-free ≺-predecessors Φ(e) on checking
the occurrence of event e.

4. Conflict Reduction of Acyclic Flow Event Structures

4.1 Conditions for Conflict Reduction

Let us denote the FES obtained after reducing a conflict e # e′

from an FES F by
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F\(e # e′) = (E,≺, # \ {e # e′}). (2)

As we saw in Figs. 3 and 4, the configuration spaces of F and
F\(e # e′) are different in general. Let us denote the reduced
FES in which the conflict relation is replaced by the semantic
conflict relation by

F\S
(e # e′) = (E,≺, ( # \ {e # e′})S). (3)

If the configuration spaces of F and F\S
(e # e′) are isomorphic,

e and e′ are in semantic conflict regardless of the presence
or absence of e # e′. In this case, e # e′ is reducible for the
checking of realizability.

Definition 6 (reducible conflict): A conflict e # e′ is called
reducible from an FES F when Con f (F) = Con f (F\S

(e # e′)).

According to Definition 6, checking reducibility of a
conflict pair requires constructing all configurations; how-
ever, it is computationally expensive. Let us give another
definition of configurations using local configurations.

Definition 7 (local configuration): A local configuration
Xe of an event e is a configuration satisfying the minimality
condition in addition to the conditions in Definition 4:

4. (minimality) ∀C ∈ Con f (F) : C ( Xe → e < C

The notion of local configuration can be seen in the unfolding
research on Petri nets [17]. A local configuration of e is a
minimal and ≺-closed set of events for the occurrence of
event e.

The set loc(e) of all local configurations of an event e
is inductively calculated using the local configurations of the
≺-predecessors as follows:

loc(e) = {Xe | ∃K ∈ Φ(e), ∃L ∈
∏
e′∈K

loc(e′) :

Xe = {e} ∪
⋃

i∈{1,..., |K | }
L[i],

(∀e1, e2 ∈ Xe : ¬(e1#e2))} (4)

where
∏

stands for the Cartesian product and L[i] is the i-th
element in the tuple L. For a minimal event e of an FES F,
since Φ(e) = {∅}, loc(e) is given as follows:

loc(e) =
{
{e}

}
(5)

The local configuration of a minimal event satisfies both
of the ≺-closedness in Definition 4 and the minimality in
Definition 7. The clause Xe = {e} ∪

⋃
e′∈K Xe′,K ∈ Φ(e)

means that a local configuration is a union of local config-
urations of the maximal and conflict-free ≺-predecessors;
therefore, Xe satisfies maximality in Definition 4. Using the
clause, both of ≺-closedness and minimality of any Xe can
be proved by induction. The clause ∀e1, e2 ∈ Xe : ¬(e1 # e2)
expresses conflict-freeness of Xe; therefore, Xe satisfies
conflict-freeness in Definition 4. Thus, Xe in (4) is a local
configuration. Because we assume that any FES is acyclic,
local configurations are well defined. If no local configura-
tion that satisfies (4) exists, the event e is dead.

For the FES F2 in Fig. 3, we can find the local configu-
rations as follows:

loc(a) =
{
{a}

}
(6)

loc(b) =
{
{b}

}
(7)

loc(c) =
{
{b, c}

}
(8)

loc(d) = ∅ (9)

Because a local configuration is a configuration, a union
of local configurations is a configuration when no conflict
exists in it.

Proposition 1: A finite set C of events is a configuration of
an FES if and only if the two conditions:

1. ∀e, e′ ∈ C : ¬(e # e′);
2. ∀e ∈ C,∃Xe ∈ loc(e) : Xe ⊆ C.

are satisfied.

The first condition exists for conflict-freeness; the second
condition means that C is a union of local configurations.

The following lemma gives a condition to check seman-
tic conflicts using local configurations.

Lemma 1: Let x and y be events of an FES F = (E,≺, # ).
The events x and y are in semantic conflict if and only if the
following holds:

∀X ∈ loc(x),∀Y ∈ loc(y),∃ex ∈ X,∃ey ∈ Y : ex # ey
(10)

Proof First, suppose that

∃X ∈ loc(x),∃Y ∈ loc(y),∀ex ∈ X,∀ey ∈ Y : ¬(ex # ey)

holds. Let X1 and Y1 be local configurations that satisfy the
condition, then X1∪Y1 becomes a configuration that contains
both x and y.

Conversely, suppose that there exists a configuration C
that contains both x and y while satisfying (10). From the
second condition of Proposition 1, C must include the local
configurations X1 and Y1 of x and y, respectively. From the
first condition of Proposition 1, for all e, e′ ∈ X1∪Y1, e and e′

must not be in conflict. This contradicts the assumption. �
The following lemma gives a condition to check re-

ducibility using local configurations.

Lemma 2: Let x and y be events of an FES F = (E,≺, # )
and x # y. The conflict x # y is reducible if and only if the
following condition holds:

∀Kx ∈ Φ(x),∀X = {x} ∪
⋃

ex ∈Kx

Xex ,

∀Ky ∈ Φ(y),∀Y = {y} ∪
⋃

ey ∈Ky

Yey :���{{e1, e2} ⊆ X ∪ Y | e1 # e2
}��� ≥ 2, (11)

where Xex and Yey are local configurations in loc(ex) and
loc(ey), respectively.
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Proof The set X (or Y ) in (11) is a candidate of local
configuration. If it contains a conflict pair, it cannot be a
local configuration; otherwise, it becomes a local configura-
tion. Thus, every local configuration in (10) appears in (11).
Clearly, if (11) is satisfied, then (10) is satisfied, i.e., x and
y are in semantic conflict.

Moreover, if (11) is satisfied, and X andY are local con-
figurations, then there exists another pair such that e1 # e2,
e1 ∈ X , and e2 ∈ Y . This holds for any pair of local config-
urations for x and y. Thus, x and y are in semantic conflict
regardless of the presence or absence of x # y.

Next, we have to ensure that new configurations do not
become executable by the reduction. When |{{e1, e2} ⊆
X ∪ Y | e1 # e2}| ≥ 2, the set X ∪ Y contains more than one
conflict pair. Therefore, reducing x # y does not produce any
new local configuration. Thus, if (11) is satisfied, then x # y
is reducible.

Conversely, if the following condition:

∃Kx ∈ Φ(x),∃X = {x} ∪
⋃

ex ∈Kx

Xex ,

∃Ky ∈ Φ(y),∃Y = {y} ∪
⋃

ey ∈Ky

Yey :���{{e1, e2} ⊆ X ∪ Y | e1 # e2
}��� = 1 (12)

holds, then
{
{e1, e2} ⊆ X ∪Y | e1 # e2

}
= {x, y}. Therefore,

x # y is not reducible because X ∪ Y become a new config-
uration when x # y is reduced. Thus, if x # y is reducible,
then (11) is satisfied. �

4.2 Algorithms

4.2.1 Conflict Reduction Using Local Configurations

Let #− be the conflict relation that is reduced by re-
moving reducible conflicts from # . The following part of
this section provides an algorithm to compute the semantic
conflict relations #S and reduced conflict relations #− . Let
#O be a conflict relation such that x #O y when x and y are
in semantic conflict, regardless of the presence or absence
of x # y. Clearly, the semantic conflicts #S and reducible
conflict relations are given by # ∪ #O and # ∩ #O , respec-
tively. Let LC be the set of local configurations of an FES,
and #LC be the conflict relations on LC.

Consider a casewhen a new local configuration X of x is
being added and the conflict with a local configurationY of y
is being checked. Let X = {x}∪(∪Xe) andY = {y}∪(∪Ye),
respectively; the condition (1) of local configurations to be
in conflict can then be given as follows:

X #LC Y ⇔ ∃x ′ ∈ X,∃y′ ∈ Y : x ′ # y′

=∃x ′ ∈ {x} ∪ (∪Xe),∃y
′ ∈ {y} ∪ (∪Ye) : x ′ # y′

=(x # y) ∨ (∃x ′ ∈ (∪Xe) : x ′ # y)
∨ (∃y′ ∈ (∪Ye) : x # y′) ∨ ((∪Xe) #LC (∪Ye)) (13)

Let us define the relation X #′LC Y as follows:

Algorithm 1 Compute semantic conflict
Input: F = (E , ≺, # )
Output: #S , #O
1: #O ← ∅; LC ← ∅; #LC ← ∅; #′

LC
← ∅;

2: Emin ← the set of minimal events of F;
3: tsort[] ← an array of events such that ∀i, j ∈ {0, . . . , |E | − 1} : i <

j ⇒ ¬(tsort[j] ≺+ tsort[i]);
4: for i ← 0 to |E | − 1 do
5: ei ← tsort[i];
6: loc(ei ) ← ∪K∈Φ(ei )

{
{ei } ∪

⋃
X∈V ′

i
X |

V ′i is a maximal clique of GK with size |K |
}
;

7: if ei < Emin and loc(ei ) = ∅ then
8: #O ← #O ∪

{
(ei , ei )

}
;

9: continue;
10: end if
11: LC ← LC ∪ loc(ei );
12: for all X ∈ loc(ei ) do
13: for all Y ∈ LC do
14: if condition (14) holds then
15: #LC ← #LC ∪

{
(X ,Y), (Y , X)

}
; #′

LC
← #′

LC
∪{

(X ,Y), (Y , X)
}
;

16: end if
17: y ← the maximal element in Y ;
18: if ei # y then
19: #LC ← #LC ∪

{
(X ,Y), (Y , X)

}
;

20: end if
21: end for
22: end for
23: for j ← 0 to i − 1 do
24: e j ← tsort[j];
25: if condition (11) holds then
26: #O ← #O ∪

{
(ei , e j ), (e j , ei )

}
;

27: end if
28: end for
29: end for
30: #S ← #O ∪ # ;

X #′LC Y ⇔

(∃x ′ ∈ (∪Xe) : x ′ # y) ∨ (∃y′ ∈ (∪Ye) : x # y′)
∨ ((∪Xe) #LC (∪Ye)) (14)

The condition (13) can be rewritten as follows:

X #LC Y ⇔ (x # y) ∨ (X #′LC Y ) (15)

Note that the first two terms in (14) can be checked using the
given conflict relation # ; the third term can be checked using
the conflict relation #LC for each pair of local configurations
of ≺-predecessors.

Algorithm 1 computes the conflict relation #O and the
conflict relation #LC together for an FES F = (Σ,≺, # ). In
the algorithm, tsort[] is an array of events representing a
topological sort with respect to the flow relation. To find
the local configurations of an event ei , we use the maximal
cliques enumeration algorithm [18] on an undirected graph.
Let GK = (VK ,EK ) be an undirected graph of K ∈ Φ(ei),
where VK and EK are defined as follows:

VK =
{

X | X ∈ loc(e), e ∈ K
}

(16)
EK =

{
{X1,X2} ⊆ VK | ¬(X1 #LC X2)

}
(17)

Thus, each node of the graph is a local configuration of ≺-
predecessors; each edge represents that the adjacent local
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Algorithm 2 Conflict reduction using local configurations
Input: F = (E , ≺, # )
Output: #−
1: for all e ∈ E do
2: Φ(e) ← the maximal and conflict-free ≺-predecessors of e;
3: end for
4: #O ← execute Algorithm 1;
5: while #O ∩ # , ∅ do
6: e # e′ ← select a conflict from #O ∩ # ;
7: F← F\(e # e′)

8: #O ← execute Algorithm 1;
9: end while
10: #− ← # ;

configurations are not in conflict. Therefore, each clique
with size |K | is the set of local configurations that constructs
a local configuration of ei .

Lemma 3: Let (E,≺,#) be an FES. If e ∈ E and K ∈
Φ(e), then for every Xe ⊆ E , (∃L ∈

∏
e′∈K loc(e′) : Xe =

{e} ∪
⋃

i∈{1,..., |K | } L[i]∧ (∀e1, e2 ∈ Xe : ¬(e1#e2))) iff there
exists a maximal clique (V ′K ,E

′
K ) of GK with |V ′K | = |K | and

Xe = {e} ∪
⋃

X∈V ′K
X .

In Algorithm 1, local configurations of event ei are computed
by enumerating maximal cliques of the graph GK at line 6.
If the condition at line 7 holds, the event ei is dead. In lines
12 to 22, the conflict relations #LC and #′LC is updated,
and in lines 23 to 28, the conflict relation #O are updated.
The lines from 5 to 28 are repeatedly executed for each node
along with the topological sort tsort[]; therefore, when the
conflicts #LC , #′LC , and #O of event ei are computed, the
conflicts of its ≺-ancestors have been already determined.

Algorithm 2 performs conflict reduction. The removal
of a conflict from # maymake other conflicts non-reducible;
thus, conflict reduction must be done one by one. The set
Φ(ei) of maximal and conflict-free ≺-predecessors at line 6
inAlgorithm 1must be obtained from the original conflict re-
lation # ; thus, it is computed at line 2. At line 4, Algorithm 1
is executed to find #O. A conflict is selected from #O ∩ #
at line 6; it is removed from F at line 7, and Algorithm 1 is
executed again. The lines from 6 to 8 are continued while
#O ∩ # is not empty. The final event structure depends on
the selection at line 6. To find an optimal event structure, an
optimal selection is necessary. However, the optimization is
out of the scope of this paper†.

The worst-case time complexity of enumerating max-
imal cliques is exponential to the size of the graph [19].
Therefore, the worst-case time complexity of Algorithm 1
is exponential to the size of the FES. However, in many
cases, it is expected that the number of local configurations
of ≺-predecessors is much smaller than the size of the FES.
Supposing that the time to enumerate maximal cliques is
bounded by a constant and the number of local configura-
tions is polynomial to the size of the FES, then the time
†In fact, the definition of the optimal event structure depends on

its application. For example, in the context of the CRP, we want to
reduce as many conflicts among peers as possible for the checking
of realizability.

Algorithm 3 Configuration space construction
Input: F = (E , ≺, # )
Output: CS = (Conf (F),T )
1: execute Algorithm 1 to compute local configurations;
2: C0 ← ∅; Conf (F) ← {C0 }; queue.add(C0);
3: while queue is not empty do
4: C ← queue.poll();
5: for all e ∈ E do
6: for all Xe ∈ loc(e) do
7: X′e ← Xe \ {e};
8: if X′e ⊆ C ∧ e < C ∧ ∀e′ ∈ C : ¬(e′ # e) then
9: C′ ← C ∪ {e};
10: if C′ < Conf (F) then
11: Conf (F) ← Conf (F) ∪ {C′ }; queue.add(C′);
12: end if
13: T ← T ∪ {(C ,C′)};
14: end if
15: end for
16: end for
17: end while

Algorithm 4 Compute semantic conflict (naive method)
Input: F = (E , ≺, # )
Output: #S , #O
1: for all e ∈ E do
2: Φ(e) ← the maximal and conflict-free ≺-predecessors of e;
3: end for
4: #O ← ∅;
5: for all (e, e′) ∈ # do
6: execute Algorithm 3 on F\(e # e′);
7: if �C ∈ Conf (F\(e # e′)) : {e, e′ } ⊆ C then
8: #O ← #O ∪ {(e, e′), (e′, e)};
9: end if
10: end for
11: #S ← #O ∪ # ;

complexity of the algorithm becomes pseudo-polynomial.
To the best of the authors’ knowledge, this is the first

study of conflict reduction in acyclic FESs; the computa-
tional complexity is an open problem. In 4.2.2, we show an-
other conflict-reduction algorithm as the comparisonmethod
with the proposed method.

4.2.2 Conflict Reduction Using Configuration Space

From Definition 5, we can check the reducibility of
conflict e # e′ using the configuration space of F\(e # e′). If
no configuration exists that contains both e and e′ in the
configuration space, then the conflict is reducible.

Algorithm 3 computes the configuration space of an
FES. At line 8, X ′e is a set of events obtained by removing
event e from a local configuration Xe of e. Thus, X ′e ⊆ C
means that all the ancestors of e in Xe have occurred in C,
e < C means that e has not yet occurred in C, and ∀e′ ∈ C :
¬(e′ # e)means conflict freeness. Therefore, if the condition
at line 8 is satisfied, event e can occur at configuration C. A
new configuration C ′ and a transition from C to C ′ are then
added in the configuration space at lines 9 to 13.

Algorithm 4 is another method (naive method) to com-
pute the semantic conflict relations #S and #O using the
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Fig. 5 FES F4 with an irreducible flow a ≺ c.

Fig. 6 FES F5 without flow a ≺ c.

configuration space. At line 6, a configuration space of
F\(e # e′) is constructed using Algorithm 3. If any configura-
tion does not include {e, e′}, the conflict e # e′ is reducible.

Because this method uses the configuration space, its
complexity is exponential to the size of the event structure.

For conflict reduction, we can obtain the proper algo-
rithm by replacing “Algorithm 1” by “Algorithm 4” at lines 4
and 8 in Algorithm 2.

4.3 Note for Transitive Reduction of the Flow Relation

Algorithm 1 uses the maximal cliques enumeration algo-
rithm on the graph of the ≺-predecessors. To shorten the
computation time, the transitive reduction of the flow rela-
tion is effective. However, because of the existence of the
conflict relation, the transitive reduction of the flow relation
is not possible in general.

Figure 5(a) shows an FES F4 and (b) shows its config-
uration space. Figure 6(a) shows an FES F5 that is obtained
by removing the flow a ≺ c from F4, and (b) shows its
configuration space. Remember that the flow relation is not
transitive; a ≺ b ≺ c does not imply a ≺ c. Thus, either b
or d must occur before the occurrence of c; a is not required
for the occurrence of c in F5, whereas either {a, b} or {a, d}
must occur before c in F4.

Fig. 7 Time to compute semantic conflict by Algorithms 1 and 4.

As can be seen in the figures, the configuration spaces
of F4 and F5 are not isomorphic; the flow a ≺ c in F4 is not
reducible. However, if no conflict exists between b and d,
then the flow a ≺ c becomes reducible.

5. Computational Experiments

The algorithms in Sect. 4 were implemented using Java lan-
guage; times to compute the semantic conflict relations by
Algorithms 1 or 4 were compared. The experiments were
conducted on a PC (CPU: Intel Core i7-9700, memory:
64GB, OS: Linux 4.18). A total of 875 instances were
randomly generated. The instances were pre-processed as
follows: when an event was dead or isolated, it was removed;
when two events were in both flow and conflict relations, the
conflict was removed. The time to execute the algorithms
was limited to 600 s.

The results are shown in Fig. 7. The horizontal axis is
the number of events; the vertical axis is the time to run the
algorithms. The vertical axis is a log scale; thus, the worst-
case complexity in both algorithms was exponential to the
number of events. However, clearly, the time to compute the
semantic conflict relation was drastically shortened using the
proposed Algorithm 1.

6. Conclusion

In this paper, we studied the conflict reduction of acyclic
FESs. The computations of the event structures were de-
scribed in terms of configurations. This paper provided
another explanation of configurations using the notion of lo-
cal configurations. The computation of conflict reduction is
done using the local configurations; a great time reduction
was achieved by the proposed method compared with the
naive method.
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