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Proximal Decoding for LDPC Codes

Tadashi WADAYAMA†a), Senior Member and Satoshi TAKABE††, Member

SUMMARY This paper presents a novel optimization-based decoding
algorithm for LDPC codes. The proposed decoding algorithm is based on
a proximal gradient method for solving an approximate maximum a pos-
teriori (MAP) decoding problem. The key idea of the proposed algorithm
is the use of a code-constraint polynomial to penalize a vector far from a
codeword as a regularizer in the approximate MAP objective function. A
code proximal operator is naturally derived from a code-constraint polyno-
mial. The proposed algorithm, called proximal decoding, can be described
by a simple recursive formula consisting of the gradient descent step for a
negative log-likelihood function corresponding to the channel conditional
probability density function and the code proximal operation regarding the
code-constraint polynomial. Proximal decoding is experimentally shown
to be applicable to several non-trivial channel models such as LDPC-coded
massive MIMO channels, correlated Gaussian noise channels, and nonlin-
ear vector channels. In particular, in MIMO channels, proximal decoding
outperforms knownmassiveMIMOdetection algorithms, such as anMMSE
detector with belief propagation decoding. The simple optimization-based
formulation of proximal decoding allows a way for developing novel signal
processing algorithms involving LDPC codes.
key words: LDPC codes, proximal gradient method, decoding algorithm

1. Introduction

Low-density parity-check (LDPC) codes [1] are ubiquitous
in practical communications and storage systems, such as
mobile wireless communications, digital satellite broadcast-
ing, optical communications, hard disks, and flash mem-
ories. Belief propagation (BP) decoding is the de facto
standard for decoding LDPC codes; however, in some cases,
optimization-based decoding algorithms have attracted re-
search interest [2], [3]. A number of studies have been
inspired by a linear programming formulation [2] of the de-
coding problem of LDPC codes.

A gradient descent formulation of a non-convex objec-
tive function including a penalty function for codewords has
led to the concept of a gradient descent bit-flipping (GDBF)
algorithm [4], which is suitable for hardware implementa-
tion requiring high-speed processing. Some of the variants
of the GDBF algorithm, especially the noisy GDBF algo-
rithm [5], provide an excellent tradeoff between decoding
performance and circuit complexity. Applications of inte-
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rior point methods, developed for solving convex problems,
to decoding problems have also been studied [6], [7]. Re-
cently, ADMM-based decoding algorithms for LDPC codes
[8]–[11] have been proposed. These decoding algorithms
have been shown to provide an excellent tradeoff between
decoding complexity and decoding performance compara-
ble to that of BP decoding.

In this study, we investigate a new direction for
optimization-based decoding based on a proximal gradient
method [12]. The proximal gradient method is a well-known
iterative minimization algorithm for convex optimization
problems [13]. For example, the iterative soft-thresholding
algorithm (ISTA) [14], which is an efficient sparse signal
recovery algorithm, is an instance of the proximal gradient
method. The proposed algorithm, referred to as proximal
decoding, is inspired by ISTA. The key idea of proximal de-
coding is the use of code-constraint polynomials to penalize
a vector far from a codeword. A code proximal operator is
naturally derived from a code-constraint polynomial, which
is the most important component of the proposed algorithm.
The proximal decoding process involves a gradient descent
step for the negative log-likelihood of the channel and a prox-
imal step based on the code proximal operator. Because the
principle of proximal decoding is simple, we can naturally
derive a variant of proximal decoding specific to a given
channel.

The main contributions of this study are as follows: 1)
presentation of a novel formulation of optimization-based
decoding, i.e., proximal decoding; 2) demonstration of the
behavior of proximal decoding for several non-trivial chan-
nel models such as LDPC-coded massive MIMO channels,
correlated Gaussian noise channels, and nonlinear vector
channels.

Derivation of a channel-specific decoding algorithm is
simple and can be achieved in a coherent manner. The first
step of the derivation is to formulate a decoding problem as
a regularized regression or regularized least-squares prob-
lem similar to the LASSO formulation [15] for sparse signal
recovery. The code-constraint polynomial acts as a regular-
izer in such a formulation. The proximal gradient method
for solving the regularized regression problem is equivalent
to proximal decoding. Thus, several ideas and techniques
that have been fostered in the fields of machine learning and
sparse signal recovery can be naturally applied to decoding
problems.

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers
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2. Code-Constraint Polynomial

2.1 Notation

Let n be a positive integer representing the code length. A
binary matrixH ∈ Fm×n2 is a parity-checkmatrix, and C̃(H)
is the binary linear code defined by H , i.e., C̃(H) ≡ {b ∈
Fn2 | HbT = 0}. A binary to bipolar transform β : F2 →
{1,−1} is defined as β(0) ≡ 1 and β(1) ≡ −1. The bipolar
code C(H) is simply given by C(H) ≡ {β(b) ∈ {1,−1}n |
b ∈ C̃(H)}.

The index sets A(i) and B( j) are defined as

A(i) ≡ { j | j ∈ [n],Hi, j = 1}, i ∈ [m], (1)
B( j) ≡ {i | i ∈ [m],Hi, j = 1}, j ∈ [n], (2)

respectively, where Hi, j denotes the (i, j)-element ofH . The
notation [n] represents the set {1,2, . . . ,n}. The multivariate
Gaussian distribution with mean vectorm and covariance Σ
is denoted by N(m,Σ).

2.2 Definition of Code-Constraint Polynomial

The code-constraint polynomial for C(H) is a multivariate
polynomial defined as

h(x) ≡
n∑
j=1
(x2

j − 1)2 +
m∑
i=1

©«©«
∏
j∈A(i)

xj
ª®¬ − 1ª®¬

2

, (3)

where x ≡ (x1, . . . , xn) ∈ Rn. The first term on the right-
hand side of this equation represents the bipolar constraint
for x ∈ {+1,−1}n, and the second term corresponds to the
parity constraint induced by H , i.e., if x ∈ C(H), we have(∏

j∈A(i) xj
)
− 1 = 0 for any i ∈ [m]. Since the polynomial

h(x) has a sum-of-squares (SOS) form, it can be regarded as
a penalty function that gives positive penalty values for non-
codeword vectors in Rn. The code-constraint polynomial
h(x) is inspired by the non-convex parity constraint function
used in the GDBF objective function [4]. The SOS form
directly implies the most important property of h(x), i.e.,
the inequality h(x) ≥ 0 holds for any x ∈ Rn. The equality
holds if and only if x ∈ C(H).

2.3 Gradient

In the following discussion, we need the gradient of h(x).
The first-order derivative of h(x) with respect to xk(k ∈ [n])
is given by

∂

∂xk
h(x)

= 4(x2
k − 1)xk +

2
xk

∑
i∈B(k)
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xj
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−
∏
j∈A(i)

xj
ª®®¬ .
(4)

Hence, the gradient ∇h(x) is given by

∇h(x) =
(
∂

∂x1
h(x), . . . ,

∂

∂xn
h(x)

)T
. (5)

The point x ∈ Rn satisfying the equality ∇h(x) = 0 is
a stationary point of h. For any codeword x ∈ C(H), x2

k
= 1

for any k ∈ [n] and
∏

j∈A(i) xj = 1 holds for any i ∈ [m].
This implies that ∇h(x) = 0, i.e., a codeword vector is a
stationary point of h.

Assume that a non-codeword bipolar vector x ∈

{1,−1}n satisfying x < C(H) is given. In such a case,
the parity constraints are violated as

∏
j∈A(i) xj = −1

for some i. This leads to the nonzero gradient due to(∏
j∈A(i) xj

)2
−

∏
j∈A(i) xj = 1 − (−1) = 2. This implies

that x is not a stationary point.
The above-mentioned argument can be summarized as

follows. A codeword x ∈ C(H) is a stationary point of h
and a non-codeword bipolar vector x ∈ {1,−1}n,x < C(H)
cannot be a stationary point. A stationary point that is a
codeword of C(H) is referred to as a codeword stationary
point. However, the opposite is not true, i.e., a stationary
point is not necessarily a bipolar codeword in C(H). For
example, the zero vector 0 ∈ Rn is not a bipolar codeword
but it is a stationary point.

The code-constraint polynomials as multivariate func-
tions of x are non-convex and have several local minima
and maxima in general. However, if the initial point is suffi-
ciently close to a codeword stationary point, then a gradient
descent process produces a convergent point sequence to the
corresponding codeword. This pull-in property is of great
importance in proximal decoding.

3. Principle of Proximal Decoding

3.1 Approximate Maximum a Posteriori (MAP) Decoding

Assume that a sender transmits a codeword of C(H) to
a given channel. The channel is defined by a probability
density function (PDF), p(y |x)(x,y ∈ Rn). The negative
log-likelihood is defined as L(x;y) ≡ − ln p(y |x). TheMAP
decoding rule is expressed as x̂ ≡ argmaxx∈Rn p(y |x)p(x),
where p(x) is the prior PDF on the input space. It is natural
to make the equal probability assumption on C(H), which
is given by

p(x) ≡
1

|C(H)|

∑
c∈C(H)

δ(x − c), (6)

where δ is Dirac’s delta function. Instead of the true p(x)
above, here, we assume a prior PDF with the form p̃(x) ≡
1
Z exp (−γh(x)) ,where Z is the normalizing constant and γ
is a positive constant. Note that, at the limit γ →∞, we have

p̃(x) =
1
Z

exp (−γh(x)) →
1

|C(H)|

∑
c∈C(H)

δ(x − c).

(7)
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This justifies the use of p̃(x) as an approximation of p(x).
By using this result, we immediately have the approximation

p(x|y) ∝ p(y |x)p(x) ' p(y |x)p̃(x)
= exp (−L(x;y) − γh(x)) . (8)

Hence, the approximate MAP rule considered here is given
by

x̂ ≡ argminx∈Rn L(x;y) + γh(x). (9)

The problem can be regarded as a regression problem with a
regularizer given by h(x). Note that the minimization prob-
lem (9) is similar to the LASSO problem [15] for sparse
signal recovery. The ISTA is derived from the LASSO for-
mulation. It is natural to consider a counterpart of the ISTA
for (9), i.e., proximal decoding, which will be presented in
the next subsection.

Note that the value of γ controls the landscape of the
objective function:

f (x) ≡ L(x;y) + γh(x). (10)

If we choose a large γ, many undesirable stationary points,
including local minima, appear in the landscape. This
means that a decoding algorithm based on a gradient de-
scent method tends to fail successful decoding due to these
stationary points. We thus need to keep the value of γ being
a particular finite value although MAP decoding is achieved
when γ →∞. In practice, the value of γ should be adjusted
according to the decoding performance.

3.2 Proximal Decoding

Solving the approximate MAP problem (9) can be regarded
as a non-convex minimization problem. To solve the ap-
proximateMAPproblem efficiently, wewill use the proximal
gradient method [12]. The proximal operator of f : Rn → R
is defined as

prox f (v) ≡ argminx∈Rn
(

f (x) +
1
2
‖x − v‖2

)
, (11)

where ‖ · ‖ represents the Euclidean norm. The proximal
operators can be regarded as a generalized projection. It is
known that a proximal operator can be well approximated
by a gradient descent step (page 126 of [12]). Thus, the
proximal operator proxγh(x) can be approximated by

proxγh(x) ' x − γ∇h(x), (12)

where the approximated proximal operator is said to be the
code-proximal operator.

The proximal decoding proposed in this paper is given
by the following iterative process:

r(k+1) = s(k) − ω∇L(s(k);y) (13)
s(k+1) = r(k+1) − γ∇h(r(k+1)), (14)

for k = 0,1,2, . . ., where ω is a positive real number repre-
senting the step-size parameter of a gradient descent process

in (13). The step indicated by (13) is referred to as the gradi-
ent descent step, and the step indicated by (14) is referred to
as the code-proximal step. The entire procedure of proximal
decoding is summarized in Algorithm 1.

Algorithm 1 Proximal decoding (general form)
1: s(0) := 0
2: for k := 0 to K − 1 do
3: r(k+1) := s(k) −ω∇L(s(k);y)
4: Compute ∇h(r(k+1)) according to (4).
5: s(k+1) := r(k+1) − γ∇h(r(k+1))
6: x̂ := sign(s(k+1))
7: If x̂ passes the parity-check condition, break the loop.
8: end for
9: Output x̂

Let Bη ≡ [−η,η]n where η is a positive constant slightly
larger than one, be the n-dimensional hypercube, where
[a, b] ≡ {x ∈ R | a ≤ x ≤ b}. The gradient norm ‖∇h(x)‖
tends to be extremely large if x < Bη owing to a property of
the code-constraint polynomial. In the proximal decoding
process defined above, this may cause numerical instability
(oscillation or divergent behavior) in some cases. In such
cases, we can use

s(k+1) = Πη

(
r(k+1) − γ∇h(r(k+1))

)
(15)

instead of (14) to prevent numerical instability. The projec-
tion operator Πη : Rn → Bη represents the projection onto
Bη , i.e., the projection operator is defined by

Πη(x) = arg min
x′∈Bη

‖x − x′‖. (16)

Let us discuss the time complexity per iteration of the
proximal operation. In the following argument, we assume
an LDPC code, i.e., the number of ones in H is O(n). For
evaluating r(k+1) − γ∇h(r(k+1)), we require the gradient of
h(x). All the quantities

∏
j∈A(i) xj for i ∈ [m] can be calcu-

lated with time complexity O(n) because of the assumption
that H is sparse. This means that the time complexity for
evaluating the gradient of h(x) is O(n), which is practical
time complexity, because O(n) is the same as the complexity
of belief propagation (BP) decoding for LDPC codes. Note
that the computation of the gradient of h(x) requires only
multiplication and addition. There is no need to compute a
nonlinear function such as tanh required for BP.

4. Variations of Proximal Decoding

4.1 Proximal Decoding for AWGN Channel

As one of the simplest instances of proximal decoding, a
variant for additive white Gaussian noise (AWGN) channels
is discussed first. The AWGN channel is simply described
as y = x +w wherew is the additive white Gaussian noise
term. The noise vector w follows the Gaussian distribution
N(0, σ2I). In this case, the approximate MAP rule can be
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written as x̂ = argminx∈Rn 1
2 ‖x−y‖

2 + γh(x) based on the
assumption of i.i.d. Gaussian noise. Because ∇ 1

2 ‖y−x‖
2 =

x−y, the core of proximal decoding for the AWGN channel
can be summarized by

r(k+1) = s(k) − ω(s(k) − y) (17)
s(k+1) = r(k+1) − γ∇h(r(k+1)). (18)

The initial point can be set to s(0) = 0.
The time complexity for evaluating the above-

mentioned recursive equations per iteration is O(n) if H
defies an LDPC code. Note that the computation of the
recursive equations requires only addition and multiplica-
tion of real numbers, which is a desirable property for an
implementation requiring high-speed software processing.

4.2 Proximal Decoding for Massive MIMO Channels

In this subsection, we focus on amassiveMIMO channel as a
target channel because decoding and detection problems for
LDPC-coded massive MIMO channels are nontrivial prob-
lems that are practically important [16] for wireless cellular
networks referred to as fifth-generation (5G) systems, as well
as for future systems such as beyond-5G/6G systems. The
authors recently proposed a detection algorithm for over-
loaded massive MIMO channels [17]. The architecture of
the detection algorithm proposed in the previous study [17]
is another trigger for the development of proximal decoding
for massive MIMO channels.

Recall that the principle of proximal decoding is appli-
cable to any channel model if we precisely know the negative
log-likelihood function L(x;y), and its gradient ∇L(x;y)
can be evaluated efficiently.

Let A ∈ Rµ×n be a channel matrix. Suppose that a
received word y ∈ Rµ is given by y = Ax + w, where
w ∈ Rµ is a Gaussian noise vector, the components of which
follow an i.i.d. Gaussian distribution. The channel input
vectorx is assumed to be a codeword ofC(H), which implies
that we assume BPSK modulation. In this problem setting,
the PDF representing the channel is given by

p(y |x) = a exp
(
−b‖y −Ax‖2

)
,

where a and b are positive constants. Hence, we have the fol-
lowing approximate MAP decoding problem for an LDPC-
coded massive MIMO channel:

x̂ ≡ argminx∈Rn
1
2
‖y −Ax‖2 + γh(x). (19)

Since∇ 1
2 ‖y−Ax‖2 = AT (Ax−y), an iteration of proximal

decoding for LDPC-coded massive MIMO channels can be
summarized as

r(k+1) = s(k) − ωAT (As(k) − y) (20)
s(k+1) = r(k+1) − γ∇h(r(k+1)). (21)

In the following experiments, we set the initial value s(0) = 0.
However, there are alternative choices for the initial point,

i.e., an estimate of the zero-forcing detector or the MMSE
detector can be used as an initial point.

4.3 Proximal Decoding for Additive Correlated Gaussian
Noise

In this subsection, we will study the case in which the ad-
ditive noise vector follows a correlated Gaussian PDF. The
idea of proximal decoding can be naturally applied to this
case as well. In this case, the negative log-likelihood func-
tion takes on a quadratic form involving the inverse of the
covariance matrix of the additive noise. The channel model
is given by y = x +w,where x ∈ C(H) and w ∼ N(0,Σ).
The covariance matrix Σ is assumed to be a symmetric pos-
itive definite matrix. The precision matrix G is defined by
G = Σ−1. In this case, the approximate MAP rule can be
represented as

x̂ ≡ argminx∈Rn
1
2
(y − x)TG(y − x) + γh(x) (22)

owing to the definition of the multivariate Gaussian PDF.
The gradient corresponding to the negative log-likelihood is
given by ∇ 1

2 (y − x)
TG(y − x) = G(x − y).

Proximal decoding for additive correlated Gaussian
noise channels is defined by the following recursive equa-
tions:

r(k+1) = s(k) − ωG(s(k) − y) (23)

s(k+1) = r(k+1) − γ∇h(r(k+1)). (24)

The time complexity for evaluating the above-
mentioned recursive equation is O(n2) per iteration because
the multiplicationG(x − y) is the dominant computation in
the case of LDPC codes.

4.4 Proximal Decoding for Nonlinear Vector Channels

In this subsection, we will study a fairly general channel
model described by y = f (x) + w, where f : Rn → Rν
is a nonlinear vector function. We also assume that f is
differentiable because we need to calculate a gradient vector
involving f . The noise termw ∈ Rν ∼ N(0, σ2I) represents
additive white Gaussian noise. In this case, the approximate
MAP decoding associated with the nonlinear vector channel
model is given by x̂ ≡ argminx∈Rn ‖y − f (x)‖2 + γh(x).
From this approximate MAP rule, we immediately have the
core recursive formula of proximal decoding as

r(k+1) = s(k) − ω∇‖y − f (s(k))‖2 (25)

s(k+1) = r(k+1) − γ∇h(r(k+1)). (26)

A nonlinear distortion of a transmitted signal may oc-
cur in a real channel. Nonlinearity of a power amplifier in
a wireless transmitter is an evident example. A nonlinear
clipping operation for reducing the peak-to-average power
ratio (PAPR) is another source of nonlinear distortion in a
wireless system. In such a case, the channel can be modeled
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by a nonlinear vector channel. It seems interesting to devise
a decoding algorithm suitable for such a channel. Another
motivation comes from the possibility of using a parametric
function fΘ to model the channel characteristics, where Θ is
a set of controllable parameters. A neural network [18] is an
evident example of such a parametric function. We often en-
counter an inevitable nonlinear effect in fields such as optical
fiber communications, magnetic recording, and flash mem-
ories. Parametric modeling via fΘ seems to be a promising
approach for such a channel with nonlinear distortion.

For practical implementation, evaluation of the gradient
∇‖y − f (x)‖2 should be efficient. In the following, we will
discuss two scenarios in which the evaluation of the gradient
is computationally tractable.

4.4.1 Component-Wise Nonlinearity

Here, we consider the case in which f is given by f (x) ≡
g(Ax), where g : R → R is a differential function. The
matrix A ∈ Rν×n is assumed to be a full-rank matrix. The
function g is applied component-wise to each component of
Ax.

For example, soft peak clipping by tanh for OFDM
signals can be represented as f (x) = tanh(Dx),whereD is
the inverse discrete Fourier matrix (DFT)†.

The gradient of g(Ax) has a concise form:

1
2
∇‖y − g(Ax)‖2 = −AT ((y − g(Ax)) � g′(Ax)),

(27)

where � is the Hadamard operator representing the
component-wise product of two vectors. If the evaluation of
g and g′ requires constant time, the evaluation of the above-
mentioned gradient requiresO(n2) computation, which is the
allowable time complexity in a proximal decoding process.

4.4.2 Use of Back-Propagation

Suppose that the gradient of the squared norm ∇‖y− f (x)‖2

can be efficiently evaluated by back-propagation [18]. In
such a case, we can embed back-propagation in a prox-
imal decoding process. Computation of the gradient
∇‖y − f (x)‖2 by back-propagation is beneficial for imple-
menting a proximal decoder because we only need to specify
the forward model of f without preparing a backward model
for computing ∇‖y − f (x)‖2 such as (27). For example,
in the case of multi-layer neural networks, expressing the
gradient becomes quite cumbersome.

Another advantage of the use of back-propagation is
its suitability for feed-forward neural networks. When the
function f is implemented by a feed-forward neural network,
we can train f based on the dataset, which leads to a data-
driven design of a decoder.

†In the case of a complex matrix such as the DFT matrix D,
a gradient descent step must follow the Wirtinger derivative of the
negative log-likelihood function.

Fig. 1 Bit error rates of proximal decoding for AWGN channel. The BER
performance of BP decoding is also included as a baseline. The code is the
regular LDPC code (3, 6) with n = 204,m = 102.

5. Numerical Experiments

5.1 Proximal Decoding for AWGN Channel

Section 4.1 discussed proximal decoding for AWGN chan-
nels. Here, we present several experimental results of proxi-
mal decoding for AWGN channels. We conducted numerical
experiments for measuring the bit error rate (BER) of prox-
imal decoding. A (3,6)-regular LDPC code with n = 204
and m = 102 [19] was used as the target code. Figure 1
shows BER obtained by a numerical experiment. The hor-
izontal axis represents SNR, i.e., Eb/N0 = 2/(Rσ2) in dB
where R is the design code rate, 1 −m/n. As a baseline, the
BER performance of the belief propagation (BP) decoder
is also included in the figure. We tested the three cases
γ ∈ {0.01,0.05,0.15}. It is observed that the BER perfor-
mance crucially depends on the choice of γ. The BER curve
of proximal decoding with γ = 0.05 shows moderate decod-
ing performance but there are gaps in the BP performance.

Although proximal decoding provides larger BER val-
ues compared with BP decoding over AWGN channels,
one can consider a proximal decoder as a candidate of a
reduced complexity decoder for applications requiring ex-
tremely high throughput. This is because proximal decoding
for the AWGN channel requires no nonlinear function com-
putation, such as tanh required for BP, or the minimum op-
eration necessary for the min-sum algorithm. Only addition
and multiplication operations are required for implementing
a proximal decoder for the AWGN channel.

5.2 Proximal Decoding for LDPC-Coded MIMO Channel

5.2.1 Problem Setup

In this subsection, we follow the real-valued MIMO model
discussed in [17]. Let A′ ≡ {a′i, j} ∈ C

M×N be a channel
matrix, where a′i, j is the fading coefficient corresponding
to the path between the jth transmit antenna and the ith
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receive antenna. Here, we assume that each component ofA′
follows the Kronecker model [20], which is a simple channel
model representing the spatial correlation between antenna
elements. Let ρ(0 ≤ ρ < 1) be the spatial correlation factor.
The correlation matrix for the receiver side is given byRr ≡

{ri, j}1≤i, j≤M ,ri, j = ρ |i−j | and the correlation matrix for the
transmitter side is given by Rt ≡ {ti, j}1≤i, j≤N , ti, j ≡ ρ |i−j | .
In the Kronecker model, a channel matrixA′ is represented
by A′ ≡ R1/2

r G(R1/2
t )

T , where each element of the matrix
G ∈ CM×N follows a complex circular Gaussian PDF with
zero mean and unit variance. Note thatA′ = G holds when
there is no spatial correlation, i.e., ρ = 0.

We assume QPSK modulation for transmitted signals.
An equivalent real-valued MIMO model with BPSK mod-
ulation can be defined as y = Ax + w, where A is given
by

A ≡

[
Re(A′) −Im(A′)
Im(A′) Re(A′)

]
∈ Rµ×n.

Note that µ = 2M and n = 2N hold. The transmitted word
x is randomly chosen from C(H) according to the uniform
distribution. Each component of the noise vectorw ∈ Rµ is
an i.i.d. Gaussian PDF with zero mean and variance σ2

w/2.
In this model, σ2

w is related to the signal-to-noise ratio SNR
by σ2

w = (2N)/SNR. The details of the equivalence of the
complex-valued model and real-valued model can be found
in [17]. In the following experiment, we used the regular
(3,6)-LDPC code with n = 204 and m = 102. The step-
size parameter ω used in the gradient descent step was set to
ω ≡ 2/(λmin+λmax),where λmin and λmax are theminimum
and maximum eigenvalues of ATA, respectively. In the
following experiments, we used the box projection (14) with
η = 1.5 in the proximal step.

5.2.2 Baseline Schemes

For comparison, we exploited a proximal-based detection
algorithm, referred to as the tanh detector, given by the
following recursion [17], [21]:

r(k+1) = s(k) − ωAT (As(k) − y), (28)

s(k+1) = tanh(αr(k+1)), (29)

where α is a positive real value. Furthermore, the MMSE
detector defined as x̂ ≡ AT (AAT + (σ2

w/2)I)−1y was also
examined as a baseline scheme. Furthermore, as a baseline
for joint detection and decoding, we employed the combi-
nation of the MMSE detector and BP decoding, denoted by
MMSE + BP. Although the orthogonal AMP [22] is a state-
of-the-art algorithm for joint detection and decoding, we
here use MMSE+BP as a baseline because it is a practically
common joint detection and decoding algorithm.

5.2.3 Convergence Behavior

Let x̂ be the estimated word obtained from these detection

Fig. 2 Comparison of the averaged error value ‖x−sign(x̂) ‖ under ρ = 0
(no spatial correlation). The numbers of received and transmitted antennas
were N = M = 102. (Left): SNR = 8 (dB); right: SNR = 10 (dB). The
error values were averaged for 100 trials. The choice of the parameter γ is
critical for achieving appropriate performance of proximal decoding. We
set γ = 0.05 for these experiments. The parameter α used in the tanh
detector was set to 2.0. In all the schemes, the step-size parameter was set
to ω = 2.0/(λmin + λmax ).

algorithms. The performance measure used herein is the
averaged error value of ‖x − sign(x̂)‖,where x is the trans-
mitted word, and x̂ indicates an estimate obtained from the
detector.

Figure 2 shows the averaged error as a function of the
number of iterations when there is no spatial correlation,
i.e., ρ = 0.0. Proximal decoding provides much smaller
averaged error values and faster convergence compared with
the tanh detector and MMSE detector. Moreover, the satu-
rated value of proximal decoding is much smaller than that
of the tanh detector. These results imply that the parity con-
straint included in the code-constraint polynomial is fairly
beneficial in terms of obtaining a reasonable solution. We
also observed that the convergence speed of proximal de-
coding is sensitive to the choice of γ. A pre-experiment
was conducted to find an appropriate setting of γ. In this
experiment, γ = 0.05 provided the best result.

5.2.4 Bit Error Rate Performance

The BER is the primary performance measure for detec-
tion algorithms for massive MIMO systems. Here, we in-
vestigated the BER performance of proximal decoding and
several benchmark schemes, such as the tanh detector and
MMSE detector (with/without BP decoding). The input of
the BP decoder after MMSE detection was set to ξx̂, where
ξ is a positive constant, and x̂ is an MMSE estimation vec-
tor without binary quantization. The value of the scaling
parameter ξ is crucial for deriving the full performance of
BP decoding. In the following experiments, we set ξ = 5,
which was adjusted heuristically. The channel model was
the Kronecker model described in Sect. 5.2.1.

Figure 3 shows the BER performances of the proposed
and benchmark schemes. The left-hand panel in Fig. 3 rep-
resents the case of no spatial correlation (ρ = 0), and the
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Fig. 3 Bit error rate performances of proximal decoding and baseline
schemes. Left: without spatial correlation (ρ = 0); right with spatial
correlation (ρ = 0.4). The number of received and transmitted antennas are
N = M = 102. To obtain a BER point, 10,000 codewords were used for
BER estimation. The parameter γ used in the code proximal operator was
set to 0.05. The step-size parameter was set to ω = 2.0/(λmin + λmax ).
The number of iterations for BP was 20, and the number of iterations for
proximal decoding and the tanh detector was set to 50. The scaling factor
ξ = 5 was used for MMSE+BP.

right-hand panel represents the results under the spatial cor-
relation (ρ = 0.4). Here, although the MMSE detector
is the simplest detector, the error curve is not very steep
in either Fig. 3 (Left) or Fig. 3 (Right). Furthermore, the
MMSE detector involves the inversion of a matrix requiring
time complexity O(n3), which is not negligible in terms of
the complexity in a massive MIMO scenario. The combi-
nation of the MMSE detector followed by the BP decoder
(MMSE+BP) is a standard and practical configuration of a
receiver for LDPC-coded massive MIMO channels.

The BER performance ofMMSE +BP provides a much
steeper error curve compared to the plainMMSE error curve.
The tanh detector also achieves much smaller BERs com-
paredwith the naiveMMSEdetector when ρ = 0. Compared
with the tanh detector and MMSE detector (with/without BP
decoding), the BERs of proximal decoding are the smallest.
In particular, the margin between the proposed method and
MMSE + BP is approximately 3 dB at BER = 10−4 in Fig. 3
(right). Comparing Fig. 3 (Left) and 3 (Right) shows that
the performance of MMSE+BP is degraded as ρ increases.
The proposed method provides similar BER performances
in both cases.

Although several studies have discussed joint detec-
tion and decoding for LDPC-coded MIMO channels, such
as [23], [24], their time and circuit complexities are fairly
higher than those of proximal decoding. The complexity of
proximal decoding is O(`n2), where ` represents the num-
ber of iterations, which is lower than the complexity of the
MMSE detector if ` is constant.

5.3 Proximal Decoding for Correlated Gaussian Noise
Channels

In this subsection, we present experimental results on prox-

Fig. 4 Sample of correlated Gaussian noise for t2 = 0.5, 1.0, 2.0, 4.0:
t1 = 1.0, ∆ = 0.1.

imal decoding for correlated Gaussian noise channels. Al-
though such a decoding problem has been discussed previ-
ously, it still seems to be a non-trivial problem. For example,
[25] proposed a joint decoding method based on a BP de-
coder and a Kalman filter for handling correlated Gaussian
noise; however, its decoding process is fairly heavy in terms
of the time complexity owing to Kalman filtering.

The received word was modeled as y = x +w, where
w ∼ N(0,Σ). In the following experiment, we assumed
that the noise is a Gaussian process defined by the Gaussian
kernel

k(i, j) = t1 exp
(
−
(∆i − ∆ j)2

t2

)
.

In other words, the (i, j)-element of the covariance matrix
Σi, j is given by the kernel function as Σi, j ≡ k(i, j). The ker-
nel parameters t2 and ∆ are related to the correlation length
of a Gaussian process. For fixed ∆, if the value of t2 in-
creases, the correlation of the neighboring noise components
becomes stronger. Figure 4 shows several noise samples fol-
lowing themultivariate Gaussian distributionN(0,Σ). From
Fig. 4, we can observe a relationship between the correlation
length and t2.

We conducted an experiment for evaluating the bit error
rate of proximal decoding for additive correlated Gaussian
noise. The precisionmatrixG used in the proximal decoding
(23) is given byG = Σ−1. In the experiments, the parameters
t1 and ∆ were fixed at t1 = 1.0 and ∆ = 0.1, respectively.
The parameters used in the proximal decoder were ω =
10−12, γ = 0.01. The maximum number of iterations was set
to 100. None of the experiments involved early stopping by
the parity check. The same regular LDPC code (3,6) with
n = 204,m = 102 was used in the experiment. From the pre-
experiments, we observed that the decoding performance
depends on the correlation length. Hence, we plotted the
BER curve as a function of t2.

Figure 5 shows the BER performance of proximal de-
coding for correlated Gaussian noise channels. For refer-
ence, the BER curve of BP decoding is also included. The
input to the BP decoder is given by l ≡ 2y/t2. We can see
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Fig. 5 Bit error rate of proximal decoding for additive correlated Gaus-
sian noise channel: t1 = 1.0, ∆ = 0.1. The regular LDPC code (3, 6) with
n = 204 and m = 102 were used.

that the proximal decoder achieves sufficiently small BER
when t2 becomes large. This indicates that the proximal
decoder works appropriately for correlated Gaussian noise
channels. The baseline curve of BP is nearly flat because a
naive BP decoder cannot use the correlation between noise
components.

5.4 Proximal Decoding for Nonlinear Vector Channels

In this subsection, we assume a nonlinear vector channel
defined by y = W2 swish (W1x) + w, where swish de-
fined by swish(x) ≡ x/(1 + exp(−x)) is component-wisely
applied to the argument vector. The swish function [26] is
known as a differentiable (at x = 0) counter part of ReLU
function. In the following experiment, each element of
W1 ∈ R

500×204,W2 ∈ R
204×500 was generated according

to N(0,0.12). The additive Gaussian noise vector w fol-
lows N(0, σ2I). The channel model is somewhat artificial,
but it is a simple example of a nonlinear function based
on feed-forward neural network architecture. For the im-
plementation of the decoder, we used the back-propagation
mechanism provided by Flux.jl [27] on Julia Language [28].

Figure 6 depicts the error norms ‖sign(s(k)) − x‖ as
a function of iteration. The hyper parameters were set
to γ = 0.05 and ω = 0.1 according to the result of a
pre-experiment. The left panel presents a case where the
noise standard deviation σ is small, i.e., a high SNR case
(σ = 0.4). From the left panel, we can see that the error
norm curves (10 trials) decrease rapidly, and they eventually
fall down to zero. On the other hand, when σ = 0.9 (a low
SNR case), some of the error norm curves stay at high values
(above 10). This result implies that the proximal decoding
for this channel shows appropriate error correction behav-
iors when σ is sufficiently small. It can be remarked that
the proximal decoding is applicable to fairly complex non-
linear functions, such as f (x) =W2 swish (W1x). A neural
network-based nonlinear vector function seems promising to
model a nonlinear behavior of a channel. We may be able to
expect that such a function can be handled in the framework

Fig. 6 Error norm of decoding processes proximal decoding for a non-
linear vector channel defined with swish function. The regular LDPC code
(3, 6) with n = 204 and m = 102 was used. Left: σ = 0.4; right: σ = 0.9.
The SNR was set to 3 dB. The parameters γ = 0.05, ω = 0.1.

of proximal decoding.

6. Conclusions

We presented proximal decoding to approximate MAP de-
coding for LDPC codes. The key idea of the proposed al-
gorithm is the use of the code-constraint polynomial, which
acts as a regularizer corresponding to the codewords of an
LDPC code. A codeword stationary point often attracts a
point generated by the iterative process in a proximal gradi-
ent process. The pull-in property arises from the gradient of
a code-constraint polynomial.

Further, the principle of proximal decoding was de-
scribed, and it is fairly universal, i.e., it can be applied to
many types of non-trivial channels if the gradient of the neg-
ative log-likelihood function can be evaluated efficiently. For
presenting the derivation process of a recursive formula for
proximal decoding, we discussed the derivation of channel-
specific proximal decoding formulas for LDPC-coded mas-
sive MIMO channels, correlated Gaussian noise channels,
and nonlinear vector channels. These channel-specific for-
mulas were derived coherently according to the principle of
proximal decoding.

In addition, we presented the results of numerical ex-
periments for several variations of proximal decoding. For
LDPC-coded massive MIMO channels, proximal decoding
was shown to be comparable to known detection methods,
such as MMSE + BP. In terms of a trade-off between decod-
ing complexity and BER performance, proximal decoding
appears to be promising for LDPC-coded MIMO channels.
In the case of nonlinear vector channels, we proposed proxi-
mal decoding involving a back-propagation process for com-
puting the gradient of a negative log-likelihood function.
We also presented numerical results for a nonlinear vector
channel defined on the basis of a nonlinear function with a
feed-forward neural network architecture. We may be able
to use a feed-forward neural network to capture nonlinear
distortion of the channel, and such a neural network model
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can be directly used for decoding.
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