
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Analysis and Improvements of the Full Spritz
Stream Cipher

Banik, Subhadeep; Isobe, Takanori; Morii, Masakatu

2017

Banik, S., Isobe, T., & Morii, M. (2017). Analysis and Improvements of the Full Spritz Stream
Cipher. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, E100.A(6), 1296‑1305.

https://hdl.handle.net/10356/81487

https://doi.org/10.1587/transfun.E100.A.1296

© 2017 Institute of Electronics, Information and Communication Engineers (IEICE). This
paper was published in IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences and is made available as an electronic reprint
(preprint) with permission of Institute of Electronics, Information and Communication
Engineers (IEICE). The published version is available at:
[http://dx.doi.org/10.1587/transfun.E100.A.1296]. One print or electronic copy may be
made for personal use only. Systematic or multiple reproduction, distribution to multiple
locations via electronic or other means, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper is prohibited and is
subject to penalties under law.

Downloaded on 29 Mar 2024 04:21:25 SGT

1296
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.6 JUNE 2017

PAPER
Analysis and Improvements of the Full Spritz Stream Cipher∗

Subhadeep BANIK†, Takanori ISOBE††a), Nonmembers, and Masakatu MORII†††, Senior Member

SUMMARY Spritz is a stream cipher proposed by Rivest and Schuldt
at the rump session of CRYPTO 2014. It is intended to be a replacement
of the popular RC4 stream cipher. In this paper we propose distinguishing
attacks on the full Spritz, based on a short-term bias in the first two bytes
of a keystream and a long-term bias in the first two bytes of every cycle of
N keystream bytes, where N is the size of the internal permutation. Our
attacks are able to distinguish a keystream of the full Spritz from a random
sequence with samples of first two bytes produced by 244.8 multiple key-IV
pairs or 260.8 keystream bytes produced by a single key-IV pair. These
biases are also useful in the event of plaintext recovery in a broadcast attack.
In the second part of the paper, we look at a state recovery attack on Spritz,
in a special situation when the cipher enters a class of weak states. We
determine the probability of encountering such a state, and demonstrate
a state recovery algorithm that betters the 21400 step algorithm of Ankele
et al. at Latincrypt 2015. Finally we propose a simple fix that removes
the bias in the first two keystream bytes. The countermeasure requires
only one additional memory access and hence does not diminish software
performance substantially, and in fact the loss in software speed is only
around 1.5%.
key words: RC4, Spritz, stream cipher, short-term bias, long-term bias,
distinguishing attack, plaintext recovery attack, state recovery attack

1. Introduction

RC4, designed by Rivest in 1987, is still one of most widely
used stream ciphers in the world. It is adopted in many soft-
ware applications and standard protocols such as SSL/TLS,
WEP, Microsoft Lotus and Oracle secure SQL. After the
disclosure of its algorithm in 1994, RC4 has attracted inten-
sive cryptanalytic efforts over past 20 years. Finally, in 2013,
practical plaintext recovery attacks on RC4 in SSL/TLS were
proposed by AlFardan et al. [2] and Isobe et al. [12]. In the
response to these results, usage of RC4 has drastically de-
creased, especially in TLS, and major companies such as
Google, Microsoft, and Mozilla announced that they will
officially remove the RC4 from web browsers by early 2016.

At the same time, there has been extensive research
in recent years to come up with RC4-like stream ciphers

Manuscript received September 27, 2016.
Manuscript revised January 20, 2017.
†The author is with the Temasek Labs, Nanyang Technological

University, Singapore.
††The author is with the Graduate School of Applied Informatics,

University of Hyogo, Kobe-shi, 650-0047, Japan.
†††The author is with the Graduate School of Engineering, Kobe

University, Kobe-shi, 657-8501 Japan.
∗The preliminary version of this paper was presented at FSE

2016 [4]. In this paper, we add the countermeasure against distin-
guishing attacks of [4], and provide the evaluations of its perfor-
mance as a full version.

a) E-mail: takanori.isobe@ai.u-hyogo.ac.jp
DOI: 10.1587/transfun.E100.A.1296

that while marginally slower in software, would wipe out
the known shortcomings of RC4. Many such ciphers
like RC4A [20], NGG [17], GGHN [11], Quad-RC4 [19],
RC4+ [13] and VMPC [27] have been proposed to fulfil
this objective. However, all the aforementioned ciphers
have had distinguishing attacks reported against them [5]–
[7], [15], [21], [23], [24]. Spritz [22] is a stream cipher pro-
posed by Rivest and Schuldt at the rump session of CRYPTO
2014. The authors intended Spritz to be a replacement for
RC4, and hence the design for Spritz was chosen meticu-
lously, with special attention given to the fact that known
weaknesses of RC4 [14], [16] do not carry over. The au-
thors automatically examined many thousands of candidates
to obtain cryptographically secure update functions and an
estimated 5 “core-months” of CPU time were used in the sta-
tistical experiments performed by them. Their experiments
suggested that 281 samples were required to distinguish the
output of Spritz from random.

1.1 Description of Spritz

Spritz consists of a permutation S over the set {0, 1, 2, . . . , N−
1} (default value of N is 256) and six pointers i, j, k, w, a, z,
where i, j, k are index pointers, w gives the step distance
for i, a is a nibble counter, and z stores the output byte.
The design specifies a number of modules that are executed
for producing a keystream as defined in Fig. 1. The authors
specify a number of modes of operation using the Spritz
structure like a stream cipher, hash function, MAC etc. In the
stream cipher mode of operation the keystream is produced
in the following manner. First the permutation is initialized
using the INITIALIZESTATE(N) routine. The secret key K is
then absorbed into the state using the ABSORB(K) module.
Additionally, if an IV is to be used, then the ABSORBSTOP()
module is invoked and the IV is absorbed by calling the
ABSORB(IV) function. Thereafter, the SQUEEZE module
is invoked to produce keystream bytes.

1.2 Previous Work

The only published work on cryptanalysis of Spritz is pre-
sented in [3]. The authors tackle the problem of state re-
covery using three different approaches. The best algorithm
they propose theoretically recovers the internal permutation
used in Spritz in 21400 steps. Additionally, in [26], the author
proposed a distinguisher for a scaled down version of Spritz
(N = 8). It was observed that the event Zi = Zi+2 was bi-

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

BANIK et al.: ANALYSIS AND IMPROVEMENTS OF THE FULL SPRITZ STREAM CIPHER
1297

INITIALIZESTATE(N)

1. i = j = k = a = z = 0, w = 1.
2. for v → 0 to N − 1

S[v] = v

ABSORB(I)

1. for v → 0 to I .length − 1
ABSORBBYTE(I[v])

ABSORBBYTE(b)

1. ABSORBNIBBLE(low (b))
2. ABSORBNIBBLE(high(b))

ABSORBNIBBLE(x)

1. if a = ⌊ N
2 ⌋

SHUFFLE()
2. SWAP(S[a], S[⌊N/2⌋ + x])
3. a = a + 1

ABSORBSTOP()

1. if a = ⌊ N
2 ⌋

SHUFFLE()
2. a = a + 1

SHUFFLE()

1. WHIP(2N)
2. CRUSH()
3. WHIP(2N)
4. CRUSH()
5. WHIP(2N)
6. a = 0

WHIP(r)

1. for v → 0 to r − 1
UPDATE()

2. do w = w + 1
until gcd(w, N) = 1

CRUSH()

1. for v → 0 to ⌊N/2⌋ − 1
if S[v] > S[N − 1 − v]

SWAP(S[v], S[N − 1 − v])

SQUEEZE(r)

1. if a > 0
SHUFFLE()

2. P = Array.New (r)
3. for v → 0 to r − 1

P[v] = DRIP()
4. return P

DRIP()

1. if a > 0
SHUFFLE()

2. UPDATE()
3. return OUTPUT()

UPDATE()

1. i = i + w
2. j = k + S[j + S[i]]
3. k = i + k + S[j]
4. SWAP(S[i], S[j])

OUTPUT()

1. z = S[j + S[i + S[z + k]]]
2. return z

Fig. 1 Modules for Spritz. When N is a power of 2, the last two lines of WHIP are equivalent to
w = w + 2.

ased. However, the bias was not theoretically proven and no
analogous result for the full Spritz (N = 256) was proposed.

1.3 Our Contribution and Organization

In this paper, we first show a short-term bias which is present
in the first two bytes of a keystream and a long-term bias
which appears in the first two bytes of every cycle of N

keystream bytes. We theoretically prove that these biases
exist in a keystream of Spritz regardless of the value of N .
Based on these biases, we propose distinguishing attacks on
the full Spritz (N = 256). Our attacks are able to distinguish
a keystream of the full Spritz from a random sequence with
samples of first two bytes produced by 244.8 multiple key-IV
pairs or 260.8 keystream bytes produced by a single key-IV
pair. These biases are applicable to a plaintext recovery

1298
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.6 JUNE 2017

Table 1 Summary of results on Spritz.

Type of Attack Complexity Reference

1 Distinguishing attack on 221.9 outputs [26]
scaled down version (N = 8)

2 Distinguishing attack on 244.8 outputs Section 2
full Spritz (multiple key-IV)

3 Distinguishing attack on 260.8 outputs Section 2
full Spritz (single key-IV)

4 State recovery attack 21400 steps [3]
21247 steps Section 3

attack in a broadcast setting and multi-session setting in
SSL/TLS.

Thereafter we show that under certain conditions, Spritz
enters a weak class of states, during which, the odd and even
elements of the permutation are never swapped with each
other. In this case, the sequence constructed with the last bit
of every keystream byte becomes periodic with period equal
to 4. We show that in such an event, a state recovery attack
on Spritz is more efficient and improves upon the 21400 step
algorithm proposed in [3]. Table 1 shows the summary of
our results.

Finally we propose a simple countermeasure that re-
moves the bias in the first two keystream bytes produced by
the cipher. In order to do so, we tweak the output function
of the cipher in a manner that requires only one additional
memory access and at most two additional assembly instruc-
tions on any standard CPU. As such the software speeds
of the cipher after adding the countermeasure does not de-
crease significantly. Our findings indicate that for a CPU
supporting the x86_64 instruction set, the countermeasure
decreases the speed by around 1.5%.

The paper is organized in the following manner. In
Sect. 2, we will present the distinguisher on Spritz and study
a few of its implications. In Sect. 3, we will present our
state recovery attack on Spritz. In Sect. 4, we will outline
the details of the countermeasure. Section 5 concludes the
paper.

2. Distinguishing Attacks on Spritz

Before we proceed to outline the details of the distinguisher,
let us present a few observations on how the various index
pointers are used when Spritz is operated in the stream cipher
mode. Note that when Spritz is used in the stream cipher
mode: the sequence of execution of modules is

A. ABSORB(K)
B. ABSORBSTOP(),
C. ABSORB(IV) (optional, only if IV is used)
D. SQUEEZE().

1. In the ABSORB(K) (and also ABSORB(IV)) phase,
the internal permutation is swapped according to the
nibble values of the key (IV). During this phase the
index a is used only to keep track of the number of

nibbles currently absorbed in the permutation. After
the ABSORB phase, the index a plays no further role in
the SQUEEZE phase when the cipher starts producing
keystream bytes.

2. The index w, which is used to increment the index i,
is constant during the SQUEEZE phase. The value of
this index does not depend on the secret key, and hence
is not secret. Its value can be deduced from the length
of the secret key and IV. If the length of key is limited
to ⌊N/4⌋ bytes, and no IV is used, then the SHUFFLE
procedure is executed only once. In that case, the value
of w during the SQUEEZE phase is 7.

3. If the length of the Key is more than ⌊N/4⌋ bytes the
value of w can be deduced by examining the number of
times the SHUFFLE module has been called during the
ABSORB phases. For example, if N = 256, and a Key
of size 80 bytes, the SHUFFLE procedure gets called
twice, at the end of the 64th byte and at the beginning
of SQUEEZE. Each SHUFFLE call increases the value
of w by 6 and so the value of w during the keystream
generation is 1 + 6 + 6 = 13.

4. The value of the index i at the beginning of the
SQUEEZE phase is always 0, whatever be the size of
the Key and IV used in the ABSORB phases. This is
because whenever ⌊N/4⌋ bytes get absorbed, the value
of the pointers i, j, k are altered by call to the SHUFFLE
module. Each SHUFFLE module calls the WHIP(2N)
module thrice. Each WHIP module in turn updates i us-
ing the rule i = i+w a total of 2N times. Whatever be the
actual value of w, at the end of the any call to the WHIP
module, the updated value of i = 0+ 2wN ≡ 0 mod N .
And so the value of i remains 0 going in and out of the
WHIP executions and hence also the SHUFFLE module.

5. The only indices that change during the SQUEEZE
phase is i, j, k, z.

6. The sequence of updates during the SQUEEZE phase is
therefore given as:

a. i = i + w
b. j = k + S[j + S[i]]
c. k = k + i + S[j]
d. SWAP (S[i], S[j])
e. return z = S[j + S[i + S[z + k]]]

Although the sequence of steps in Spritz is quite compli-
cated, for the purpose of this paper it is sufficent to view
ABSORB(K), ABSORBSTOP(), ABSORB(IV) as a black-
box module that takes as input K, IV and outputs a random
permutation S on {0, 1, 2, . . . , N−1} and byte indices i, j, k, w.
The process is explained graphically in Fig. 2.

BANIK et al.: ANALYSIS AND IMPROVEMENTS OF THE FULL SPRITZ STREAM CIPHER
1299

Fig. 2 Graphical representation of the SPRITZ procedure.

2.1 Bias in First Two Output Bytes of a Keystream

We first prove that the first two output bytes produced by the
Spritz stream cipher are biased towards the tuple (−w,−w).
For example, if N = 256, and if a 64-byte key is used, then
w = 7, and then the first 2 bytes are biased towards the value
(249, 249).

Theorem 1: The first two output bytes Z1 and Z2 produced
by the Spritz stream cipher are biased towards (−w,−w). The
probability of this event is given by Pr[Z1 = Z2 = −w] =

1
N2 +

3
N4 .

Proof 1: We outline three mutually exclusive events I, II
and III, each of which occurs with probability 1

N4 , that guar-
antees that the first two output bytes produced by the cipher
are both equal to −w. Each of the three events are denoted
by the states of the permutation and the values of the index
pointers before the beginning of the SQUEEZE phase.

I. S[w] = −w, S[2w] = 0, k = 0, S[j − w] = 2w
II. k = 2w, S[j + S[w]] = −2w, S[2w] = w, S[0] = −w
III. k+S[j−w] = 2w, k+S[2w] = 0, S[w−k] = 0, S[w] =

−w
For example, when I occurs in the first round we have the
following changes : 1. i ← i + w = w
2. j ← 0 + S[j + S[w]] = S[j − w] = 2w
3. k ← k + i + S[j] = 0 + w + S[2w] = 0 + w + 0 = w
4. S[w]← 0, S[2w]← −w after SWAP
5. z ← S[j + S[i + S[z + k]]] = S[2w + S[w + S[w]]] =
S[2w + S[w]] = S[2w] = −w

Similarly in the second round we have the following changes:
1. i ← i + w = 2w,
2. j ← w + S[2w + S[2w]] = w + S[w] = w
3. k ← k + i + S[j] = w + 2w + S[w] = 3w + 0 = 3w
4. S[w]← −w, S[2w]← 0 after SWAP
5. z ← S[w+ S[2w+ S[3w−w]]] = S[w+ S[2w+ S[2w]]] =
S[w] = −w

We get similar results when we analyze II and III. Let us

now denote by E the union of the events I, II and III. We
have Pr[E] = 3

N4 , and Pr[Z1 = Z2 = −w |E] = 1. We assume
that when E does not occur Pr[Z1 = Z2 = −w |Ec] = 1

N2 , and
is more or less uniformly random. We were able to verify
the assumption by running computer simulations. Therefore
by Bayes theorem, we have:

Pr[Z1 = Z2 = −w] = Pr[Z1 = Z2 = −w |E] · Pr[E]+
Pr[Z1 = Z2 = −w |Ec] · Pr[Ec]

= 1 · 3
N4 +

1
N2 ·

[
1 − 3

N4

]
≈ 1

N2 +
3

N4
□

2.1.1 Experimental Results:

By performing extensive computer simulations with (a) one
billion random keys, and (b) a fixed key with one billion
random IVs, the probability Pr[Z1 = Z2 = −w] was found
to be around 1

N2 +
2.9
N4 for N = 16 and N = 32. In Fig. 3, we

plot
[
Pr[(Z1, Z2) = x] − 1

N2

]
· N4 for all values of x when

N = 16 and 32 with w = 7. The x-axis is marked as
N Z1 + Z2. We can see a sharp peak at the x-axis mark
corresponding to (−7,−7) (i.e. 9 ∗ 16 + 9 = 153 for N = 16
and 25 ∗ 32+ 25 = 825 for N = 32). The plot is not uniform
and there seems to be some bias for other values of x too, but
the most significant bias exists at the point corresponding to
(−w,−w).

2.2 Distinguishing Attack with Multiple Key-IV Pairs
Based on a Short-Term Bias

We now state the following theorem from [14], which out-
lines the number of output samples required to distinguish
two distributions X and Y .
Theorem 2: (Mantin-Shamir [14]) Let X, Y be distribu-
tions, and suppose that the event e happens in X with proba-
bility p and in Y with probability p(1+ q). Then for small p

and q, O
(

1
pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.
Let X be the probability distribution of Z1 and Z2 in an

ideal random stream, and let Y be the probability distribution
of Z1 and Z2 in streams produced by Spritz for randomly
chosen keys. Let the event e denote Z1 = Z2 = −w, which
occurs with probability of 1

N2 in X and 1
N2 +

3
N4 =

1
N2 ·(

1 + 3
N2

)
in Y . By using the Theorem 2 with p = 1

N2 and q =
3
N2 , we can conclude that we need about 1

pq2 =
N6

9 ≈ 244.8

output samples to reliably distinguish the two distributions.
Therefore, we can mount a distinguishing attack with

multiple key-IV pairs, if output samples of Z1 and Z2 pro-
duced by 244.8 distinct key-IV pairs are available. In the
single key setting, it requires samples of first two bytes Z1
and Z2 generated by 244.8 different IVs.

1300
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.6 JUNE 2017

Fig. 3
[
Pr[(Z1, Z2) = x] − 1

N 2

]
· N4 (for N = 16, 32).

2.3 Distinguishing Attack with a Single Key-IV Pair Based
on a Long-Term Bias

The distinguishing attack on Spritz described in Theorem 1
requires that i and z are both zero at the beginning of the
SQUEEZE phase. In general, during the production of a
single stream of keystream bytes from any key or key/IV pair
i and z are not both zero at the beginning of each round.
This is why although the result in Theorem 1, holds for
distinguishing the first 2 output bytes produced by multiple
key/IV pairs, the same result can not be translated for a single
keystream byte sequence using the event Zt = Zt+1 = −w.

However i becomes 0 after every N rounds, and so in
order to distinguish a single sequence of keystream bytes,
one could look at the event ZmN+1 = ZmN+2 = −w (for
all integers m ≥ 0) i.e. the first two of every cycle of N
keystream bytes. However we still need ZmN = 0 for the
initial conditions of the distinguisher to be fulfilled and so
we should really look at the event Pr[ZmN+1 = ZmN+2 =
−w |ZmN = 0]. For the reasons outlined in Theorem 1, we

also have

Pr[ZmN+1 = ZmN+2 = −w |ZmN = 0] =
1

N2 +
3

N4

where the probability this time is calculated over several
integral values of m. Note that we will need T = O(N6

9) ≈
244.8 samples to reliably distinguish the stream. However for
this we need T ·N cycles of keystream bytes (as ZmN = 0 will
on average occur once every N cycles) and hence T · N2 =

O(N8

9) ≈ 260.8 keystream bytes. The distinguishing attack
was verified for 100 random keys for N = 16, 32.

2.4 Plaintext Recovery Attacks in the Broadcast Setting

These short- and long-term biases are also used for plain-
text recovery attacks in the broadcast setting where the same
plaintext is encrypted with different keys or/and IV in the
same manner of previous attacks [2], [12], [14], [18]. Note
that the broadcast setting is converted into the multi-session
setting where the target plaintext block are repeatedly sent
in the same position in the plaintexts in multiple SSL/TLS
sessions. According to Theorem 2, given 1

pq2 ciphertexts,
we can distinguish the distribution of correct candidates of
plaintext bytes (the biased distribution) from the distribution
of wrong candidates of plaintext bytes (a random distribu-
tion) with a constant probability. It can be considered as
the lower bound of the required number of ciphertexts for
recovering biased bytes of a plaintext in this setting as men-
tioned in [14]. Recent statistical methods to detect a correct
plaintext e.g. likelihood calculations of techniques [2], [25]
and Bayesian analysis [10] might help to reduce the required
number of ciphertexts when mounting an actual attack.

3. State Recovery Attack on Spritz

We first look at a class of special states of the Spritz stream
cipher that occurs just before the beginning of the SQUEEZE
phase.

Definition 1: Define a Spritz state as the 3-tuple (S, j, k)
just at the beginning of the SQUEEZE phase. A Spritz state
is called a SPECIAL state if all the following conditions hold
simultaneously.

1. S[t] ≡ 0 mod 2, if t ≡ 1 mod 2,
2. S[t] ≡ 1 mod 2, if t ≡ 0 mod 2,
3. j ≡ 0 mod 2 and k ≡ 0 mod 2

In other words a SPECIAL state occurs when all the
even indexed positions of the S array hold odd values, all
the odd indexed positions hold even values and additionally
j and k are even. We will now show that if the state at the
beginning of the SQUEEZE phase is a SPECIAL state, then
the sequence Zt mod 2, t = 0, 1, 2, 3, . . . is periodic with
period equal to 4.

Lemma 1: If the state at the beginning of the SQUEEZE
phase is a SPECIAL state then the following hold (assuming

BANIK et al.: ANALYSIS AND IMPROVEMENTS OF THE FULL SPRITZ STREAM CIPHER
1301

Table 2 The modulo 2 values of the various indices through 4 itera-
tions. The ones marked with * are used in the State recovery process in
Algorithm 1.

Index t = 1 t = 2 t = 3 t = 4
1 i = i + w* 1 0 1 0
2 j + S[i]* 0 0 0 0
3 j = k + S[j + S[i]]* 1 0 1 0
4 k = k + i + S[j] 1 0 1 0
5 z + k* 1 0 0 1
6 i + S[z + k]* 1 1 0 0
7 j + S[i + S[z + k]]* 1 0 0 1
8 z = S[j + S[i + S[z + k]]] 0 1 1 0

N is even):

a) The state after every four iterations is a SPECIAL state.
b) In every iteration, the updated values of i and j are equal

modulo 2. Hence no SWAP between odd and even
values occur. And so, even and odd indexed positions
of the S array will continue to hold odd and even values
respectively.

c) Zt ≡ Zt+4 mod 2, for all values of t.

Proof 2: Note that i and z are 0 at the beginning of the
SQUEEZE phase and so both are even to begin with. If N is
even, the design of the WHIP module ensures that the value
of w is odd, whatever be the length of key/IV. Thereafter,
all the above claims can be verified by running four itera-
tions of the UPDATE function. We summarize the modulo
2 values of the various indices over 4 iterations in Table 2.
Note that the updated values of i, j in each round is either
both odd or both even, which means that the odd and even
values are never swapped during the SQUEEZE phase. At
the end of round 4, i, j, k, z become even again and so the
modulo values of the above indices will repeat every 4 cy-
cles. And therefore, the sequence of the modulo 2 values
of the keystream byte z becomes periodic with period 4:
0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 . . .

□

3.1 Probability of a SPECIAL State

Combinatorially, it is easy to see that the total number of
SPECIAL states is

(
N
2

)2 · [(N2)!]2
. Therefore, if carry out

the key/IV Setup operation with different keys/ single key
and different IVs, then the probability that the state at the
beginning of the SQUEEZE state is SPECIAL is given by

ρ =

(
N
2

)2 · [(N2)!]2

N2 · (N!)

For N = 256, ρ ≈ 2−253.7. So if one employs an IV of length
more than 254 bits, it is likely that a SPECIAL state will be
encountered in ρ−1 attempts. Using this, a state recovery
attack can be mounted in a Multiple IV mode as follows:

1. For a fixed key, and Multiple IVs collect keystream of
around 10∗N bytes and inspect the sequence Zt mod 2.

2. If the sequence is 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 . . . i.e.

periodic with period 4, then the attacker can conclude
with high probability that he has encountered a SPE-
CIAL state and he proceeds according to Algorithm 1.

3. The above technique is likely to succeed once in ρ−1

attempts.

3.2 State Recovery of SPECIAL States

Once the attacker is sure that he has encountered a SPECIAL
state, he has the task of recovering a much simpler state
and he proceeds in the same manner as in [3, Algorithm 1].
However, there are a few differences as given in Algorithm 1.

The algorithm can be summarized in the following
words: In each round, the attacker guesses the value of some
of the elements of the internal permutation to determine the
value of all the five indices required in the state update oper-
ation, each time making sure that odd indices get even values
and vice versa. He then inspects the keystream byte produced
in the round and tries to determine if the intermediate guessed
permutation is consistent with the keystream byte observed.
The attacker computes the index d = j + S[i + S[z + k]]
with the guessed values of the permutation and then per-
forms the Verification step: Depending on the comparison
between S[d] and the current keystream byte Zr he makes
the following transitions:

If S[d]=NULL and Zr < S → Assign S[d] = Zr ,
Go to next round r + 1

If S[d]=NULL and Zr ∈ S → Contradiction!!
Try another assignment

If S[d] , NULL and Zr , S[d] → Contradiction!!
Try another assignment

If S[d] , NULL and Zr = S[d]→ Go to next round r + 1

3.3 Complexity of the Algorithm

The complexity is given by the number of guesses or as-
signments made, until a solution is found. As in [3], we
compute the complexity by splitting the algorithm in sev-
eral cases ci (x) to which we assign probabilities according
to the occurrence of each case. Note that we can view the
above internal state recovery algorithm, as two modules each
working to recover exactly one half of the elements of the
permutation. This is true since, the odd and the even indices
never swap among each other. Let us denote by T1,T2 as
the average number of assignments that would made in re-
covering the odd/even indexed elements of the permutation,
if they were operating independent of the other. Since for
every assignment in T1 we would need T2 assignments to
verify the correctness of the solution, the total complexity of
our algorithm is T = T1 · T2.

To estimate T1, we have to note the parity of the odd
indices assigned in every cycle. We already know that the
parity of all the indices will repeat after every 4 rounds, so
observing the first 4 cycles is sufficient. As per Algorithm
1, the five indices that are used in the assignment process

1302
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.6 JUNE 2017

Algorithm 1: State Recovery Algorithm for SPE-
CIAL states

Input: Keystream bytes Zt for t = 0 to 10 ∗ N ;
Output: Permutation S at the beginning of SQUEEZE stage;

S[t]← NULL for t = 0 to N − 1;
Run StateRecover y(S, i, j, k, 0);

StateRecover y(S, i, j, k, r);
inext ← i + w;
if S[inext] = NULL ∧ u1 is not in S ∧ u1 . inext mod 2 then

Assign S[inext]← u1 /* for u1 ← 0 to N − 1
*/

end

a = j + S[inext];
if S[a] = NULL ∧ u2 is not in S ∧ u2 . a mod 2 then

Assign S[a]← u2 /* for u2 ← 0 to N −1 */
end

jnext ← j + S[a];
if S[jnext] = NULL ∧ u3 is not in S ∧ u3 . jnext mod 2 then

Assign S[jnext]← u3 /* for u3 ← 0 to N − 1
*/

end

knext ← k + inext + S[jnext];
SWAP (S[inext], S[jnext]);
b ← Zr−1 + knext ;
if S[b] = NULL ∧ u4 is not in S ∧ u4 . b mod 2 then

Assign S[b]← u4 /* for u4 ← 0 to N −1 */
end

c ← inext + S[b];
if S[c] = NULL ∧ u5 is not in S ∧ u5 . c mod 2 then

Assign S[c]← u5 /* for u5 ← 0 to N − 1 */
end

d ← jnext + S[c];
if S[d] is NULL ∧Zr is not in S then

Assign S[d]← Zr ;
StateRecover y(S, inext, jnext, knext, r + 1);

end
if S[d] is NULL ∧Zr is in S then

Contradiction /*Try another assignment */;
end
if S[d] is not NULL ∧S[d] , Zr then

Contradiction /*Try another assignment */;
end
if S[d] is not NULL ∧S[d] = Zr then

StateRecover y(S, inext, jnext, knext, r + 1);
end

are inext, a, jnext, b, c, and the index used in the verifica-
tion process is d. It is easy to see that these correspond
to i, j + S[i], j, z + k, i + S[z + k] and j + S[i + S[z + k]]
respectively. A quick look at Table 2, tells us four of the
assignment indices and the only verification index are odd in
the first round. Thereafter the second and third rounds have
one and two assignment indices odd. The fourth round has
one assignment and one verification index odd. This means
that there are four assignments followed by a verification,
which is followed by another cycle of four assignments and a
verification. Therefore in total we have 10 stages of assign-
ment/verification. Let ci[x] (1 ≤ i ≤ 10) denote the average

complexity associated with each stage, assuming that x el-
ements of the N/2 odd-indexed positions are already filled,
then we have for i ∈ [1, 10] \ {5, 10}:

ci[x] =
2x
N
· ci+1[x] + (1 − 2x

N
) · (N

2
− x) · ci+1[x + 1],

and for i = 5, 10:

ci[x] = (
2x
N

)2 · ci+1[x] + (1 − 2x
N

)2 · ci+1[x + 1],

where c11 denotes c1. In the above equation, when i ∈
[1, 10] \ {5, 10}, it denotes an assignment phase, when
i = 5, 10, it denotes a verification phase. During an assign-
ment, if x elements are already present in the permutation,
then with probability x

N/2 , the index to be assigned would
be already filled, and in this case the algorithm would move
on to stage i + 1 without assignment. Alternatively with
probability 1− x

N/2 , the index is empty and there are exactly
N
2 − x ways to assign it, after which it moves to stage i + 1.
During verification stage the analysis is as follows:

a. With probability x
N/2 , the verification index d is already

filled.
b. Therefore with probability x

N/2 · (1 −
x

N/2), the index is
already filled by a value other than Zr . In this case the
path is terminated.

c. With probability (x
N/2)2 the index is filled with Zr and

the algorithm moves to the next phase.
d. With probability (1 − x

N/2) the verification index d is
empty.

e. Therefore with probability (1 − x
N/2) · (x

N/2) it happens
that Zr exists in some other index of the permutation.
In this case too the path is terminated.

f. With probability (1 − x
N/2)2, Zr is not present in the

permutation, and so after assigning S[d]← Zr it moves
to the next stage.

The complexity T1 can be estimated as c1[0], with the
boundary conditions ci[N2 − 1] = 1. The above recurrence
can be solved by a dynamic programming approach to find
an estimate for c1[0]. A similar recurrence relation can be
deduced for estimatingT2 by keeping track of the even valued
assignment/verification indices. We write the recurrence
relation below for the benefit of the reader. For i ∈ [1, 14] \
{6, 10}:

ci[x] =
x

N/2
·ci+1[x]+ (1− x

N/2
) · (N

2
− x) ·ci+1[x+1],

and for i = 6, 10:

ci[x] = (
x

N/2
)2 · ci+1[x] + (1 − x

N/2
)2 · ci+1[x + 1],

where c15 denotes c1.

3.3.1 Experimental Results

We performed the state recovery for N = 14, 16, 18, 20 for

BANIK et al.: ANALYSIS AND IMPROVEMENTS OF THE FULL SPRITZ STREAM CIPHER
1303

Fig. 4 Experimental and theoretical estimates of log2 T .

100 random permutations. The algorithm was always able
to recover the permutation. In Fig. 4, we plot the base 2 loga-
rithm of the theoretical estimate T with the base 2 logarithm
of the experimentally obtained average number of steps, for
different even values of N . We can see that the theoretical
value always overestimates the experimentally obtained com-
plexity. For N = 256, the theoretical estimate for T ≈ 21233.
And so the estimated complexity of state recovery is given
as T ·

(
N
2

)2 ≈ 21247 (taking into account the additional com-
plexity of guessing the values of j, k at the beginning of the
SQUEEZE phase). So the total complexity consists of ρ−1

encryptions plus T ·
(
N
2

)2
assignments which again comes

to approximately 21247.

4. Countermeasures

Since the first two output bytes are biased to the publicly
known value of −w, one might think that the problem would
be solved by not making the value of w dependent only on
the length of the Secret Key. This could be achieved if the
ABSORBBYTE phase were tweaked to make the value w
dependent on the Key. Such a move would be risky on two
counts

• The bias in the distribution of (Z1, Z2) would still exist
but towards some value of −w which is not publicly
known.

• The attacker can find the value of w by observing a peak
in the distribution of (Z1, Z2) and thereby reveal some
non trivial information about the Secret Key.

When we analyze the proofs for the distinguishers in
Theorem 1 we observe that the events I, II, III that lead
to the bias have one characteristic trait in common. In all
the three events subsequent updated values of the indices
i, j, k get stuck at values which are either positive or negative
multiples of w. So one possible solution towards solving this
problem could be involving some other location of the array
that is guaranteed not to be a multiple of w. The value of i

Fig. 5 Plot of
[
Pr[(Z1, Z2) = x] − 1

N 2

]
·N4 after applying countermea-

sure (for N = 16, 32).

in the first two rounds of the of the DRIP phase is w, 2w, and
so one could utilize the array index N − 1 − i (which can be
calculated in most CPUs as the bitwise complement of i) to
compute the final keystream bit. So we propose to tweak the
output function to

z = S[j + S[i + S[z + k]]] ⊕ S[N − 1 − i]

Let us denote the modified cipher by SPRITZ-C. When the
output function is so tweaked we observe that the bias in the
first two bytes disappears as seen in Fig. 5.

4.1 Implementation in x86_64 CPU

Implementing the above tweak in any CPU supporting the
x86_64 instruction set is surprisingly simple and requires
only three additional assembly level instructions.

notb %bl
movzbl (%rdi,%rbx), %ebx
xorb %bl,%al

In the above code snippet the register %rbx, %rax, %rdi
hold the indices i, z and the memory address of the first ele-
ment of the S array respectively. The instruction notb %bl

1304
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.6 JUNE 2017

Table 3 Tabulation of software speeds (CPB stands for cycles per byte,
all speeds in MBps).

Cipher PROFILE A PROFILE B
Speed CPB Speed CPB

1 RC4 605.8 3.93 792.3 3.01
2 Public SPRITZ 36.7 64.97 12.5 190.73

Implementation [1]
3 Optimized SPRITZ 139.7 17.07 66.8 35.69
4 SPRITZ-C 137.8 17.30 66.7 35.74

performs the bitwise complement of the least significant 8
bits of %rbx. Then the instruction movzbl (%rdi,%rbx),
%ebxmoves the value S[N −1− i] from the memory to %rbx
and clears its MSBs. Finally xorb %bl,%al does an 8-bit
xor between the least significant bytes of %rbx,%rax (i.e. z
and S[N − 1 − i]) and stores the result in %rax.

Due this small overhead that requires only one addi-
tional memory access, the loss of software speed while im-
plementing this countermeasure is not significant. To do
a fair comparison, we obtained a publicly available imple-
mentation of Spritz available at [1]. We then went ahead
and implemented an optimized version of SPRITZ using the
x86_64 instruction set. Finally we implemented SPRITZ-C
to investigate the amount by which we loose software speed.
The simulations were carried out on an Intel Core i7-6500U
CPU, running at 2.5 GHz on Ubuntu v14.04. For each of
the ciphers we investigate the software speeds under two test
cases:

PROFILE A: This covers the events when a large number of
data packets are being encrypted. More specifically, we
generated around 16 KB of keystream for several ran-
domly chosen Keys and measured the average keystream
generation rates.

PROFILE B: This covers the events when short data pack-
ets are being encrypted. This essentially measures the
impact of the Key setup on encryption speed. We used
several randomly chosen 16 byte Keys and encrypted
messages of length 512 bytes.

Table 3 tabulates the performance results for our implemen-
tations and compares the results with an optimized RC4
implementation. As expected, RC4 outperforms all imple-
mentations of SPRITZ in terms of speed. Our optimized
implementation of SPRITZ is only around 4 times slower
than RC4 in PROFILE A. Also the addition of the counter-
measure, decreases the software speed in PROFILE A by only
around 2 MBps which is around 1.5% decrease with respect
to the original SPRITZ cipher, whereas there does not appear
to be any significant loss in speed in PROFILE B.

5. Conclusion

In this paper, we analyzed the security of the stream cipher
Spritz. We first proposed distinguishing attacks based on
the short-term and the long-term biases in the keystream
of Spritz. The distinguisher can be used both for distin-
guishing keystreams produced by multiple key-IVs and for

distinguishing a keystream produced by a single key-IV pair.
In the second half of the paper we looked at the state re-
covery attack on Spritz (in the multiple IV setting), in the
situation when the cipher has entered a special class of SPE-
CIAL states. We calculated the probability of such an event
happening, and went on to outline an algorithm to recover
the internal permutation. Our estimates suggest that in this
case we need approximately 21247 assignments to recover
the internal state which is an improvement on the 21400 step
algorithm proposed in [3]. Finally we propose a simple
countermeasure that removes the bias in the keystream bytes
produced by SPRITZ, which uses only one additional mem-
ory access and thus does not decrease the software speed
significantly.

References

[1] Araduino Spritz Cipher Library. Available at https://hackaday.io/
project/8244-arduino-spritz-cipher-library

[2] N.J. AlFardan, D.J. Bernstein, K.G. Paterson, B. Poettering, and J.C.
N. Schuldt, “On the security of RC4 in TLS and WPA,” Proc. 22nd
USENIX Conference on Security, pp.305–320, 2013.

[3] R. Ankele, S. Kölbl, and C. Rechberger, “State-recovery analysis of
Spritz,” LatinCrypt 2015, LNCS, vol.9230, pp.204–221, 2015.

[4] S. Banik and T. Isobe, “Cryptanalysis of the full Spritz stream cipher,”
Fast Software Encryption, LNCS, vol.9783, pp.63–77, 2016.

[5] S. Banik, S. Sarkar, and R. Kacker, “Security analysis of RC4+ stream
cipher,” INDOCRYPT 2013, LNCS, vol.8250, pp.297–307, 2013.

[6] S. Banik and S. Jha, “How not to combine RC4 states,” SPACE 2015,
LNCS, vol.9354, pp.95–112, 2015.

[7] S. Banik and S. Jha, “Some security results of the RC4+ stream
cipher,” Security and Communication Networks, vol.8, no.18,
pp.4061–4072, 2015.

[8] E. Biham, L. Granboulan, and P.Q. Nguyen, “Impossible fault analy-
sis of RC4 and differential fault analysis of RC4,” FSE 2005, LNCS,
vol.3557, pp.359–367, 2005.

[9] H. Finney, An RC4 Cycle That Can’t Happen, Posting to sci.crypt,
Sept. 1994.

[10] C. Garman, K.G. Paterson, and T. van der Merwe,” “Attacks only get
better: Password recovery attacks against RC4 in TLS,” Proc. 24th
USENIX Conference on Security, pp.113–128, 2015.

[11] G. Gong, K.C. Gupta, M. Hell, and Y. Nawaz, “Towards a gen-
eral RC4-like keystream generator,” CISC 2005, LNCS, vol.3822,
pp.162–174, 2005.

[12] T. Isobe, T. Ohigashi, Y. Watanabe, and M. Morii, “Full plaintext
recovery attack on broadcast RC4,” FSE 2013, LNCS, vol.8424,
pp.179–202, 2014.

[13] S. Maitra and G. Paul, “Analysis of RC4 and proposal of addi-
tional layers for better security margin,” INDOCRYPT 2008, LNCS,
vol.5365, pp.27–39, 2008.

[14] I. Mantin and A. Shamir, “A practical attack on broadcast RC4,” FSE
2001, LNCS, vol.2355, pp.152–164, 2001.

[15] A. Maximov, “Two linear distinguishing attacks on VMPC and RC4A
and weakness of RC4 family of stream ciphers,” FSE 2005, LNCS,
vol.3557, pp.342–358, 2005.

[16] A. Maximov and D. Khovratovich, “New state recovery attack on
RC4,” CRYPTO 2008, LNCS, vol.5157, pp.297–316, 2008.

[17] Y. Nawaz, K.C. Gupta, and Guang Gong, “A 32-bit RC4-like
keystream generator,” IACR Cryptology ePrint Archive 2005/175,
2005.

[18] T. Ohigashi, T. Isobe, Y. Watanabe, and M. Morii, “How to recover
any byte of plaintext on RC4,” Selected Areas in Cryptography 2013,
LNCS, vol.8282, pp.155–173, 2013.

[19] G. Paul, S. Maitra, and A. Chattopadhyay, “Quad-RC4: Merging

https://hackaday.io/project/8244-arduino-spritz-cipher-library
https://hackaday.io/project/8244-arduino-spritz-cipher-library
http://dx.doi.org/10.1007/978-3-319-22174-8_12
http://dx.doi.org/10.1007/978-3-319-22174-8_12
http://dx.doi.org/10.1007/978-3-662-52993-5_4
http://dx.doi.org/10.1007/978-3-662-52993-5_4
http://dx.doi.org/10.1007/978-3-319-03515-4_20
http://dx.doi.org/10.1007/978-3-319-03515-4_20
http://dx.doi.org/10.1007/978-3-319-24126-5_6
http://dx.doi.org/10.1007/978-3-319-24126-5_6
http://dx.doi.org/10.1002/sec.1323
http://dx.doi.org/10.1002/sec.1323
http://dx.doi.org/10.1002/sec.1323
http://dx.doi.org/10.1007/11502760_24
http://dx.doi.org/10.1007/11502760_24
http://dx.doi.org/10.1007/11502760_24
http://dx.doi.org/10.1007/11599548_14
http://dx.doi.org/10.1007/11599548_14
http://dx.doi.org/10.1007/11599548_14
http://dx.doi.org/10.1007/978-3-662-43933-3_10
http://dx.doi.org/10.1007/978-3-662-43933-3_10
http://dx.doi.org/10.1007/978-3-662-43933-3_10
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/3-540-45473-x_13
http://dx.doi.org/10.1007/3-540-45473-x_13
http://dx.doi.org/10.1007/11502760_23
http://dx.doi.org/10.1007/11502760_23
http://dx.doi.org/10.1007/11502760_23
http://dx.doi.org/10.1007/978-3-540-85174-5_17
http://dx.doi.org/10.1007/978-3-540-85174-5_17
https://eprint.iacr.org/2005/175
https://eprint.iacr.org/2005/175
https://eprint.iacr.org/2005/175
http://dx.doi.org/10.1007/978-3-662-43414-7_8
http://dx.doi.org/10.1007/978-3-662-43414-7_8
http://dx.doi.org/10.1007/978-3-662-43414-7_8
https://eprint.iacr.org/2013/572

BANIK et al.: ANALYSIS AND IMPROVEMENTS OF THE FULL SPRITZ STREAM CIPHER
1305

four RC4 states towards a 32-bit stream cipher,” IACR Cryptology
ePrint Archive 2013/572, 2013.

[20] S. Paul and B. Preneel, “A new weakness in the RC4 keystream
generator and an approach to improve the security of the cipher,”
FSE 2004, LNCS, vol.3017, pp.245–259, 2004.

[21] S. Paul and B. Preneel, “On the (In)security of stream ciphers
based on arrays and modular addition,” ASIACRYPT 2006, LNCS,
vol.4284, pp.69–83, 2006.

[22] R. Rivest and J. Schuldt, “Spritz - a spongy RC4-like stream cipher
and hash function,” Available at https://people.csail.mit.edu/rivest/
pubs/RS14.pdf

[23] Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki, and T.
Kawabata, The Most Efficient Distinguishing Attack on VMPC
and RC4A, In SKEW 2005. Available at http://www.ecrypt.eu.org/
stream/papers.html

[24] Y. Tsunoo, T. Saito, H. Kubo, and T. Suzaki, “A distinguishing attack
on a fast software-implemented RC4-like stream cipher,” IEEE Trans.
Inf. Theory, vol.53, no.9, pp.3250–3255, 2007.

[25] M. Vanhoef and F. Piessens, “All your biases belong to us: Breaking
RC4 in WPA-TKIP and TLS,” Proc. 24th USENIX Conference on
Security, pp.97–112, 2015.

[26] B. Zoltak, “Statistical weakness in Spritz against VMPC-R: in search
for the RC4 replacement,” Available at http://eprint.iacr.org/2014/
985.pdf

[27] B. Zoltak, “VMPC one-way function and stream cipher,” FSE 2004,
LNCS, vol.3017, pp.210–225, 2004.

Subhadeep Banik recieved B.Tech in Elec-
tronics and Electrical Communications Engi-
neering and M. Tech in Automation and Com-
puter Vision from the Indian Institute of Tech-
nology Kharagpur in 2005. He recieved Ph.D.
in Compter Science from the Indian Statistical
Institute, Kolkata in 2014. He is currently a re-
search scientist in Nanyang Technological Uni-
versity, Singapore. His current research interests
include cryptography and digital design.

Takanori Isobe received the B.E., M.E.,
and Ph.D. degrees from Kobe University, Japan,
in 2006, 2008, and 2013, respectively. He joined
the Sony Corporation in 2008. His current
research interests include information security
and cryptography. He received the SCIS Paper
Award and SCIS 2013 Innovation Paper Award
from ISEC group of IEICE in 2008 and 2014,
respectively. He also received the Best Paper
Award from IEICE in 2015. He received the FSE
2011 Best Paper Award from IACR in 2011.

Masakatu Morii received the B.E. degree
in electrical engineering and the M.E. degree
in electronics engineering from Saga Univer-
sity, Saga, Japan, and the D.E. degree in com-
munication engineering from Osaka University,
Osaka, Japan, in 1983, 1985, and 1989, respec-
tively. From 1989 to 1990 he was an Instructor in
the Department of Electronics and Information
Science, Kyoto Institute of Technology, Japan.
From 1990 to 1995 he was an Associate Pro-
fessor at the Department of Computer Science,

Faculty of Engineering at Ehime University, Japan. From 1995 to 2005 he
was a Professor at the Department of Intelligent Systems and Information
Science, Faculty of Engineering at the University of Tokushima, Japan.
Since 2005, he has been a Professor at the Department of Electrical and
Electronics Engineering, Faculty of Engineering at Kobe University, Japan.
His research interests are in error correcting codes, cryptography, discrete
mathematics and computer networks and information security. He is a
member of the IEEE.

https://eprint.iacr.org/2013/572
https://eprint.iacr.org/2013/572
https://eprint.iacr.org/2013/572
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/11935230_5
http://dx.doi.org/10.1007/11935230_5
http://dx.doi.org/10.1007/11935230_5
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://dx.doi.org/10.1109/tit.2007.903136
http://dx.doi.org/10.1109/tit.2007.903136
http://dx.doi.org/10.1109/tit.2007.903136
http://eprint.iacr.org/2014/985.pdf
http://eprint.iacr.org/2014/985.pdf
http://eprint.iacr.org/2014/985.pdf
http://dx.doi.org/10.1007/978-3-540-25937-4_14
http://dx.doi.org/10.1007/978-3-540-25937-4_14

