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Abstract—We derive a general formula of the minimum
achievable rate for fixed-to-variable length coding with a regular
cost function by allowing the error probability up to a constant
ε. For a fixed-to-variable length code, we call the set of source
sequences that can be decoded without error the dominant set
of source sequences. For any two regular cost functions, it is
revealed that the dominant set of source sequences for a code
attaining the minimum achievable rate with a cost function is also
the dominant set for a code attaining the minimum achievable
rate with the other cost function. We also give a general formula
of the second-order minimum achievable rate.

I. I NTRODUCTION

For a general source, Han [3] has introduced a notion
of “decoding error” for variable-length coding and analyzed
the minimum average codeword length provided that the
decoding error probability vanishes as the source sequence
length goes to infinity. Koga and Yamamoto [8] have analyzed
the minimum average codeword length for variable-lengthε-
coding for which the decoding error probability is allowed up
to ε ∈ [0, 1). For a stationary memoryless source satisfying a
certain mild condition, Kostina et al. [9] have recently given
a single-letter characterization of the optimum second-order
codeword length for variable-lengthε-codes.

The problem of minimizing the average codeword cost
with a cost function, which imposes unequal costs for code
symbols, has been studied. This problem, without decoding
error, has been introduced by Shannon [11]. Karp [6] has
studied a construction of the optimum prefix code, and Krause
[7] has characterized the minimum average codeword cost
for stationary memoryless sources. Han and Uchida [5] have
extended the formula established by [7] to general sources.

In this paper, we introduce the notion of decoding error for
variable-length coding with cost. We first derive finite length
upper and lower bounds on the cost rate and establish a general
formula of the minimum achievable cost rate by allowing the
error probability up toε. We also give a general formula
of the second-order minimum achievable rate. Based on the
established second-order coding theorem and the recently
obtained result by [9] (with the uniform cost), a single-letter
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characterization of the second-order optimum cost rate is
obtained for stationary memoryless sources.

II. VARIABLE -LENGTH CODING WITH COST

Let X be afinite or countably infinitesource alphabet. Let
X =

{

Xn =
(

X
(n)
1 , X

(n)
2 , . . . , X

(n)
n

)}∞

n=1
denote a general

source, whereX(n)
i (i = 1, 2, . . . , n) takes values inX . We

do not impose any assumptions onX such as stationarity or
ergodicity. LetY = {1, . . . ,K} be a code alphabet of size
K and let Y∗ denote the set of all finite-length sequences
taken fromY. We consider aprefix code(ϕn, ψn), whereϕn :
Xn → Y∗ and ψn : Y∗ → Xn denote an encoder and a
decoder, respectively. Letℓ(ϕn(x)) denote the length of the
codewordϕn(x) for x ∈ Xn.

We now introduce the cost functionc : Y∗ → (0,+∞).
We assume that the cost function can be decomposed fory =
(y1, y2, · · · , yk) ∈ Yk as

c(y) = c(y1) + c(y2|y1) + · · ·+ c(yk|yk−1
1 ), (1)

with

cmax := sup
k,yk,y

k−1
1

c(yk|yk−1
1 ) < +∞, (2)

cmin := inf
k,yk,y

k−1
1

c(yk|yk−1
1 ) > 0 (3)

and there exists a unique solutionα = αc of the equation
∑

yk∈Y

K−αc(yk|y
k−1
1 ) = 1 (4)

for all k = 1, 2, · · · ; yk−1
1 ∈ Yk−1. From (1) and (4), we can

easily checked thatαc, called thecost capacity[1], is also the
unique solution for the equation

∑

y∈Yk

K−αc(y) = 1 (∀k = 1, 2, · · · ). (5)

This class of cost functions, said to beregular, was first
considered by Han and Kato [4]. For the prefix code(ϕn, ψn),
we focus on the two performance indices; theaverage cost rate

E

{

1

n
c(ϕn(X

n))

}

=
1

n

∑

x∈Xn

PXn(x)c(ϕn(x)) (6)
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and theaverage error probability

ε(ϕn, ψn) := Pr{ψn(ϕn(X
n)) 6= Xn}. (7)

A code of source sequence of lengthn, the average codeword
cost Rn, and the average error probabilityεn is called an
(n,Rn, εn) code (or simply an(n, εn) code) with costc.

Remark 1:Consider a special case where the cost function
c satisfies

c(yk|yk−1
1 ) = 1 (∀yk ∈ Y; ∀yk−1

1 ∈ Yk−1), (8)

where the costs are independent ofyk−1
1 ∈ Yk−1). Then, the

cost c(ϕn(x)) of the codewordϕn(x) is just the codeword
length ℓ(ϕn(x)). The average codeword cost is then the
average codeword length, which is often the subject of studies
on variable-length source coding. The codeword cost, which
may be asymmetric fory ∈ Y∗, is a generalized notion of the
codeword length. �

In this paper, we use the following quantities of a general
sourceX. Let Z be a random variable taking values in a
(finite or countably infinite) setZ and letPZ be its probability
measure. Then, forδ ∈ [0, 1) we define

G[δ](Z) = inf
A⊆Z:

Pr{Z∈A}≥1−δ

∑

z∈A

PZ(z) log
Pr{Z ∈ A}
PZ(z)

, (9)

H[δ](Z) = inf
A⊆Z:

Pr{Z∈A}≥1−δ

∑

z∈A

PZ(z) log
1

PZ(z)
. (10)

In this paper, all logarithms are taken to the baseK. Both
G[δ](Z) and H[δ](Z) are nonincreasing functions ofδ. It
obviously holds thatG[δ](Z) ≤ H[δ](Z) for all δ ∈ [0, 1).
Based on these quantities, for general sourceX we define

H[δ](X) = lim sup
n→∞

1

n
H[δ](X

n), (11)

H∗
[δ](X) = lim inf

n→∞

1

n
H[δ](X

n) (12)

with a slight abuse of notation. ObviouslyH∗
[δ](X) ≤

H[δ](X), and it is not difficult to verify that

H[δ](X) = lim sup
n→∞

1

n
G[δ](X

n) (∀δ ∈ [0, 1)). (13)

It is of use to notice relations amongH[δ](X), H∗
[δ](X) and

information spectrum quantities [2]. Following argumentson
H[δ+γ](X) in [8], [10], we obtain1

(1− δ)H(X)≤ lim
γ↓0

H∗
[δ+γ](X) ≤H∗

[δ](X)≤(1− δ)H
∗
(X),

(14)

lim
γ↓0

H[δ+γ](X) ≤H[δ](X)≤(1 − δ)H(X) (15)

1A known relation amongH[δ](X) and information spectrum quantities is

(1− δ)H(X) ≤ lim
γ↓0

H[δ+γ](X) ≤ (1 − δ)H(X) (δ ∈ [0, 1)),

where the leftmost inequality is due to Koga and Yamamoto [8]whereas the
rightmost one is due to Kuzuoka and Watanabe [10].

for everyδ ∈ [0, 1), where

H(X)=sup

{

a : lim sup
n→∞

Pr

{

1

n
log

1

PXn(Xn)
< a

}

= 0

}

,

H
∗
(X)=inf

{

a : lim inf
n→∞

Pr

{

1

n
log

1

PXn(Xn)
> a

}

=0

}

,

H(X)=inf

{

a : lim sup
n→∞

Pr

{

1

n
log

1

PXn(Xn)
> a

}

=0

}

.

For the proofs of (14) and (15), see Appendix A.

III. F INITE-LENGTH ANALYSIS

In this section, we establish finite length lower and upper
bounds on the average codeword cost.

A. Converse Bound

Theorem 1 (Converse):Any (n,Rn, εn) prefix code with
regular costc satisfies

Rn ≥ G[εn](X
n)

αcn
+
εncmin

n
, (16)

wherecmin is defined as in (3). �

(Proof) For an(n,Rn, εn) code(ϕn, ψn), let Dn ⊆ Xn be
defined as

Dn =
{

x ∈ Xn
∣

∣

∣
ψn(ϕn(x)) = x

}

. (17)

Then we haveεn = Pr{Xn ∈ Dc
n} where Dc

n denotes
the complement ofDn. It is easily verified that the average
codeword cost rateRn is bounded as

Rn ≥ E

{

1

n
c(ϕn(X

n))1{Xn ∈ Dn}
}

+
Pr{Xn ∈ Dc

n}cmin

n
,

(18)

where1{·} denotes the indicator function. Definingq(y) =
K−αcc(y) for all y ∈ Y∗, we have

∑

x∈Dn

q(ϕn(x)) ≤ 1 (19)

sinceϕn is one-to-one betweenx ∈ Dn andϕn(x). Then,

E

{

1

n
c(ϕn(X

n))
∣

∣

∣
Xn ∈ Dn

}

=
1

αcn

∑

x∈Dn

PXn(x)

Pr{Xn ∈ Dn}
log

1

q(ϕn(x))

=
1

αcn

∑

x∈Dn

PXn(x)

Pr{Xn ∈ Dn}
log

PXn(x)/Pr{Xn ∈ Dn}
q(ϕn(x))

+
1

αcn

∑

x∈Dn

PXn(x)

Pr{Xn ∈ Dn}
log

Pr{Xn ∈ Dn}
PXn(x)

≥ 1

αcn

∑

x∈Dn

PXn(x)

Pr{Xn ∈ Dn}
log

Pr{Xn ∈ Dn}
PXn(x)

(20)

≥ 1

αcn
· G[εn](X

n)

Pr{Xn ∈ Dn}
, (21)

where the inequality in (20) follows due to the log-sum
inequality. Plugging (21) into (18) yields (16). �



B. Achievability Bound

Theorem 2 (Achievability): There exists an(n,Rn, εn)
prefix code with regular costc satisfying

Rn ≤ G[εn](X
n)

αcn
+

1

n

(

log 2 + γ

αc

+ (2 + εn)cmax

)

, (22)

whereγ > 0 is an arbitrary constant andcmax is defined as
in (2). �

(Proof) For anyγ > 0 fix a subsetAn ⊆ Xn such that

Pr{Xn ∈ An} ≥ 1− εn (23)

and
∑

x∈An

PXn(x) log
1

PXn|An
(x)

≤ G[εn](X
n) + γ, (24)

where we define

PXn|An
(x) =

PXn(x)

Pr{Xn ∈ An}
. (25)

Assume that elements ofAn are ordered asAn =
{x1,x2, · · · }. We use a generalized version of Shannon-Fano-
Elias coding with costs (cf. [5]) for encoding of elements of
An. For everyi > 0 we define

Pi =
i−1
∑

j=1

PXn|An
(xj), Qi = Pi +

PXn|An
(xi)

2
, (26)

whereP1 := 0. Then, there exists a prefix code(ϕ̃n, ψ̃n) such
that ε(ϕ̃n, ψ̃n) = 0 and

K−αcc(ϕ̃n(x)) >
PXn|An

(x)

2
K−αccmax (∀x ∈ An) (27)

(cf. [5] and the proof of Theorem 4 in Section IV). We
construct a new prefix code(ϕn, ψn) from (ϕ̃n, ψ̃n) by setting

ϕn(x) =

{

1 ◦ ϕ̃n(x) if x ∈ An

2 if x ∈ Ac
n

(28)

and

ψn(y) =

{

xi if y = ϕn(xi) with xi ∈ An

x1 if y = 2
, (29)

where◦ denotes concatenation. Then, it follows from (27) that
for all x ∈ An

K−αcc(ϕn(x)) >
PXn|An

(x)

2
K−2αccmax . (30)

The decoding error probability is obviouslyε(ϕn, ψn) =
Pr{Xn ∈ Ac

n} ≤ εn. We evaluate the average cost rate as

E

{

1

n
c(ϕn(X

n))

}

≤ Pr{Xn ∈ An}E
{

1

n
c(ϕn(X

n))
∣

∣

∣
Xn ∈ An

}

+ εn
c(2)

n
.

(31)

In view of (30), the first term is evaluated as

Pr{Xn ∈ An}E
{

1

n
c(ϕn(X

n))
∣

∣

∣
Xn ∈ An

}

≤ 1

αcn
Pr{Xn ∈ An}E

{

log
1

PXn|An
(Xn)

∣

∣

∣
Xn ∈ An

}

+
log 2

αcn
+

2cmax

n

≤ G[εn](X
n)

αcn
+

log 2 + γ

αcn
+

2cmax

n
, (32)

where we have used (24) for the last inequality. Plugging (32)
into (31) yields (22). �

IV. A SYMPTOTIC ANALYSIS

A. Definitions

We define theε-achievable cost rates as follows:
Definition 1 (Type-Iε-Achievable Cost Rate):Forε ∈ (0, 1),

a cost rateR ≥ 0 is said to betype-Iε-achievable with costc
if there exists a sequence of(n, εn) codes satisfying

lim sup
n→∞

E

{

1

n
c(ϕn(X

n))

}

≤ R, (33)

εn ≤ ε (∀n > n0). (34)

The infimum of all type-Iε-achievable cost rates with cost
c is denoted byR(I)

c (ε|X). Also, R ≥ 0 is said to be
type-I optimisticallyε-achievable with costc if there exists
a sequence of(n, εn) codes satisfying

lim inf
n→∞

E

{

1

n
c(ϕn(X

n))

}

≤ R,

εn ≤ ε (∀n > n0). (35)

The infimum of all optimisticallyε-achievable cost rates with
costc is denoted byR(I)∗

c (ε|X). �

The following definition gives a right-continuous version
of the infimumε-achievable cost rate, which is a generalized
notion ofweak achievabilityfor variable-length codes (cf. Han
[3], Koga and Yamamoto [8]).

Definition 2 (Type-IIε-Achievable Cost Rate):For ε ∈
[0, 1), a cost rateR ≥ 0 is said to betype-II ε-achievable with
cost c if there exists a sequence of(n, εn) codes satisfying
(33) and

lim sup
n→∞

εn ≤ ε. (36)

The infimum of all type-IIε-achievable cost rates with costc
is denoted byR(II)

c (ε|X). �

Remark 2:It is easily shown that we have

R(II)
c (ε|X) = lim

γ↓0
R(I)

c (ε+ γ|X) (∀ε ∈ [0, 1)). (37)

We have the analogous relation for optimisticallyε-achievable
cost rates. This means that it suffices to establish a formula
for type-I ε-achievable cost rates, so we shall consider only
the type-I achievability. �



B. First-Order Coding Theorem

Now, we establish the general formula for the type-Iε-
achievable cost rates.

Theorem 3 (Type-Iε-Achievable Cost Rate):For everyε ∈
(0, 1), any general sourceX satisfies

R(I)
c (ε|X) =

H[ε](X)

αc

= lim sup
n→∞

H[ε](X
n)

αcn
, (38)

R(I)∗
c (ε|X) =

H∗
[ε](X)

αc

= lim inf
n→∞

H[ε](X
n)

αcn
. (39)

�

Remark 3:Formulas (38) and (39) are established for the
first time even whenc = ℓ (i.e., αc = 1). Based on Remark
2, formulas (38) and (39) lead to the general formulas for the
type-II achievable rate cost rates, which generalize formulas
for the ε-achievable rate with uniform costc = ℓ given by [3]
and [8] and the general formula for the achievable rate with
regular costc andε = 0 given by [5].

Proof of Converse Part: We shall show the formula for
R(I)

c (ε|X). The formula forR(I)∗
c (ε|X) can be proven in a

similar way.
Let R ≥ 0 be type-I ε-achievable with costc. Then,

by definition, there exists a sequence of(n,Rn, εn) codes
(ϕn, ψn) satisfying (33) and (34). Theorem 1 assures that for
such codes we have for alln > 0,

Rn =
1

n
E{c(ϕn(X

n))} ≥ G[εn](X
n)

αcn
. (40)

It follows from (34) that

1

n
E{c(ϕn(X

n))} ≥ G[ε](X
n)

αcn
(∀n > n0) (41)

becauseG[δ](X
n) is a nonincreasing function inδ. Thus,

R ≥ lim sup
n→∞

1

n
E{c(ϕn(X

n))} ≥ H[ε](X)

αc

,

where we have used the relation (13). �

Proof of Direct Part: We shall show the formula for
R(I)

c (ε|X). The formula forR(I)∗
c (ε|X) can be proven in a

similar way.
Let {εn}∞n=1 be a sequence such thatεn > 0 and

εn = ε (∀n > n0) (42)

Theorem 2 assures that for anyγ > 0 there exists an
(n,Rn, εn) code(ϕn, ψn) such that

Rn =
1

n
E{c(ϕn(X

n))} ≤ G[εn](X
n)

αcn
+ γ (∀n > n1).

It follows from (42) that

lim sup
n→∞

1

n
E{c(ϕn(X

n))} ≤ lim sup
n→∞

G[ε](X
n)

αcn
+ γ.

Sinceγ > 0 is an arbitrary constant, this inequality and the
relation (13) mean thatR(I)

c (ε|X) ≤ H[ε](X)/αc. �

C. Relation Between Achievable Rates with Different Costs

Now, we turn to discussing a relationship between the
ε-achievable cost rates under two different cost functions.
Although the following theorem is an immediate consequence
of Theorem 3, we describe an alternative proof which leads to
an observation on the structure of optimal codes with distinct
cost functions (cf. Remark 4).

Theorem 4:Let c, c′ be regular cost functions and letαc

andαc′ denote the unique solution of equation (4) for each
cost function. Then, for everyε ∈ (0, 1) we have

αcR(I)
c (ε|X) = αc′R(I)

c′ (ε|X), (43)

αcR(I)∗
c (ε|X) = αc′R(I)∗

c′ (ε|X). (44)

(Proof) It suffices to show the following claims:

(i) If R is type-I (resp. type-II)ε-achievable with costc, then
αc

αc′
·R is type-I (resp. type-II)ε-achievable with costc′.

(ii) If R is type-I (resp. type-II) optimisticallyε-achievable
with costc, then αc

αc′
·R is type-I (resp. type-II) optimisti-

cally ε-achievable with costc′.

These claims may be proven by applying [12, Lemma 1] twice.
Here, we give a slightly more direct proof.

For a type-Iε-achievable cost rateR with costc, there exists
a prefix code(ϕn, ψn) satisfying (33) and (34). Set

Dn = {x ∈ Xn : ψn(ϕn(x)) = x} . (45)

By definition, we haveεn = Pr{Xn ∈ Dc
n}. Then, similarly

to the derivation of (20), we have

E

{

c(ϕn(X
n))

n

}

≥ E

{

c(ϕn(X
n))

n
1{Xn ∈ Dn}

}

≥ 1

αcn

∑

x∈Dn

PXn(x) log
1

PXn|Dn
(x)

, (46)

where we define

PXn|Dn
(x) =

PXn(x)

Pr{Xn ∈ Dn}
(∀x ∈ Xn). (47)

We use a generalized version of Shannon-Fano-Elias coding
with costs (cf. [5]). Assume that the elements ofDn are
indexed asDn = {x1,x2, · · · }. We define

Pi :=

i−1
∑

j=1

PXn|Dn
(xj), Qi := Pi +

PXn|Dn
(xi)

2
(48)

for all i = 1, 2, · · · , whereP1 := 0. For the cost functionc′

with q(y) = K−αc′c
′(y) (∀y ∈ Y∗), we also define

I(y) = [β(y), γ(y)), (49)

β(y) =
∑

y′:y′≺y

q(y′) and γ(y) = β(y) + q(y), (50)

where≺ denotes the lexicographic order on the setYℓ(y).
Now, to eachxi we assignyi as

yi = arg min
y∈Ki

ℓ(y), (51)



whereKi is the set ofy ∈ Y∗ such thatI(y) includesQi but
neitherPi nor Pi+1. Then, it holds thatI(yi) ⊂ (Pi, Pi+1)
and intervalsI(y1), I(y2), · · · are disjoint, implying that
{y1,y2, · · · } forms a prefix code. We arrange a new encoder
ϕ′
n : Xn → Y∗ as

ϕ′
n(xi) =

{

1 ◦ yi if xi ∈ Dn

2 if xi 6∈ Dn,
(52)

where◦ denotes concatenation. The decoderψ′
n is such that

ψ′
n(ϕ

′
n(xi)) = xi for all xi ∈ Dn. Therefore, the decoding

error probability does not change and the code(ϕ′
n, ψ

′
n)

satisfies (34).
Now, for eachy = (y1, y2, . . . , yl), where l = ℓ(y), set

yi = (y1, y2, . . . , yl−1). Then, by definition,I(yi) ⊂ I(yi)
andPi ∈ I(yi) or Pi+1 ∈ I(yi). This means that the width
|I(yi)| of the intervalI(yi) is larger thanPXn|Dn

(xi)/2, so
that

|I(yi)| = K−αc′c
′(yi) >

PXn|Dn
(xi)

2
. (53)

Since

c′(ϕ′
n(xi)) ≤ c′(yi) + c′max ≤ c′(yi) + 2c′max (∀xi ∈ Dn),

we obtain

c′(ϕ′
n(xi))≤

{

− log PXn|Dn
(xi)

αc′
+ log 2

αc′
+ 2c′max if xi ∈ Dn

c′max if xi 6∈ Dn.

Then, we obtain

lim sup
n→∞

E

{

1

n
c′(ϕ′

n(X
n))

}

≤ lim sup
n→∞

1

αc′n

∑

x∈Dn

PXn(x) · log 1

PXn|Dn
(x)

≤ αc

αc′
lim sup
n→∞

E

{

1

n
c(ϕn(X

n))

}

≤ αc

αc′
·R, (54)

where we have used (33) and (46). Thus, the proof of claim
(i) is completed. Claim (ii) can be proven similarly. �

Remark 4:In the foregoing proof, a good(n, εn) code for
costc′ is obtained from a good(n, εn) code for costc without
changing thedominant setDn, which is the set of source
sequences that can be decoded without error. This means that
for any two regular cost functions, the dominant set for a
code that attains the infimumε-achievable cost rate with a
cost function is also the dominant set for a code attaining the
infimum ε-achievable cost rate with the other cost function.�

V. OPTIMUM SECOND-ORDER COST RATE

A. Definitions

We define the second-order achievable cost rates as follows:
Definition 3 (Type-I(ε,R)-Achievable Cost Rate):For ε ∈

(0, 1) andR ≥ 0, L is said to be second-ordertype-I (ε,R)-
achievable with costc if there exists a sequence of(n, εn)
codes satisfying

lim sup
n→∞

1√
n

(

E {c(ϕn(X
n))} − nR

)

≤ L, (55)

εn ≤ ε (∀n > n0). (56)

The infimum of all type-I(ε,R)-achievable cost rates with
cost c is denoted byL(I)

c (ε,R|X). Also, L is said to be
second-ordertype-I optimistically(ε,R)-achievable with cost
c if there exists a sequence of(n, εn) codes satisfying

lim inf
n→∞

1√
n

(

E {c(ϕn(X
n))} − nR

)

≤ L,

εn ≤ ε (∀n > n0). (57)

The infimum of all type-I optimistically(ε,R)-achievable cost
rates with costc is denoted byL(I)∗

c (ε,R|X). �

Remark 5:Similarly to the first-order cost rates, we can
also define a right-continuous version of the infimum(ε,R)-
achievable rate (called type-II(ε,R)-achievable cost rate),
denoted byL(II)

c (ε,R|X), by replacing (56) with

lim sup
n→∞

εn ≤ ε. (58)

Then, forε ∈ [0, 1) we have

L(II)
c (ε,R|X) = lim

γ↓0
L(I)
c (ε+ γ,R|X). (59)

�

B. Second-Order Coding Theorem

We establish the second-order coding theorem, which is a
counterpart of Theorem 3 of the first-order.

Theorem 5 (Type-I(ε,R)-Achievable Cost Rate):For every
ε ∈ (0, 1) andR ≥ 0, any general sourceX satisfies

L(I)
c (ε,R|X) = lim sup

n→∞

1√
n

(

H[ε](X
n)

αc

− nR

)

, (60)

L(I)∗
c (ε,R|X) = lim inf

n→∞

1√
n

(

H[ε](X
n)

αc

− nR

)

. (61)

(Proof) Using the relation

lim sup
n→∞

1√
n
H[ε](X

n) = lim sup
n→∞

1√
n
G[ε](X

n), (62)

we can prove the theorem similarly to Theorem 3. �

Remark 6:For the case wherec = ℓ, we have the following
immediate consequence of Theorem 5: for everyε ∈ (0, 1)
andR ≥ 0, any general sourceX satisfies

L(I)
ℓ (ε,R|X) = lim sup

n→∞

1√
n
(H[ε](X

n)− nR). (63)

Thus, we have

αcL(I)
c (ε,R|X) = L(I)

ℓ (ε, αcR|X) (64)

for any regular cost functionc. �

In the case wherec = ℓ and the sourceX is stationary
and memoryless with the finite third absolute moment of
log 1

PX (X) , Kostina et al. [9] has recently given a single-letter

characterization ofL(I)
ℓ (ε,R|X) with R = H[ε](X) as

L(I)
ℓ (ε,R|X) = −

√

V (X)

2π
e−

(Q−1(ε))2

2 , (65)

whereV (X) denotes the variance oflog 1
PX (X) (varentropy)

and Q−1 is the inverse of the complementary cumulative



distribution function of the standard Gaussian distribution.
Notice thatR = H[ε](X) = (1 − ε)H(X) in this case [8],
whereH(X) is the entropy of the source. Now, let us consider
the case where the cost function isadditive[1]. In view of the
relation (64), we can also obtain a single-letter characterization

L(I)
c (ε,R|X) = − 1

αc

√

V (X)

2π
e−

(Q−1(ε))2

2 , (66)

where the first-order cost rate isR = H[ε](X)/αc. As is
observed in [9], it is of interest to see that the optimum
second-order(ε,R)-achievable cost rate is always negative,
and allowing the decoding error up toε is beneficial for both
the first- and second-order cost rates.
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APPENDIX A
PROOFS OFEQUATIONS (14) AND (15)

We shall prove (i)(1 − δ)H(X) ≤ limγ↓0H
∗
[δ+γ](X), (ii)

H∗
[δ](X) ≤ (1−δ)H∗

(X), and (iii)H[δ](X) ≤ (1−δ)H(X)
because other inequalities are trivial.

(i) Proof of (1 − δ)H(X) ≤ limγ↓0H
∗
[δ+γ](X): This

inequality can be proven similarly to [8, Theorem 4] and [10,
Theorem 3], which show(1− δ)H(X) ≤ limγ↓0H[δ+γ](X).
We describe the whole proof for readers’ convenience.

Fix γ > 0 and η > 0 arbitrarily. For alln = 1, 2, · · · , we
choose a subsetAn ⊆ Xn such that

Pr {Xn ∈ An} ≥ 1− δ − γ, (67)
1

n

∑

x∈An

PXn(x) log
1

PXn(x)
≤ 1

n
H[δ+γ](X

n) + η. (68)

Set

Tn =

{

x ∈ Xn :
1

n
log

1

PXn(x)
≥ H(X)− η

}

. (69)

Then, for sufficiently largen we have

Pr {Xn ∈ An ∩ Tn} ≥ Pr {Xn ∈ An} − Pr {Xn ∈ T c
n}

≥ 1− δ − 2γ, (70)

where the last inequality is due to the definition ofH(X). We
obtain

1

n

∑

x∈An

PXn(x) log
1

PXn(x)

≥ 1

n

∑

x∈An∩Tn

PXn(x) log
1

PXn(x)

≥ Pr{Xn ∈ An ∩ Tn}(H(X)− η)

≥ (1− δ − 2γ)(H(X)− η). (71)

It follows from (68) that

H∗
[δ+γ](X) ≥ lim inf

n→∞

1

n

∑

x∈An

log
1

PXn(x)
− η

≥ (1− δ − 2γ)(H(X)− η)− η. (72)

Sinceη > 0 is arbitrary, we obtain the inequality(1 − δ −
2γ)H(X) ≤ H∗

[δ+γ](X). By taking limγ↓0, we have proven
the inequality(1 − δ)H(X) ≤ limγ↓0H

∗
[δ+γ](X).

(ii) Proof ofH∗
[δ](X) ≤ (1− δ)H

∗
(X): Set

Sn =

{

x ∈ Xn :
1

n
log

1

PXn(x)
≤ H

∗
(X) + γ

}

, (73)

whereγ > 0 is an arbitrary constant. In view of the equation

lim inf
n→∞

Pr {Xn ∈ Sc
n} = 0, (74)

let n1 < n2 < · · · denote an increasing sequence such that

lim
i→∞

Pr
{

Xni ∈ Sc
ni

}

= 0. (75)

We fix any δ′ ∈ (0, δ). For all i = 1, 2, · · · , we choose a
subsetBni

⊆ Xni such that

1− δ′ ≤ Pr {Xni ∈ Bni
} , (76)

1− δ′ ≥ Pr {Xni ∈ Γ} (∀Γ ⊂ Bni
s.t. Γ 6= Bni

). (77)

Notice that we can always choose suchBni
⊆ Xni , for

example, by successively insertingx ∈ Xni to Bni
in the

decreasing order ofPXni (x) and stop this procedure once
(76) is satisfied. From (75) and (76) we have

Pr {Xni ∈ Bni
∩ Sni

}
≥ Pr {Xni ∈ Bni

} − Pr
{

Xni ∈ Sc
ni

}

≥ 1− δ′ − γ (∀i > i0). (78)



On the other hand, fixing an arbitraryx0 ∈ Bni
with p0 :=

PXn(x0) and settingB̃ni
= Bni

\ {x0}, we have

1

ni

∑

x∈Bni
∩Sni

PXni (x) log
1

PXni (x)

≤ 1

ni

∑

x∈B̃ni
∩Sni

PXni (x) log
1

PXni (x)
+
p0
ni

log
1

p0

≤ Pr{Xni ∈ B̃ni
∩ Sni

}(H∗
(X) + γ) +

p0
ni

log
1

p0

≤ (1− δ′)(H
∗
(X) + γ) +

log e

nie
, (79)

where the second inequality is due to the definition ofSn and
the last inequality is due to (77) andp0 log p0 ≥ − log e

e
for

p0 ∈ [0, 1]. It follows from (78) that

1

ni

H[δ′+γ](X
ni) ≤ 1

ni

∑

x∈Bni
∩Sni

PXni (x) log
1

PXni (x)

and thus from (79) that

1

ni

H[δ′+γ](X
ni) ≤ (1− δ′)(H

∗
(X) + γ) +

log e

nie

for all i > i0, which leads to

lim inf
n→∞

1

n
H[δ′+γ](X

n)

≤ lim inf
i→∞

1

ni

H[δ′+γ](X
ni) ≤ (1− δ′)(H

∗
(X) + γ).

Sinceγ > 0 is arbitrarily fixed andH[δ](X
n) is a nonincreas-

ing function ofδ, letting γ ↓ 0, we obtain

lim inf
n→∞

1

n
H[δ](X

n) ≤ (1− δ′)H
∗
(X). (80)

Since δ′ ∈ (0, δ) is arbitrarily fixed, inequality (80) implies
H∗

[δ](X) ≤ (1 − δ)H
∗
(X).

(iii) Proof ofH[δ](X) ≤ (1 − δ)H(X): This is a slightly
strengthened version of the inequality given in [10, Theorem
3], which demonstrateslimγ↓0H[δ+γ](X) ≤ (1 − δ)H(X).
This inequality can be proven similarly to case (ii). �
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