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Abstract—We derive a general formula of the minimum characterization of the second-order optimum cost rate is
achievable rate for fixed-to-variable length coding with a egular  obtained for stationary memoryless sources.
cost function by allowing the error probability up to a constant
e. For a fixed-to-variable length code, we call the set of souec Il. VARIABLE-LENGTH CODING WITH COST
sequences that can be decoded without error the dominant set o L
of source sequences. For any two regular cost functions, isi ~ Let X' be afinite or countably infinitesource alphabet. Let
revealed that the dominant set of source sequences for a codeX = {X" = (Xl("),X(”), . ,X,S"))}Zo_l denote a general

2
attaining the minimum achievable rate with a cost function s also (n) ;. _ -
the dominant set for a code attaining the minimum achievable source, whereX;"" (i = 1,2,...,n) takes values int. We

rate with the other cost function. We also give a general formla  d0 not impose any assumptions &h such as stationarity or

of the second-order minimum achievable rate. ergodicity. Lety = {1,..., K} be a code alphabet of size
K and letY* denote the set of all finite-length sequences
|. INTRODUCTION taken from). We consider grefix code(y,,, ¥y, ), wherey,, :

X" — Y* and vy, : Y* — X" denote an encoder and a
For a general source, Hanl[3] has introduced a notigecoder, respectively. Le{,(x)) denote the length of the
of “decoding error” for variable-length coding and anakyzecodeword%(w) for x € x™.
the minimum average codeword length provided that thewe now introduce the cost function: Y* — (0, +00).
decoding error probability vanishes as the source sequenge assume that the cost function can be decomposegl for

length goes to infinity. Koga and Yamamoto [8] have analyze@b Ya, - yx) € V¥ as
the minimum average codeword length for variable-length -
coding for which the decoding error probability is allowenl u c(y) = c(yr) + clyzlyr) + -+ clyelyy ), (1)

to e € [0,1). For a stationary memoryless source satisfying\ﬁith
certain mild condition, Kostina et al.|[9] have recently gjiv

a single-letter characterization of the optimum secordeor Cmax (= Sup c(yk|yf‘1) < +00, (2)
codeword length for variable-lengthcodes. kynoyy

The problem of minimizing the average codeword cost Cmin = infc(yrlyr™") >0 ®3)
with a cost function, which imposes unequal costs for code kyryr !

symbols, has been studied. This problem, without decodiggq there exists
error, has been introduced by Shannonl [11]. Karp [6] has

studied a construction of the optimum prefix code, and Krause > Koewelyr™) — (4)
[7] has characterized the minimum average codeword cost €Y

for stationary memoryless sources. Han and Uchida [5] haye b1 1

extended the formula established by [7] to general sourcez%.é)r a" k=1,2,---547  €Y* . From ﬂ).a”dm“)’ we can
. . . . easily checked that., called thecost capacityl], is also the
In this paper, we introduce the notion of decoding error fourni Le solution for the eauation
variable-length coding with cost. We first derive finite lémg q q

upper and lower bounds on the cost rate and establish a §enera Z KW =1 (Vk=1,2,---). (5)
formula of the minimum achievable cost rate by allowing the

error probability up toe. We also give a general formula_ . , . )
of the second-order minimum achievable rate. Based on thiS class of cost functions, said to begular, was first
nsidered by Han and Katal [4]. For the prefix cdgde, v, ),

established second-order coding theorem and the recel‘?@ RN
obtained result by[[9] (with the uniform cost), a singletéet weé focus on the two performance indices; dwerage cost rate

a unique solution= «, of the equation

yeY*
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and theaverage error probability for everyé € [0,1), where

En bn) == Pr{Un(pa(X") £ X" (7) ﬂm_wp{mhmuppr{ log Xn o}
n— o0 X”

cost R,, and the average error probability, is called an F*(X):inf

A code of source sequence of lengththe average codeword {
(n, R,,e,) code (or simply ann,e,) code) with cost.

1
lim inf P log 0
o limi r{ PXn X } }
— , 1
Remark 1:Consider a special case where the cost functid(X ) =inf {‘l hgljolip Pr{ log PXn Xn }
c satisfies A

O}
k—1 k—1 k—1
=1 Vyp e V)V ey , 8
clyrln™) =1 (Y u ) ® IIl. FINITE-LENGTH ANALYSIS

where the costs are independentdf ' € Y*~'). Then, the | this section, we establish finite length lower and upper

cost c(¢,(x)) of the codewordp, () is just the codeword p5unds on the average codeword cost.
length ¢(¢,(x)). The average codeword cost is then the

average codeword length, which is often the subject of studiA. Converse Bound

on variable-length source coding. The codeword cost, whichTheorem 1 (Conversefny (n, R,.c,) prefix code with
may be asymmetric foy € V*, is a generalized notion of theregular cost: satisfies

codeword length.

For the proofs of[(14) and (15), see Appendik

In this paper, we use the following quantities of a general R, > Glea(X™) + E"Cmi“, (16)
source X. Let Z be a random variable taking values in a el n
(finite or countably infinite) se€ and letP; be its probability wherec,,;, is defined as in[{3). O
measure. Then, fof € [0, 1) we define (Proof) For an(n, Ry, e,) code(pn, ¥y), let D, C X™ be
defined as
) Pr{Z € A}
Gi5(2) = inf > Pz(z)log———,  (9)
S S 2 (2) D, = {@ € 2" | Yu(pn(a) =} (17)
. Then we haves,, = Pr{X" € D¢} where D¢ denotes
RI) ACz. Z 2(2)log 5 Pz ( ) (10) the complement ofD,,. It is easily verified that the average

A z€A .
PrizeA}z1-6 codeword cost raté,, is bounded as

In this paper, all logarithms are taken to the bdse Both 1
G5)(Z) and Hjs5)(Z) are nonincreasing functions of. It R, >E {Ec(cpn(X"))l{X" € Dn}} + -
obviously holds thatG5(Z) < Hjs5(Z) for all § € [0,1). (18)
Based on these quantities, for general souXceve define

Pr{X™ € D¢ }emin

where1{-} denotes the indicator function. Definindy) =

1
Hi5(X) = lim 15up —H[(;] (Xm™), (11) Ko@) for all y € Y*, we have
Hi5(X) = liminf — H 5 (X™) (12) > alen(@) <1 (19)

with a slight abuse of notation. ObViOUS|ﬂ[§] (X) < sincey,, is one-to-one between € D,, andy,,(x). Then,
Hi5(X), and it is not difficult to verify that 1
E {—c(gon(X")) ’X" c Dn}

H5(X) = limsup — G[5 (X™) (V6€0,1)).  (13) "

n—o0 1 Z Pxn(x log
It is of use to notice relations amonigys (X ), Hy (X) and acn S PriXn e Dn} q(pn(z))
information spectrum quantities|[2]. Following argumeats 1 Py () Py ( n
. . i Xn xXn iL')/PI'{X S Dn}
His1(X) in [8], [10], we obtaifl = an Z Pr{X" € D, }log on(@)
— zeD,
(1= ) H(X) <lim Hs ) (X) < Hiyy(X) < (1 - 0)H (X)), s Z Px(z) | Pr{X"€ D}
(14) Qen Pr{X" € D } & Pxn(x)
Lin Hig.4) (X) <Hi5(X)<(1-0)H(X) (15) 1 3 Pxn( ) 1o, Pr{X" € Dy} (20)
“am & Pr{X"€D,} 0 Pyu()
1A known relation amongd7(s5)(X) and information spectrum quantities is N 1 &[en] (X") )1
(1= DH(X) < lip His - (X) < (1 - HHX) (5 0,1), 2 o PrX" € Dy} (1)

where the leftmost inequality is due to Koga and YamamotoaBgreas the where the 'nequal'ty in [120) follows due to the |Og sum
rightmost one is due to Kuzuoka and Watangbé [10]. inequality. Pluggingl[{21) intd (18) yield§ {1.6). O



B. Achievability Bound In view of (30), the first term is evaluated as

Theorem 2 (Achievability): There exists ann, R,,,&,)

Pr{X" ¢ An}E{ L eton(x™) ’X" c An}

prefix code with regular cost satisfying n’
Gle)(X™) 1 (log2++ <L opxnea E{m _ 1 |xmea }
R, < aun + o +(2+en)emax |, (22) T aen { n & Pxnya, (X™) !
where~ > 0 is an arbitrary constant ang, ., is defined as + P + Y
in @. - G ‘ (X™)  log2+ 2¢
(Proof) For anyy > 0 fix a subsetd,, C X" such that < Zlenl - T e (32)
Qcn Qen n
Pr{X" e A} 21 -2y (23)  where we have usel{R4) for the last inequality. Plugding (32
and into (31) yields [2R). O
1 IV. ASYMPTOTIC ANALYSIS
> Pxn(m)log P @ <G (X" +v. (24)
zEA, X" An A. Definitions
where we define We define thes-achievable cost rates as follows:
Py () Definition 1 (Type-E-Achievable Cost Ratefore € (0, 1),
Pxnja, () = 55— (25) a cost rateR > 0 is said to betype-ls-achievable with cost
Pr{X" € A, } ) . .
if there exists a sequence 0i,¢,,) codes satisfying
Assume that elements of4,, are ordered asA4, = 1
{x1, 2, - }. We use a generalized version of Shannon-Fano- limsup E {—c(gpn(Xn))} <R, (33)
Elias coding with costs (cf[[5]) for encoding of elements of n—0o0 n
A,,. For everyi > 0 we define en < (Vn > ny). (34)
i—1 Pxnia, (%) The infimum of all type-le-achievable cost rates with cost

Pi=) Pxua, (), Qi=P+ 5 , (26) ¢ is denoted byR"(¢|X). Also, R > 0 is said to be
j=1 type-1 optimisticallye-achievable with cost if there exists

whereP; := 0. Then, there exists a prefix codg,,, 1/3,1) such a sequence ofin, &) codes satisfying

thatE(‘Pn,¢n) =0 and liminfE {lc(‘ﬁn(Xn))} <R,
~ Pxn x e n
K—OtcC(‘Pn(il’S)) > X ‘12471( )K—achax (VCB c An) (27) En S € (\v/n > nO)- (35)
(cf. [5] and the proof of Theoreril4 in Sectidn]IV). WeThe infimum of all optimistically=-achievable cost rates with
construct a new prefix code.,,, v,,) from (3,1, ) by setting costc is denoted by’Rg)*(dX). O
_ ) The following definition gives a right-continuous version
on(T) = { Lo on(z) if x € Ag (28) of the infimume-achievable cost rate, which is a generalized
2 if @ € A7 notion ofweak achievabilityor variable-length codes (cf. Han
and [3], Koga and Yamamota [8]).

) ) Definition 2 (Type-lle-Achievable Cost Rate)For ¢ ¢
Un(y) = { z, fy= (@) with z; € Ay, ., (29) [0,1), acostrate? > 0 is said to betype-Il c-achievable with
x, ify=2 costc if there exists a sequence 6, <, ) codes satisfying
whereo denotes concatenation. Then, it follows frdm|(27) th483) and

forallz € A,

limsupe, <e. (36)
—acc(pn(x)) PX"‘An (.’13) —2QcCmax 30 o e . .
K > 2 K : (30) ' The infimum of all type-lle-achievable cost rates with cast
is denoted byR{"™ (¢ X). O

The decoding error probability is obviousb(yy,, ¥,) =
Pr{X" e A%} <e,. We evaluate the average cost rate as

1
B { Lelen(x") | R
n We have the analogous relation for optimisticaliachievable
<Pr{X" € A,)E {lc(%(xn)) ‘Xn c An} 4 571@- cost rates. Th|§ means that it suffices to establish a formula
n n for type-l e-achievable cost rates, so we shall consider only
(31) the type-I achievability. O

Remark 2:1t is easily shown that we have

Rgn)(dX):11%R£I)(5+7|X) (Ve €[0,1)).  (37)
vy



B. First-Order Coding Theorem C. Relation Between Achievable Rates with Different Costs

Now, we establish the general formula for the type-I Now, we turn to discussing a relationship between the
achievable cost rates. e-achievable cost rates under two different cost functions.
Theorem 3 (Type-4-Achievable Cost Ratefor everye €  Although the following theorem is an immediate consequence
(0,1), any general sourcX satisfies of Theoreni B, we describe an alternative proof which leads to
" an observation on the structure of optimal codes with distin
RO (e|X) = M = lim sup M7 (38) cost functions (cf. Remaik 4).

*O‘C n—ooo Gl Theorem 4:Let ¢, ¢ be regular cost functions and let.

RW*(21X) = Hi(X) i it 2 (X"). (39) and . denote the unique solution of equatidn (4) for each
¢ O n—00 oen cost function. Then, for every € (0,1) we have
O I _ @
Remark 3:Formulas [(3B) and (39) are established for the R (el X) = aclRC; (%), (43)
first ime even when: = ¢ (i.e., o = 1). Based on Remark acRW* (e X) = awRY" (e X). (44)

[, formulas[(3B) and(39) lead to the general formulas for t
type-1l achievable rate cost rates, which generalize fdasu
for the e-achievable rate with uniform cost= ¢ given by [3]

rZBroof) It suffices to show the following claims:
() If Ris type-I (resp. type-llx-achievable with cost, then

and [8] and the general formula for the achievable rate with a - 1t IS type-I (resp. type-Ily-achievable with cost’.

regular cost ande = 0 given by [5]. (i) 1f°R is type-l (resp. type-ll) optimistically-achievable

) with costc, then 2= - R is type-I (resp. type-Il) optimisti-
Pr(%of of Converse Part: We(I)s*haII show the formula. for cally e-achievable with cost'.
Re (€| X). The formula forR. ™ (¢|X) can be proven in & rpage claims may be proven by applyiagl[12, Lemma 1] twice.

similar way. _ _ Here, we give a slightly more direct proof.
Let R > 0 be type-l c-achievable with cost. Then, For a type-l-achievable cost ratB with costc, there exists

by definition, there exists a sequence (ef R,,,c,) codes a prefix cod satisfvin andT34). Set
(¢n, ) satisfying [3B) and{34). Theore 1 assures that orP &on; ¥n) fying [35) andL(34).

such codes we have for all > 0, D, ={xeX": ¢,(pn(x)) =x}. (45)
1 G En X’ﬂ Niti — n c H 1
Ry = ~E{c(gn(X™)} > [ea] ( )_ (40) By def|n|t|.on,.we have:,, = Pr{X" € D¢}. Then, similarly
n aen to the derivation of[(20), we have
It follows from that n n
&) E{c«on(X >>} ZE{c(W >>1{Xn€Dn}}
1 " G (X™) n n
—E{c(pn(X"))} > ————— (¥n > nyo) (41) 1 1
" Qelt > > Pxn(x)log o (g 46
because’(;(X™) is a nonincreasing function i. Thus, el e, 71D, ()
. 1 H(X where we define
R > limsup TE{e(pn(x7)) > 11X, Py (@)
where we have used the relatidnl(13). O r{X" € Dn}

We use a generalized version of Shannon-Fano-Elias coding
with costs (cf. [5]). Assume that the elements bf, are
indexed asD,, = {x1,x2, - - }. We define

Proof of Direct Part: We shall show the formula for
REI)(5|X). The formula fong)*(5|X) can be proven in a

similar way.
Let {e,}22, be a sequence such thagt > 0 and il Pxnip. (x;
1 Pi=>"Pxup,(x;),  Qi=Pi+— u;n( : (48)
En =€ (Vn > no) (42) j=1
Theorem[R2 assures that for any > 0 there exists an for all i = 1,2,-~-,/WhereP1 := 0. For the cost functiore’
(n, Ry, ,) code (g, 1,) such that with ¢(y) = K—*<®) (Yy € Y*), we also define
1 G £ Xn =
Ry = LE{e(onx)t < Ze1E) L s ), I(y) = [B(y),7(y)), (49)
" elt By)= > q) and v(y) =By) +q(y), (50)
It follows from (42) that Yy <y
Jim sup lE{c(gon(X"))} < Jim sup G (X™) 4 where < denotes the lexicographic order on the 3¢ty
n—ooo M n—oo acn Now, to eachr,; we assigny, as

Sincgv > 0 is an arbitrz(alr)y constant, this inequality and the y, = arg min £(y), (51)
relation [1B) mean thaR.’ (¢|X) < Hy(X)/ac. O yeK;



wherek; is the set ofy € Y* such thatl/(y) includes@; but The infimum of all type-I(e, R)-achievable cost rates with

neither P; nor P;;,. Then, it holds thatl(y,) C (P, Pi11) costc is denoted by (e, R|X). Also, L is said to be

and intervalsI(y,),(y,),--- are disjoint, implying that second-ordetype-I optimistically(s, R)-achievable with cost

{y1,y.,---} forms a prefix code. We arrange a new encoderif there exists a sequence 0f, ¢,,) codes satisfying

o X" — Y* as 1
o (1) = { Y e (52) tim inf 77 (E{elen(X™)} —nR) < L,

e 2 if zi & D, en<e (Vn>ng). (57)
whereo denotes concatenation. The decoggéris such that
P (o) (x;)) = x; for all ; € D,,. Therefore, the decoding
error probability does not change and the codg,, )
satisfies [(3}).

Now, for eachy = (y1,¥2,...,y), wherel = {(y), set
v, = (y1,92,---,y—1). Then, by definition,/(y,) C I(g;)
and P; € I(g;) or P41 € I(g;). This means that the width

The infimum of all type-1 optimisticallye, R)-achievable cost
rates with cost is denoted byc"* (e, R| X). O

Remark 5:Similarly to the first-order cost rates, we can
also define a right-continuous version of the infim@nR)-
achievable rate (called type-ilz, R)-achievable cost rate),
denoted byﬁ,(:H) (e, R|X), by replacing[(56) with

|1(y;)| of the intervall(y;) is larger thanPx«|p, (x;)/2, SO limsupe, <e. (58)
that n—oo
f— Pxn i Then, fore € [0,1) we have
)| = Ko@) 5 Pn @) g -
_ 2 LM (e, RIX) =1im £ (e + 7, R| X). (59)
Since 710
¢ (& (1)) < ¢ (U) + Chuae < ¢ (Fi) + 2hnae (Y5 € Dy), -
we obtain B. Second-Order Coding Theorem
—log Pxn|p, () 4 log2 | oy @D We establish the second-order coding theorem, which is a
(¢l () g{ ) s s Cmax 1 Ti ™ counterpart of Theoref 3 of the first-order.
Cmax if @ & Dy Theorem 5 (Type-ls, R)-Achievable Cost RateFor every
Then, we obtain €€ (0,1) andR > 0, any general sourcX satisfies
. 1 n 1 [ Hig(X"
limsup E {_C/(S";(X ))} LD (e, R|X) = lim sup — (L) - nR) , (60)
n—00 n n— oo n c
. 1 1 1 [ Hig(X")
< limsup Pxn(x) - log ———— (1) — liminf — ( 22 7
n—oo e'N CCEZDn PX"\Dn (:13) £c (87 R|X) llnﬁ_l}loréf \/ﬁ Q. nR|. (61)
O (Proof) Using the relation

< limsup E {lc(cpn(X"))} < e R,  (54)
n (0%

Q! n—oo . 1 n . 1
where we have use@ (33) arid(46). Thus, the proof of claim hﬁi‘gp 77 el (X") = hflnj;ip vn
(i) is completed. Claim (ii) can be proven similarly. O

Remark 4:In the foregoing proof, a gooh, ¢,,) code for
costc’ .is obtained.from agoodn,snl) co_de for cost without immediate consequence of TheorE 5: for every (0, 1)
changing thedominant setD,,, wh|ph is the set Qf SOUrce ;R > 0, any general sourcX satisfies
sequences that can be decoded without error. This means that
for any two regular cost functions, the dominant set for a EEI) (e,R|X) = 1imsupi(H[s] (X™) —nR). (63)
code that attains the infimumrachievable cost rate with a n—oo VT
cost function is also the dominant set for a code attainiig tiThus, we have

infimum e-achievable cost rate with the other cost functian. M (1)
acly’(e,RIX) =L, (e,acR|X) (64)

for any regular cost function. O

) . In the case where = ¢ and the sourceX is stationary
We define the second-order achievable cost rates as followsg memoryless with the finite third absolute moment of

Definition 3 (Type-I(e, l)-Achievable Cost Ratefore € 154 Py Kostina et al.[[9] has recently given a single-letter
(0,1) andR > 0, L is said to be second-orderpe-| (¢, R)- h x terizat D (- BIX) with B — H(X
achievable with cost if there exists a sequence 0k, ¢,,) characterization of, " (¢, B| X)) wi = Hp(X) as

Gg(X"),  (62)

we can prove the theorem similarly to Theorgn 3. O
Remark 6:For the case where= ¢, we have the following

V. OPTIMUM SECOND-ORDER COST RATE
A. Definitions

codes satisfying 12
| £ RIX) = [ e 0 (es)
limsup — (E {c(¢n (X™))} — nR) < L, (55) g
n—oo V1 whereV (X) denotes the variance &bg ﬁ(x) (varentropy)

en <€ (Vn>mno). (56) and Q! is the inverse of the complementary cumulative



distribution function of the standard Gaussian distributi  Fix v > 0 andn > 0 arbitrarily. For alln = 1,2,---, we
Notice thatR = H(X) = (1 — ¢)H(X) in this casel[B], choose a subset,, C X" such that

whereH (X) is the entropy of the source. Now, let us consider n 15

the case where the cost functioraidditive[1]. In view of the 1 Prix elA"} - 11 0= (67)
relation [64), we can also obtain a single-letter charaton - Z Pxn(x)log m < EH[‘H”] (X™) +. (68)

xEA,

1 V(X)e_<cr12<a>>2 (66) Set

(I X) = ——
Loie BIX) = -\ =1 : 1 1
where the first-order cost rate B = Hj(X)/ac.. As is Tn = {m Xt ElOg Pxn(x) > H(X) - 77}- (69)
observed in[[9], it is of interest to see that the optimumy.n or sufficiently large: we have
second-ordere, R)-achievable cost rate is always negative,
and allowing the decoding error up tois beneficial for both ~ Pr{X"™ € A, NT,,} > Pr{X" € A,} — Pr{X" € T};}

the first- and second-order cost rates. >1—06—27, (70)
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1-0 <Pr{X™ € By}, (76)
APPENDIXA 1-§ >Pr{X™ eTl} (V[ CB,, st.T#B,). (77)

PROOFS OFEQUATIONS (14) AND (15)
. . . Notice that we can always choose sugh, < X™, for
We shall provejz(l = O)H(X) < limyy0 His, ) (X), (i) example, by successively inserting € X™ to B,, in the
Hi5(X) < (1-6)H (X), and (i) Hj5) (X)) < (1-6)H(X) decreasing order oPx~: (z) and stop this procedure once

because other inequalities are trivial. (76) is satisfied. Fron(T5) and (76) we have
(i) Proof of (1 — 0)H(X) < limyo H’gﬂ](X): This Pr{X"™ € B,,NS,,}
inequality can be proven similarly to][8, T[heorem 4] anhd [10,

> Uz 1 ng c
Theorem 3], which showl — 8)H (X) < lim0 His.)(X). 2 Pr{X" € By} —Pr{X™ €5}
We describe the whole proof for readers’ convenience. 21=68 =y (Vi>io) (78)



On the other hand, fixing an arbitram, € B,,, with py :=
Pxn(xg) and settingB,,, = By, \ {0}, we have

1 1
— Z Pxni(x)log
" weBn NS, Pxrni(x)
1 Po 1
< — Pxn; log ——— + —log —
- n; Z X (w) 08 PXM (.’B) + n; 08 Po

) . 1
< Pr{X™ € By, NS, A (X) +7) + 2 log —
ng Po

— 1

< (1= (H (X)+7) + —=, (79)
where the second inequality is due to the definitiortpfand
the last inequality is due td (¥7) ang logpy > —“’% for
po € [0, 1]. It follows from (Z8) that

1 1

i

and thus from[{79) that
loge

L Hipy (X™) < (1= 8)(H'(X) +7) +

n;e
for all 7 > i, which leads to

1
lim inf — H;s X"
imin - 6+ (X™)

n—oo

| n, =k
< timinf —Higroo) (X™) < (1= 8')(H'(X) + 7).
Sincey > 0 is arbitrarily fixed andH 5 (X™) is a nonincreas-
ing function of¢, letting~ | 0, we obtain

lim inf lﬂm (X™) < (1=6)H (X). (80)

n—oo N

Sinced’ € (0,6) is arbitrarily fixed, inequality[(80) implies

Hi5 (X) < (1= 6)H (X).

(iiiy Proof of Hj5(X) < (1 —6)H(X): This is a slightly
strengthened version of the inequality given(in/[10, Theore
3], which demonstrateEm, o H}5,+)(X) < (1 — 6)H(X).
This inequality can be proven similarly to case (ii). O
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