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Abstract

In this paper, we propose a construction of non-binary WOM (Write-Once-Memory) codes for WOM storages
such as flash memories. The WOM codes discussed in this paper are fixed rate WOM codes where messages in a
fixed alphabet of sizeM can be sequentially written in the WOM storage at leastt∗-times. In this paper, a WOM
storage is modeled by a state transition graph. The proposedconstruction has the following two features. First, it
includes a systematic method to determine the encoding regions in the state transition graph. Second, the proposed
construction includes a labeling method for states by usinginteger programming. Several novel WOM codes forq
level flash memories with 2 cells are constructed by the proposed construction. They achieve the worst numbers of
writes t∗ that meet the known upper bound in the range 4≤ q ≤ 8,M = 8. In addition, we constructed fixed rate
non-binary WOM codes with the capability to reduce ICI (inter cell interference) of flash cells. One of the advantages
of the proposed construction is its flexibility. It can be applied to various storage devices, to various dimensions (i.e,
number of cells), and various kind of additional constraints.

I. Introduction

Recent progress of storage media has been creating interests on coding techniques to ensure reliability of the media
and to lengthen the life of storage media. Write-Once-Memory (WOM) codes are getting renewed interests as one of
promising coding techniques for storage media. In the scenario of the binary WOM codes, the binary WOM storage
(or channel) is assumed as follows. A storage cell has two states 0 or 1 and the initial state is 0. If a cell changes
its state to 1, then it cannot be reset to 0 any more. Punch cards and optical disks are examples of the binary WOM
storages. The celebrated work by Rivest and Shamir in 1982 [1] presented the first binary WOM codes and their
codes induced subsequent active researches in the field of the binary WOM codes [2] [3] [4].

A memory cell in recent flash memories has multiple levels such as 4 or 8 levels and the number of levels are
expected to be increased further in the near future. This trend has produced motivation to the research activities on
the non-binary WOM codes that are closely related to the multilevel flash memories [5] [6] [7] [11].

There are two threads of researches on the non-binary WOM codes. The first one isvariable rate codesand the
other isfixed rate codes.

The variable rate codes are the non-binary WOM codes such that message alphabets used in a sequence of writing
processes are not necessarily identical. This means that writing rate can vary at each writing attempt. Fu and Vinck
[8] proved the channel capacity of the variable rate non-binary WOM codes. Recently, Shpilka [9] proposed a
capacity achieving construction of non binary WOM codes. Moreover, Gabrys et al. [5] presented a construction of
the non-binary WOM codes based on known efficient binary-WOM codes.

Although the variable rate codes are efficient because they can fully utilize the potential of a WOM storage, fixed-
rate codes that have a fixed message alphabet is more suitablefor practical implementation into storage devices. This
is because a fixed amount of binary information is commonly sent from the master system to the storage. Kurkoski
[11] proposed a construction of fixed rate WOM codes using twodimensional lattices. Bhatia et al. [10] showed a
construction of non-binary WOM codes that relies on the lattice continuous approximation. Cassuto and Yaakobi [7]
proposed a construction of fixed rate non-binary WOM codes using lattice tiling.

Recently, fixed rate WOM code for reducing Inter-Cell Interference (ICI) is proposed by Hemo and Cassuto [12]. It
is known that ICI causes drift of the threshold voltage of a flash cell according to the voltages of adjacent flash cells
[12]. The drift of threshold voltage degrades the reliability of the flash cell and it should be avoided. One promising
approach to reduce ICI is to use an appropriate constraint coding to avoid certain patterns incurring large ICI. The
WOM codes presented in [12] not only have larget∗ but also satisfy certain ICI reducing constraints.

A part of this work was presented at the International Symposium on Information Theory and Its Applications 2016.
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In the case of fixed rate codes, systematic constructions forefficient non-binary WOM codes are still open to
be studied. Especially, perusing optimal codes with practical parameters is an important subject for further studies.
Furthermore, it is desirable to develop a construction of fixed rate WOM codes that have wide range of applicability;
this means that a new construction should be applicable to wide classes of WOM devises such as WOM devices
with ICI constraint as well.

In this paper, we propose a novel construction of fixed rate non-binary WOM codes. The target of storage media
is modeled by a memory device with restricted state transitions, i.e., a state of the memory can change to another
state according to a given state transition graph. The modelis fairly general and it includes a common model of
multilevel flash memories. The proposed construction has two notable features. First, it possesses a systematic method
to determine the sets called the encoding regions that are required for encoding processes. This is a critical difference
between ours and the prior work using lattice tiling [7] and [12]. Second, the proposed construction determines an
encode table used for encoding by integer programming.

II. Preliminaries

In this section, we first introduce several basic definitionsand notation used throughout the paper.

A. Basic notation

Let G , (V,E) be a directed graph whereV = {1,2, . . . , |V|} is the set of vertices andE ⊆ V×V is the set of edges.
If there does not exist a directed edge or a path from a vertex to itself, then the graphG is said to be a directed
acyclic graph, abbreviated as DAG. A DAG is used as astate transition graphin this paper. The left figure in Fig. 1
is an example of DAG. We express the DAG asG = (V,E, r). The symbolr represents the root of DAG. If for any
nodes, s′ ∈ V, (s, s′) there exists the directed edge or path froms to s′, we denotes� s′. In this case, we say that
s′ is reachablefrom s.

Assume that DAGG , (V,E, r). A WOM deviceD associated with the graphG can store anyv ∈ V as its state.
The initial state ofD is assumed to ber. We can change the state ofD from s∈ V to s′ ∈ V, if there exists a directed
edge or a path froms∈ V to s′ ∈ V.

The message alphabet to be written inD is denoted byM , {1,2, . . . ,M}. In our scenario, we want to write several
messages inM into D. Namely, a sequence of messages is sequentially written inD. When we write a message
m ∈ M, we must change the state ofD. After that, we get a written messagem in D by reading the state ofD.

B. Encoding function and decoding function

In this paper, we assume that an encoder has a unit memory to keep a previous input message, and that a
corresponding decoder has no memory.
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Fig. 1. A state transition graph (left) and an example of encoding regions (k = 3) and a message function (right). The numbers written in
the nodes represent the indices of nodes. The encoding regionsω(1) = {1,2, 3}, ω(2) = {2,4, 6} are indicated by the dashed boxes (right). The
encoding regions areω(x) = ∅ for x ∈ {3,4, 5,6}. In the right figure, the values of the message function are expressed as follows: The values
1, 2, and 3 are represented by a circle, a triangle, and a square, respectively. For any messagem ∈ {1,2,3}, both encoding regionsω(1) and
ω(2) contain the node corresponding tom.
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In order to write input messages into the WOM deviceD, we need an encoding function. The definition of the
encoding function is given as follows.

Definition 1: Assume that a function

E : V ×M → V ∪ {fail}

is given. The symbolfail represents a failure of an encoding process. If for anys ∈ V and m ∈ M, s � E(s,m) or
E(s,m) = fail, then the functionE is called anencoding function.

The following definition on the decoding function is used to retrieve the messagem ∈ M from D.
Definition 2: Assume that a functionD : V →M is given. If for anym ∈ M ands ∈ V, the consistency condition

D(E(s,m)) = m (1)

is satisfied, then the functionD is called adecoding function.
Assume that a sequence of input messagesm1,m2, . . . ∈ M are sequentially encoded. We also assume that the

initial node iss0 = r. The encoder encodes the incoming messagemi by

si = E(si−1,mi) (2)

for i = 0,1, . . .. The output of the encoder,si, is then written intoD as the next node, i.e., next state.
The following definition gives the worst number of consecutive writes toD for a pair of encoding and decoding

functions (E,D).
Definition 3: Assume that a sequence of messages of lengtht, (m1,m2, . . . ,mt) ∈ Mt, is given. Let (s1, s2, . . . , st)

be the state sequence defined bysi = E(si−1,mi) under the assumptions0 = r. If for any i ∈ [1, t], si , fail, then the
pair (E,D) is said to bet writes achievable. Theworst number of writes t∗ is defined by

t∗ , max{t | (E,D) is t-times achivable}. (3)

In other words, the pair (E,D) ensures consecutivet∗ writes of fixed size messages in the worst case. Of course,
in terms of efficient use of the deviceD, we should design (E,D) to maximizet∗.

III. Realization of encoding function

In this section, we prepare basic definitions required for precise description of our encoding algorithm used in the
encoding function.

A. Notation

The reachable region R(s)(s ∈ V) is the set of the all nodes to which a node can change froms. The precise
definition is given as follows.

Definition 4: The reachable regionR(s)(s ∈ V) is defined as

R(s) , {x ∈ V|s� x}. (4)

Encoding regions and a message function defined below play a critical role in an encoding process.
Definition 5: Assume that a family of subsets inV,

{ω(s)} , {ω(1), ω(2), . . . , ω(|V|)},

is given. Letk be a positive integer satisfying|M| ≤ k. If the family satisfies the following two conditions:

1) ∀s∈ V, ω(s) ⊆ R(s)
2) ∀s∈ V, |ω(s)| = k or ω(s) = ∅,

then the family{ω(s)} is said to be theencoding regions.
A message function defined below is used to retrieve a message.
Definition 6: Assume that a family of encoding regions{ω(s)} is given. Letg be a function:

g :
⋃

s∈V

ω(s)→M.
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Fig. 2. An example of frontiers and layers. The dashed boxes represent the encoding regionsω(1) = {1,2,3}, ω(2) = {2,4,6}, ω(3) = {3,4, 5}.
The encoding regionsω(4), ω(5), ω(6) are empty sets. The layers areL0 = {1},L1 = ω(1),L2 = ω(2)

⋃

ω(3). The frontier for each layer is
depicted as filled circles:F(L1) = {2,3}, F(L2) = {6}. The start point set isV∗ = F(L0)

⋃

F(L1)
⋃

F(L2) = {1,2,3, 6}. In the right figure,
the values of the message function are expressed as follows:The values 1, 2, and 3 are represented by a circle, a triangle,and a square,
respectively.

If for any m ∈ M and for anys∈ {x ∈ V | ω(x) , ∅}, there existsa ∈ ω(s) satisfying

g(a) = m,

then the functiong is called amessage functioncorresponding to the family of encoding regions{ω(s)}.
We can consider the message function as the labels attached to the nodes. In following encoding and decoding

processes, the label, i.e., the value of the message function corresponds to the message associated with the node. This
definition implies that we can find arbitrary messagem ∈ M in arbitrary encoding regionω(s) (s ∈ {x ∈ V | ω(x) , ∅}).
An example of encoding regions and a message function is shown in the right-hand of Fig. 1.

We use the above definitions of the encoding regions and the message function to encode given messages. In order
to write a sequence of messages, we must connect several nonempty encoding regions to makelayers. We here define
frontiers and layers as follows.

Definition 7: For a subset of nodesX ⊆ V, the frontier of X, F(X), is defined by

F(X) , {x ∈ X | R(x) ∩ X = {x}}. (5)

If x < F(X) is hold for x ∈ X, then there existsy ∈ F(X) which is reachable fromx, i.e., x � y.
A layer consists of a union set of encoding regions.
Definition 8: Assume that a family of encoding regions{ω(s)} is given. ThelayerLi is recursively defined by

Li ,
⋃

x∈F(Li−1)

ω(x), L0 = {r}. (6)

r represents the root of DAG.
Definition 9: Assume that for integeri ≥ 0, Li ⊂ V is given. Thestart point set V∗ is defined by

V∗ ,
⋃

i≥0

F(Li ). (7)

Figure 2 shows an example of frontiers and layers.

B. Encoding algorithm

In this subsection, we explain the encoding algorithm to realize an encoding function. The algorithm presented
here is similar to the algorithm presented in the reference [7]. The encoding algorithm is shown in Algorithm 1.

Suppose that we have the two inputs, a states which represents the current node in the state transition graph, and
a messagem. The main job of this encoding algorithm is to findy ∈ ω(d) satisfyingg(y) = m for a given message
m. The encoding regionω(d) can be considered as the currentencoding windowin which the candidate of the next
state is found. The variabled is called astart point of the encoding window. If suchy can be written inD or is
reachable froms (i.e., s� y), then the next state is set tos′ := y in line 10 of Algorithm 1. Otherwise, the current
encoding window should move to another encoding region in the next layer (line 13). The new start pointz is chosen
in the frontierF(Li ) andd is updated asd := z. 1 The layer indexi is the minimum index satisfyings ∈ Li .

1It is clear that, for anyx ∈ ω(d) (ω(d) is the current encoding window), there existsz ∈ F(Li) satisfyingx � z.
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Algorithm 1 Encoding algorithm
1: input: s ∈ V (current state)
2: input: m ∈ M (message)
3: output: s′ = E(s,m) (next state, orfail)
4: d := min[{x ∈ V | s∈ ω(x)} ∪ {∞}]
5: if ω(d) = ∅ or d = ∞ then
6: output fail and quit.
7: end if
8: y := min{x ∈ ω(d) | g(x) = m}
9: if s� y then

10: s′ := y
11: else
12: i = min{i′|s∈ Li′}

13: d := min[{x ∈ F(Li ) | s� x} ∪ {∞}]
14: Go to line 5
15: end if
16: output s′ and quit.

The decoding function associated with the encoding function E realized by Algorithm 1 is given by

D(x) = g(x).

From the definition of the message function and the procedureof Algorithm 1, it is evident that this function satisfies
the consistency conditions.

We here explain an example of an encoding process by using thestate transition graph presented in Fig. 2. Assume
that an input message sequence (m1,m2) = (2,3) is given. In the beginning of an encoding process, the current state
is initialized ass= 1. Since the initial message ism1 = 2, the pair (s= 1,m= 2) is firstly given to Algorithm 1.

In this case, we haved = 1 in line 4. Sinceg(3) = 2 is satisfied inω(1) in line 8, the candidate of the next state
y = 3 is obtained. Becauses= 1 � y = 3 holds, we obtains′ = y = 3 in line 10. The encoding process outputss′ = 3
and then quits the process.

Let us consider the second encoding process form2 = 3. We start a new encoding process with inputs (s= 3,m= 3).
From line 4, we haved = 1. This means that we set the encoding window toω(1). In this case, the encoder finds
g(2) = 3 and letsy = 2. However, the conditions = 3 � y = 2 is not satisfied, i.e.,y = 2 cannot be the
next state because the node cannot change from 3 to 2. In orderto find the next state, we need to change the
encoding window. From line 13, the new start point of the encoding window d = 3 is chosen from the frontier as
d = min[{x ∈ F(L1) | s � x}] = 3. This operation means that we change the encoding window from ω(1) to ω(3).
From the new encoding windowω(3), we can findx = 5 satisfyingg(5) = 3. Becauses= 3 � y = 5 holds (i.e.,y = 5
is reachable froms= 3), we finally have the next states′ = 5.

IV. Construction ofWOM codes

The performance and efficiency of the WOM codes realized by the encoding and decodingfunctions described in
the previous section depend on the choice of the encoding regions. In this section, we propose a method to create a
family of the encoding regions and a method to determine labels of nodes, i.e, the message function by using integer
programming.

A. Greedy rule for constructing a family of encoding regions

In this subsection, we propose a method for creating a familyof the encoding regions based on a greedy rule. The
proposed WOM codes described later exploit a family of the encoding regions defined based on the following sets.

Definition 10: Assume that an integerk(M ≤ k) is given. Let us denote the elements in the reachable regionR(s)
by r1, r2, . . . , r |R(s)|(s ∈ V) where the index ofr i satisfies

|R(r1)| ≥ |R(r2)| ≥ · · · ≥ |R(r |R(s)|)|. (8)
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Fig. 3. An example of a process of the greedy construction of the encoding region fors, whose size isk = 3. The dashed box in the leftmost
figure indicates the reachable regionR(s). In the middle of the figure, the numbers of reachable nodes for each elements inR(s) are presented.
We then select top 3 nodes in terms of the number of reachable nodes as an encoding region. In the rightmost figure, the dashed box represents
the encoding regionΩ(s) constructed by the greedy process.

The setΩ(s) is defined by

Ω(s) ,

{

{r1, r2, . . . , rk}, |R(s)| ≥ k,
∅, |R(s)| < k.

(9)

In the above definition, a tie break rule is not explicitly stated. If |R(ra)| = |R(rb)| holds, we will randomly choosera

or rb to break a tie. Figure 3 shows an example of a greedy process for generating an encoding region.
The underlying idea in the greedy process is simply to enlarge future writing possibilities. The setΩ(s) is determined

by a greedy manner in terms of the size of reachable regions. In other words, we want to postpone a state transition
to a state with the smaller reachable region as late as possible. This is because such a transition would lead to a
smaller number of writes.

In the following part of this paper, we will use the encoding regions defined by

ω(s) ,

{

Ω(s), s∈ V∗,
∅, s< V∗.

(10)

B. Message labeling

In the previous subsection, we saw how to determine the family of the encoding regions. The remaining task is
to find appropriate message labels of nodes. Namely, we must find an appropriate message function satisfying the
required constraint described in Definition 6. In this subsection, we will propose a method to find a message function
based on integer programming.

The solution of the following integer linear programming problem provides a message function.
Definition 11: Assume that a family of the encoding regions{ω(s)} is given. Letx∗j,ℓ, y

∗
ℓ
∈ {0,1}( j ∈ Γ, ℓ ∈ [1, k])

be a set of value assignments of an optimal solution of the following integer problem:

Maximize
∑

ℓ∈[1,k]

yℓ (11)

Subject to

∀i ∈ V∗,∀ℓ ∈ [1, k],
∑

j∈ω(i)

x j,ℓ ≥ yℓ, (12)

∀ j ∈ Γ,
∑

ℓ∈[1,k]

x j,ℓ = 1, (13)

∀ j ∈ Γ,∀ℓ ∈ [1, k], x j,ℓ ≤ yℓ, (14)

∀ j ∈ Γ,∀ℓ ∈ [1, k], x j,ℓ, yℓ ∈ {0,1}, (15)

whereΓ ,
⋃

i≥0Li . The maximum value of the objective function is denoted byM∗.
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Fig. 4. An example of a case where the worst number of writes is2. The boxes indicated in the figure is the layersL1,L2,L3. The black
nodes represent frontiers of layersL1,L2. The node with index 4 is a frontier whose encoding region is the empty set. Since the node with
index 4 is included inL2, we thus havet∗ = 2.

The symbolz∗j ( j ∈ Γ) represents

z∗j , arg max
ℓ∈[1,k]

I[x∗j,ℓ = 1], (16)

where the indicator functionI[condition] takes the value one ifcondition is true; otherwise it takes the value zero. If
we regardz∗j as a color put on the nodej, the above IP problem can be considered as an IP problem for a coloring
problem. In our case, the coloring constraint is as follows:for every nodes (i.e., state) inV∗, the neighbor ofs
including itself containsM∗-colors. This problem has close relationship to thedomatic partition problem.

In the following arguments, we set the maximize number of messageM equal toM∗.
Definition 12: Assume that a functionG : Γ→M is defined byG( j) , α(z∗j ), where the mappingα : A→M is

an arbitrary bijection. The setA is defined as

A , {ℓ ∈ [1, k] | y∗ℓ = 1}.

The following theorem means that the determination of the message function can be done by solving the above
integer programming problem.

Theorem 1:The functionG is a message function.
Proof: We assume that arbitrarym ∈ M and i ∈ V∗ are given. First, we considerℓ̃ = α−1(m). From the definition

of the setA, we havey∗
ℓ̃
= 1. The optimal solution satisfies

∑

j∈ω(i) x∗
j,ℓ̃
≥ y∗

ℓ̃
= 1. Becausex∗

j,ℓ̃
∈ {0,1}, there exists

j̃ ∈ ω(i) satisfying x∗
j̃,ℓ̃
= 1. By the definition of the functionG, the equationG( j̃) = α(ℓ̃) = α(α−1(m)) = m holds.

This satisfies the condition for the message function.
In the following, we use this message functionG in the encoding function (Algorithm 1) and the decoding function.

C. Worst number of writes

The worst number of writest∗ provided by the encoding algorithm with the encoding regions and the message
function defined above is given by

t∗ = min{i > 0 | ∃x ∈ F(Li ), ω(x) = ∅}. (17)

This statement appears clear from the definition of the encoding algorithm. Figure 4 presents an example fort∗ = 2.

V. Numerical results on proposedWOM codes

In this section, we will construct several classes of fixed rate WOM codes based on the proposed construction.
We used the IP solver IBM CPLEX for solving the integer programming problem.
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A. Multilevel flash memories

Multilevel flash memories consist of a large number of cells.Each of cell can store electrons in itself. It is assumed
that the level of a cell can be increased but cannot be decreased. In this paper, we assume thatn cells that can keep
q level values from the alphabet{0,1, . . . ,q− 1}. The state transitions ofq level multilevel flash memories ofn cells
can be represented by a state transition graph (directed square grid graph) presented in Fig. 5.

Figure 5 presents the state transition graph for multilevelflash memory (n = 2,q = 4) and the encoding regions
constructed by the proposed method. In this case, we can always write 5 messages for each write operation and the
worst number of writes ist∗ = 2 in this case.

Table I presents the worst numbers of writest∗ of the proposed WOM codes for multilevel flash memories for the
casesn = 2. When we solved the IP problems,k = M was assumed. For example, in the case ofq = 8,M = 8, the
worst number of writes equalst∗ = 4. In [7], several upper bounds fort∗ are presented for WOM codes (n = 2,q,M, t∗).
For M ≥ 8, the worst numbers of writes are upper bounded as

t∗ ≤

⌈

2(q− 1)
3

⌉

− 1. (18)

Table II shows the comparison between this upper bound and the worst numbers of writes of the proposed codes for
n = 2,M = 8. We can see that the worst numbers of writes of the proposed WOM codes exactly coincide with the
values of the upper bound. This result can be seen as an evidence of the efficiency of the WOM codes constructed
by the proposed method.

Table III shows the result forn = 3. In [7], an (n = 3,q = 7,M = 7, t∗ = 7) WOM code is presented. According
to Table III, the proposed WOM code attainst∗ = 8 which is larger than that of the known code under the same
parameter setting:n = 3,q = 7,M = 7. Table IV shows the result forn = 4. In our experiments, we were able to
construct WOM codes for the range ofM ∈ {5,6,7,8} andq ∈ {4,5,6,7,8} with reasonable computation time.

B. WOM codes with constraints for reducing ICI

In the current rapid grow of the cell density of NAND flash memories, the ICI is getting to be one of hardest
obstacles for narrowing cell sizes. The paper [12] showed several excellent fixed rate WOM codes with constraints
for reducing ICI. Their codes incorporate a constraint thatkeeps balance of the charge levels of adjacent cells. It is
expected that such constraints promote a reduction on the ICI effect and leads to realizing more reliable memories.
In this subsection, we will apply our construction to WOM codes with constraints for reducing ICI.

Assume that we have flash memory cellsc1, c2, . . . , cn. The current level for each cell is denoted byℓi . The
following definition gives thed imbalance constraint for reducing ICI.

Definition 13: Let d be a positive integer smaller thann. For any write sequence, if each cellsci(1 ≤ i ≤ n) satisfies

max
i, j, i, j

|ℓi − ℓ j | ≤ d, (19)
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Fig. 5. The left figure presents the state transition graph for multilevel flash memories (n = 2,q = 4). The levels of two cells are denoted
by ℓ1 and ℓ2. The horizontal (resp. vertical) direction means the levelof the cell ℓ1 (resp.ℓ2). The right figure presents a family of encoding
regions and a message function constructed by the proposed method. The numbers written in the nodes represent the valuesof the message
function. Nonempty encoding regions are indicated by the boxes. For any messagem in {1,2,3, 4,5}, each nonempty encoding regions contains
a node corresponding tom.
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Fig. 6. This figure presents a state transition diagram ofq = 4 level flash memories of two cells (n = 2) satisfyingd imbalance constraints
(left: d = 1, right: d = 2). The levels of two cells are denoted byℓ1 andℓ2. The horizontal (resp. vertical) direction means the levelof the cell
ℓ1 (resp.ℓ2).
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Fig. 7. This state transition graph corresponds toq = 4 level flash memories of two cells (n = 2) satisfyingd = 2 imbalance constraint. The
values in the circles represent the values of the message function. Nonempty encoding regions are indicated by the boxes.

then we say that the cell block satisfiesthe d imbalance constraint.
In other words, if the cells satisfy thed imbalance constraint, then the level difference between a pair of adjacent
cells is limited tod. It is known that a large level difference of adjacent cells tends to induce ICI. Thed imbalance
constraint is thus helpful to reduce ICI [12].

Figure. 6 presents state transition graphs for 4 level flash memories of two cells (n = 2) with the d imbalance
constraint (d = 1,2). From this figure, at any state (or node), the difference of level betweenc1 and c2 are always
limited to d(= 1,2).

It is straightforward to apply our code construction to the case of the WOM codes withd-imbalance constraint.
Figure 7 presents a family of encoding functions and values of a message function constructed by the proposed
method. This example shows universality of the proposed construction, i.e., it can be applied to any state transition
graph.

Table V shows the comparison between upper bound presented in [12] and the worst numbers of writes of the

TABLE I. Worst numbers of writes t∗ of proposedWOM codes for q level flash memories with n = 2 cells.

M\q 4 5 6 7 8
4 3 4 5 6 7
5 2 3 4 5 6
6 2 3 3 4 5
7 1 2 3 3 4
8 1 2 3 3 4

TABLE II. Comparison between t∗ of proposedWOM codes and upper bound (q level flash memories)(n = 2,M = 8)

q = 4 5 6 7 8 16 32 48
Upper bound 1 2 3 3 4 9 20 31

Proposed 1 2 3 3 4 9 20 31
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TABLE III. W orst numbers of writes t∗ of proposedWOM codes for q level flash memories with n = 3 cells.

M\q 4 5 6 7 8
4 6 8 10 12 14
5 4 5 7 8 10
6 4 5 7 8 10
7 3 5 6 8 9
8 3 4 6 7 8

TABLE IV. Worst numbers of writes t∗ of proposedWOM codes for q level flash memories with n = 4 cells.

M\q 4 5 6 7 8
5 7 9 12 14 17
6 5 7 9 11 13
7 5 7 9 11 13
8 5 7 9 11 13

proposed codes (n = 2,M = 8,d = 3). For M = 8, the worst numbers of writes of the WOM codes with thed = 3
imbalance constraint are upper bounded by

t∗ ≤

⌊

3(q− 1)
5

⌋

. (20)

We can see that the worst numbers of writes of the proposed WOMcodes exactly coincide with the values of the
upper bound.

Tables VI and VII present the worst numbers of writest∗ of the proposed WOM codes with thed imbalance
constraint (n = 3,4). The paper [12] only deals with the case of two cells (n = 2). It is not trivial to construct WOM
codes (n = 3,n = 4) with thed imbalance constraint by using the construction given in [12] but our construction is
directly applicable even for such cases.

VI. Conclusion

In this paper, we proposed a construction of fixed rate non-binary WOM codes based on integer programming.
The novel WOM codes withn = 2,M = 8 achieve the worst numbers of writest∗ that meet the known upper bound
in the rangeq ∈ [4,8]. We discovered several new efficient WOM codes forq level flash memories whenn = 3,4.
For instance, our (n = 3,q = 7,M = 7, t∗ = 8) WOM code provides a larger worst number of writes than thatof the
known code with the parameters (n = 3,q = 7,M = 7, t∗ = 7) [7]. In addition, We constructed several WOM codes
with d imbalance constraint for reducing ICI. Our WOM codes withn = 2,M = 8,d = 3 achieve the worst numbers
of writes t∗ that meet the known upper bound in the rangeq ∈ [4,8]. This implies the efficiency of the WOM codes
constructed by our construction. Another notable advantage of the proposed construction is its flexibility for handling
high dimensional cases. It is easy to construct for the codeswith modestly largen when the integer programming
problem can be solved with reasonable time. The proposed construction can be applied to various storage devices,
to various dimensions (i.e, number of cells), and various kind of additional constraints.

TABLE V. Comparison between t∗ of proposedWOM codes with the d imbalance constraint and upper bound (n = 2,M = 8,d = 3)

q = 4 5 6 7 8 16 32 48
Upper bound 1 2 3 3 4 9 18 28

Proposed 1 2 3 3 4 9 18 28

TABLE VI. Worst numbers of writes t∗ of proposedWOM codes with the d imbalance constraint (n = 3)

d = 2 d = 3
M\q 4 8 4 8

5 4 10 4 10
6 4 9 4 10
7 3 9 3 9
8 3 – 3 8
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TABLE VII. W orst numbers of writes t∗ of proposedWOM codes with the d imbalance constraint (n = 4)

d = 2 d = 3
M\q 4 8 4 8

5 7 – 7 17
6 5 13 5 13
7 5 13 5 13
8 5 13 5 13
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