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Abstract

In this paper, we propose a construction of non-binary WOMi@Once-Memory) codes for WOM storages
such as flash memories. The WOM codes discussed in this papdixed rate WOM codes where messages in a
fixed alphabet of sizél can be sequentially written in the WOM storage at lgagtmes. In this paper, a WOM
storage is modeled by a state transition graph. The propeosestruction has the following two features. First, it
includes a systematic method to determine the encodingmedgh the state transition graph. Second, the proposed
construction includes a labeling method for states by usiteger programming. Several novel WOM codes dor
level flash memories with 2 cells are constructed by the megaonstruction. They achieve the worst numbers of
writes t* that meet the known upper bound in the rangg 4 < 8, M = 8. In addition, we constructed fixed rate
non-binary WOM codes with the capability to reduce ICI (ntell interference) of flash cells. One of the advantages
of the proposed construction is its flexibility. It can be Bgxb to various storage devices, to various dimensions (i.e
number of cells), and various kind of additional constraint

. INTRODUCTION

Recent progress of storage media has been creating isteresbding technigues to ensure reliability of the media
and to lengthen the life of storage media. Write-Once-Mgnf@¢/OM) codes are getting renewed interests as one of
promising coding techniques for storage media. In the st@oéthe binary WOM codes, the binary WOM storage
(or channel) is assumed as follows. A storage cell has twessta or 1 and the initial state is 0. If a cell changes
its state to 1, then it cannot be reset to 0 any more. Puncls eard optical disks are examples of the binary WOM
storages. The celebrated work by Rivest and Shamir in 19BPrHsented the first binary WOM codes and their
codes induced subsequent active researches in the fiele dfitary WOM codes |2] 3] [4].

A memory cell in recent flash memories has multiple levelshsag 4 or 8 levels and the number of levels are
expected to be increased further in the near future. Thigltteas produced motivation to the research activities on
the non-binary WOM codes that are closely related to theilewéd flash memories [5] [6]L[7]11].

There are two threads of researches on the non-binary WOMscdthe first one isariable rate codesand the
other isfixed rate codes

The variable rate codes are the non-binary WOM codes suthmbssage alphabets used in a sequence of writing
processes are not necessarily identical. This means tlitiigwrate can vary at each writing attempt. Fu and Vinck
[8] proved the channel capacity of the variable rate nomfyinWOM codes. Recently, Shpilkal[9] proposed a
capacity achieving construction of non binary WOM codesrédwer, Gabrys et al._[5] presented a construction of
the non-binary WOM codes based on knowffiokent binary-WOM codes.

Although the variable rate codes ai@ent because they can fully utilize the potential of a WOMRrage, fixed-
rate codes that have a fixed message alphabet is more suddablactical implementation into storage devices. This
is because a fixed amount of binary information is commoniyt f&m the master system to the storage. Kurkoski
[11] proposed a construction of fixed rate WOM codes using dimoensional lattices. Bhatia et al. [10] showed a
construction of non-binary WOM codes that relies on thadattontinuous approximation. Cassuto and Yaakabi [7]
proposed a construction of fixed rate non-binary WOM codésgulsittice tiling.

Recently, fixed rate WOM code for reducing Inter-Cell Inégeince (ICl) is proposed by Hemo and Cassuto [12]. It
is known that ICI causes drift of the threshold voltage of aHlaell according to the voltages of adjacent flash cells
[12]. The drift of threshold voltage degrades the reliapibf the flash cell and it should be avoided. One promising
approach to reduce ICl is to use an appropriate constragingdo avoid certain patterns incurring large ICI. The
WOM codes presented in_[12] not only have latgéut also satisfy certain ICI reducing constraints.

A part of this work was presented at the International Syrymoson Information Theory and Its Applications 2016.
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In the case of fixed rate codes, systematic constructiongffmient non-binary WOM codes are still open to
be studied. Especially, perusing optimal codes with ptatfparameters is an important subject for further studies.
Furthermore, it is desirable to develop a construction afdirate WOM codes that have wide range of applicability;
this means that a new construction should be applicable ¢z wiasses of WOM devises such as WOM devices
with ICI constraint as well.

In this paper, we propose a novel construction of fixed ratelrioary WOM codes. The target of storage media
is modeled by a memory device with restricted state trasitii.e., a state of the memory can change to another
state according to a given state transition graph. The misdflirly general and it includes a common model of
multilevel flash memories. The proposed construction hasietable features. First, it possesses a systematic method
to determine the sets called the encoding regions that gtereel for encoding processes. This is a criticéfedence
between ours and the prior work using lattice tiling [7] aldl@][ Second, the proposed construction determines an
encode table used for encoding by integer programming.

Il.  PRELIMINARIES

In this section, we first introduce several basic definitiand notation used throughout the paper.

A. Basic notation

LetG £ (V,E) be a directed graph wheké= {1,2,...,|V|} is the set of vertices anl C V xV is the set of edges.
If there does not exist a directed edge or a path from a veddtself, then the grapks is said to be a directed
acyclic graph, abbreviated as DAG. A DAG is used adade transition graphn this paper. The left figure in Fig] 1
is an example of DAG. We express the DAG @s= (V, E,r). The symbolr represents the root of DAG. If for any
nodes, s €V, (s# 9) there exists the directed edge or path freno s, we denotes< s'. In this case, we say that
S is reachablefrom s.

Assume that DAGG £ (V,E,r). A WOM deviceD associated with the grapB can store any € V as its state.
The initial state oD is assumed to be We can change the state Bffrom se V to §' € V, if there exists a directed
edge or a path fronse Vto s € V.

The message alphabet to be writterDins denoted byM £1(1,2,..., M}. In our scenario, we want to write several
messages inVl into D. Namely, a sequence of messages is sequentially writtdd. iWhen we write a message
me M, we must change the state Df After that, we get a written messagein D by reading the state db.

B. Encoding function and decoding function

In this paper, we assume that an encoder has a unit memoryeip &eprevious input message, and that a
corresponding decoder has no memory.
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Fig. 1. A state transition graph (left) and an example of it regions Kk = 3) and a message function (right). The numbers written in
the nodes represent the indices of nodes. The encodingngag(d) = {1, 2, 3}, w(2) = {2,4, 6} are indicated by the dashed boxes (right). The
encoding regions are(x) = 0 for x € {3,4,5,6}. In the right figure, the values of the message function apeemsed as follows: The values
1, 2, and 3 are represented by a circle, a triangle, and aesgrempectively. For any messagee {1, 2, 3}, both encoding regions(1) and
w(2) contain the node corresponding rto



In order to write input messages into the WOM devigewe need an encoding function. The definition of the
encoding function is given as follows.
Definition 1: Assume that a function

E: VXX M- VU {fail}

is given. The symbofail represents a failure of an encoding process. If for amyV andme M, s < &(s,m) or
&(s, m) = fail, then the functiort is called anencoding function

The following definition on the decoding function is used ¢étrieve the message € M from D.

Definition 2: Assume that a functio® : V — M is given. If for anyme M ands e V, the consistency condition

D(E(s, M) =m 1)

is satisfied, then the functio® is called adecoding function
Assume that a sequence of input messagesm,,... € M are sequentially encoded. We also assume that the
initial node issy = r. The encoder encodes the incoming messagey

§ = &(S-1,m) @)

fori=0,1,.... The output of the encodes,, is then written intoD as the next node, i.e., next state.

The following definition gives the worst number of conseeitivrites toD for a pair of encoding and decoding
functions €, D).

Definition 3: Assume that a sequence of messages of lepdth, my, ..., m) € M, is given. Let €, %,...,S)
be the state sequence definedsy &(s_1, m) under the assumptiosy = r. If for any i € [1,t], § # fail, then the
pair (&, D) is said to bet writes achievable. Thevorst number of writes*tis defined by

t* £ maxt | (&, D) is t-times achivablg (3)

In other words, the pairel, D) ensures consecutié writes of fixed size messages in the worst case. Of course,
in terms of dficient use of the devic®, we should design&, D) to maximizet*.

Ill. REALIZATION OF ENCODING FUNCTION

In this section, we prepare basic definitions required fecige description of our encoding algorithm used in the
encoding function.

A. Notation

The reachable region B)(s € V) is the set of the all nhodes to which a node can change fsoffhe precise
definition is given as follows.
Definition 4: The reachable regioR(s)(s € V) is defined as

R(S) £ {x e V|s < X}. (4)

Encoding regions and a message function defined below plaifiatrole in an encoding process.
Definition 5: Assume that a family of subsets \h

{w(9) £ (w(1), w(2),..., 0V},

is given. Letk be a positive integer satisfying| < k. If the family satisfies the following two conditions:
1) VseV, w(s) CR(s)
2) VseV, |w(9)| =korw(s) =0,
then the family{w(9)} is said to be theencoding regions
A message function defined below is used to retrieve a message
Definition 6: Assume that a family of encoding regiofis(s)} is given. Letg be a function:

g: Uw(s) - M.
seV
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Fig. 2. An example of frontiers and layers. The dashed bogpeesent the encoding region$l) = {1, 2, 3}, w(2) = {2, 4, 6}, w(3) = {3,4,5).
The encoding regions(4), w(5), w(6) are empty sets. The layers afg = {1}, £1 = w(1), L2 = w(2)|J w(3). The frontier for each layer is
depicted as filled circlesE(£1) = {2, 3}, F(£,) = {6}. The start point set i%* = F(Lo) U F(£L1) UF(L2) = {1,2,3,6}. In the right figure,
the values of the message function are expressed as follbwesvalues 1, 2, and 3 are represented by a circle, a triangte,a square,
respectively.

If for any me M and for anyse {x e V | w(X) # 0}, there exista € w(s) satisfying

g(@)=m,
then the functiory is called amessage functionorresponding to the family of encoding regiofas(s)}.

We can consider the message function as the labels attachide hodes. In following encoding and decoding
processes, the label, i.e., the value of the message fanmimesponds to the message associated with the node. This
definition implies that we can find arbitrary message M in arbitrary encoding regioa(s) (s€ {x € V | w(x) # 0}).

An example of encoding regions and a message function isrslowhe right-hand of Figl11.

We use the above definitions of the encoding regions and tlssage function to encode given messages. In order
to write a sequence of messages, we must connect severahptynencoding regions to makayers We here define
frontiers and layers as follows.

Definition 7: For a subset of nodes C V, the frontier of X, F(X), is defined by

F(X) £ {xe X|R(X) N X = {x}}. (5)
If x¢ F(X) is hold for x € X, then there existg € F(X) which is reachable fronx, i.e., X <y.

A layer consists of a union set of encoding regions.
Definition 8: Assume that a family of encoding regiofis(s)} is given. Thelayer £ is recursively defined by

L2 | o Lo=1r). ()
xeF(Li-1)
r represents the root of DAG.
Definition 9: Assume that for integer> 0, £; c V is given. Thestart point set V is defined by

v 2| JF) 0
i~0
Figure[2 shows an example of frontiers and layers.

B. Encoding algorithm

In this subsection, we explain the encoding algorithm tdizeaan encoding function. The algorithm presented
here is similar to the algorithm presented in the referef}eThe encoding algorithm is shown in Algorithih 1.
Suppose that we have the two inputs, a staehich represents the current node in the state transitiapigrand
a messagen. The main job of this encoding algorithm is to figde w(d) satisfyingg(y) = m for a given message
m. The encoding regiom(d) can be considered as the currenicoding windown which the candidate of the next
state is found. The variablé is called astart point of the encoding window. If such can be written inD or is
reachable frons (i.e., s < y), then the next state is set ®:= y in line 10 of Algorithm[1. Otherwise, the current
encoding window should move to another encoding regionénixt layer (line 13). The new start poinis chosen
in the frontierF(£;) andd is updated asl := z. 4 The layer index is the minimum index satisfying € .£;.

1t is clear that, for anyx € w(d) (w(d) is the current encoding window), there exigts F(£;) satisfyingx < z.



Algorithm 1 Encoding algorithm
1: input: se V (current state)
input: me M (message)
output: s’ = &(s,m) (next state, ofail)
d:=min[{xe V| se w(X)} U {co}]
if w(d) =0 ord= oo then
outputfail and quit.
end if
y ;= min{X € w(d) | g(X) = m}
if s<y then
Si=y
else
i = min{i’|se L}
d:=min[{x e F(£) | s=< X} U{o}]
Go to line 5
- end if
: outputs’ and quit.
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The decoding function associated with the encoding funcfiaealized by Algorithnill is given by

D(X) = g(X)

From the definition of the message function and the procedfufdgorithm[1, it is evident that this function satisfies
the consistency conditions.

We here explain an example of an encoding process by usingfdteetransition graph presented in [Eig. 2. Assume
that an input message sequengg, () = (2, 3) is given. In the beginning of an encoding process, theettirstate
is initialized ass = 1. Since the initial message i, = 2, the pair 6= 1,m = 2) is firstly given to Algorithn{1L.

In this case, we havd = 1 in line 4. Sincey(3) = 2 is satisfied inw(1) in line 8, the candidate of the next state
y = 3 is obtained. Because= 1 < y = 3 holds, we obtairs’ = y = 3 in line 10. The encoding process outpats- 3
and then quits the process.

Let us consider the second encoding processfot 3. We start a new encoding process with inpsts 3, m = 3).
From line 4, we havel = 1. This means that we set the encoding windoww{d). In this case, the encoder finds
g(2) = 3 and letsy = 2. However, the conditiors = 3 < y = 2 is not satisfied, i.e.y = 2 cannot be the
next state because the node cannot change from 3 to 2. In twdérd the next state, we need to change the
encoding window. From line 13, the new start point of the @mg windowd = 3 is chosen from the frontier as
d = min[{x € F(£L1) | s < x}] = 3. This operation means that we change the encoding windom (1) to w(3).
From the new encoding window(3), we can findx = 5 satisfyingg(5) = 3. Becauses=3 <y =5 holds (i.e.y =5
is reachable frons = 3), we finally have the next stat = 5.

IV. ConstrucTtiON OF WOM cODES

The performance andiiciency of the WOM codes realized by the encoding and decdiingtions described in
the previous section depend on the choice of the encodirignggln this section, we propose a method to create a
family of the encoding regions and a method to determinel¢afifenodes, i.e, the message function by using integer
programming.

A. Greedy rule for constructing a family of encoding regions

In this subsection, we propose a method for creating a faafithe encoding regions based on a greedy rule. The
proposed WOM codes described later exploit a family of theoding regions defined based on the following sets.
Definition 10: Assume that an integd&(M < k) is given. Let us denote the elements in the reachable ragign
by ri,ra,.... Ir(s € V) where the index of; satisfies

IRro)l = [R(r2)l = - -+ > [R(rreg))l- (8)



reachable region

encoding region

Fig. 3. An example of a process of the greedy constructiomefencoding region fos, whose size ik = 3. The dashed box in the leftmost
figure indicates the reachable regiB(s). In the middle of the figure, the numbers of reachable nodegsdch elements iR(s) are presented.
We then select top 3 nodes in terms of the number of reachaldlesras an encoding region. In the rightmost figure, the ddstwe represents
the encoding regio(s) constructed by the greedy process.

The setQ(s) is defined by

a [ {rnrards RS> K,
Q) = { 0, IR(9)| < k. ©

In the above definition, a tie break rule is not explicitlyteth If |R(ra)| = |[R(rp)| holds, we will randomly choosg,
or rp to break a tie. Figurel3 shows an example of a greedy proceggeferating an encoding region.

The underlying idea in the greedy process is simply to eslarture writing possibilities. The s€X(s) is determined
by a greedy manner in terms of the size of reachable regiansthler words, we want to postpone a state transition
to a state with the smaller reachable region as late as pes3ibis is because such a transition would lead to a
smaller number of writes.

In the following part of this paper, we will use the encodirgions defined by

w92 (20 22y w

B. Message labeling

In the previous subsection, we saw how to determine the yaafithe encoding regions. The remaining task is
to find appropriate message labels of nodes. Namely, we mMstafi appropriate message function satisfying the
required constraint described in Definitioh 6. In this suliea, we will propose a method to find a message function
based on integer programming.

The solution of the following integer linear programmingplem provides a message function.

Definition 11: Assume that a family of the encoding regiofag(s)} is given. Letx]f’f, y, €{0,1}(j € I, £ € [1,K])
be a set of value assignments of an optimal solution of tHevlirig integer problem:

Maximize Z Ye (11)
e[LK
Subject to
VieVivee[LK, > xiezur (12)
jea()
viel, > x.=1, (13)
Ce[1.K]
VieT,Vee[l,K, X<y (14)
VieT,Vee[LK, Xy yee (0,1}, (15)

whereT” £ | Ji»o £Li. The maximum value of the objective function is denotedNby



Fig. 4. An example of a case where the worst number of writexs iBhe boxes indicated in the figure is the layéis £,, £3. The black
nodes represent frontiers of layefs, £,. The node with index 4 is a frontier whose encoding regiorhé émpty set. Since the node with
index 4 is included inf,, we thus havd* = 2.

The symbolzj‘(j e T') represents

= argfgqﬂ[x . =1], (16)
where the indicator functiofiiconditior] takes the value one onditionis true; otherwise it takes the value zero. If
we regardzj? as a color put on the nodg the above IP problem can be considered as an IP problem folodarg
problem. In our case, the coloring constraint is as follofes: every nodes (i.e., state) inV*, the neighbor ofs
including itself containdVi*-colors. This problem has close relationship to tlwmnatic partition problem

In the following arguments, we set the maximize number ofsageM equal toM*.
Definition 12: Assume that a functiofs : ' — M is defined byG(j) = a(z;f), where the mapping : A > M is
an arbitrary bijection. The sei is defined as

2{te[L,K |y, =1}

The following theorem means that the determination of thasage function can be done by solving the above
integer programming problem.

Theorem 1:The functionG is a message function.

Proof: We assume that arbitrarp € M andi € V* are given. First, we considér= «~1(m). From the definition

of the setA, we havey~ 1. The optimal solution satisfi€s jc, x >y; = 1. Because<J € {0, 1}, there exists
j € w(i) satisfying xjw = 1. By the definition of the functior, the equatlorG(J) = a(f) = a(e"*(m)) = m holds.
This satisfies the condition for the message function. |

In the following, we use this message functi@nn the encoding function (Algorithm 1) and the decoding fiimrc.

C. Worst number of writes

The worst number of writes® provided by the encoding algorithm with the encoding regiamd the message
function defined above is given by

t* = min{i > 0| Ax € F(L), w(x) = 0}. a7)

This statement appears clear from the definition of the engoalgorithm. Figuré 4 presents an example tfoe 2.

V. NuMERICAL RESULTS ON PROPOSED WOM cODES

In this section, we will construct several classes of fixei® MWOM codes based on the proposed construction.
We used the IP solver IBM CPLEX for solving the integer pragnaing problem.



A. Multilevel flash memories

Multilevel flash memories consist of a large number of c&lsch of cell can store electrons in itself. It is assumed
that the level of a cell can be increased but cannot be dexdefrsthis paper, we assume tmatells that can keep
g level values from the alphabéd, 1,...,q— 1}. The state transitions af level multilevel flash memories of cells
can be represented by a state transition graph (directeatesquid graph) presented in F[g. 5.

Figure[5 presents the state transition graph for multilélessh memory 1if = 2,q = 4) and the encoding regions
constructed by the proposed method. In this case, we carysiwate 5 messages for each write operation and the
worst number of writes i$* = 2 in this case.

Tablell presents the worst numbers of write®f the proposed WOM codes for multilevel flash memories fer th
casesn = 2. When we solved the IP problenis= M was assumed. For example, in the casg ef8, M = 8, the
worst number of writes equals = 4. In [7], several upper bounds forare presented for WOM codes € 2,q, M, t*).

For M > 8, the worst numbers of writes are upper bounded as

. _12@@-1)
ts{ . w—l. (18)

Table[ll shows the comparison between this upper bound and/tiist numbers of writes of the proposed codes for
n=2 M = 8. We can see that the worst numbers of writes of the proposBtMWodes exactly coincide with the
values of the upper bound. This result can be seen as an eeiaddrthe diciency of the WOM codes constructed
by the proposed method.

Table[Il shows the result fon = 3. In [7], an = 3,g=7,M = 7,t* = 7) WOM code is presented. According
to Table[ll, the proposed WOM code attaitis= 8 which is larger than that of the known code under the same
parameter settingn = 3,q = 7,M = 7. Table[IM shows the result fan = 4. In our experiments, we were able to
construct WOM codes for the range bf € {5,6,7,8} andq € {4,5,6, 7, 8} with reasonable computation time.

B. WOM codes with constraints for reducing ICI

In the current rapid grow of the cell density of NAND flash meies, the ICI is getting to be one of hardest
obstacles for narrowing cell sizes. The paper [12] showedraé excellent fixed rate WOM codes with constraints
for reducing ICI. Their codes incorporate a constraint #eeps balance of the charge levels of adjacent cells. It is
expected that such constraints promote a reduction on thefl€ct and leads to realizing more reliable memories.
In this subsection, we will apply our construction to WOM esdwith constraints for reducing ICI.

Assume that we have flash memory cellsc,,...,c,. The current level for each cell is denoted By The
following definition gives thed imbalance constraint for reducing ICI.

Definition 13: Let d be a positive integer smaller thanFor any write sequence, if each calj6l < i < n) satisfies

max|6 - ¢j] < d, (19)
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Fig. 5.  The left figure presents the state transition graphfoltilevel flash memoriesn(= 2,q = 4). The levels of two cells are denoted
by ¢, and¢,. The horizontal (resp. vertical) direction means the lefethe cell £, (resp.¢z). The right figure presents a family of encoding
regions and a message function constructed by the propos#tbdn The numbers written in the nodes represent the valudse message
function. Nonempty encoding regions are indicated by theeboFor any messagein {1, 2, 3, 4,5}, each nonempty encoding regions contains
a node corresponding to.
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Fig. 6. This figure presents a state transition diagram of4 level flash memories of two cells £ 2) satisfyingd imbalance constraints
(left: d = 1, right: d = 2). The levels of two cells are denoted Byand ¢,. The horizontal (resp. vertical) direction means the lefehe cell
0y (resp.¢y).
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Fig. 7.  This state transition graph corresponds)te 4 level flash memories of two cells & 2) satisfyingd = 2 imbalance constraint. The
values in the circles represent the values of the messagtidaonNonempty encoding regions are indicated by the hoxes

then we say that the cell block satisfigs® d imbalance constraint

In other words, if the cells satisfy theé imbalance constraint, then the leveltdrence between a pair of adjacent
cells is limited tod. It is known that a large level fierence of adjacent cells tends to induce ICI. Thiembalance
constraint is thus helpful to reduce ICL]12].

Figure.[6 presents state transition graphs for 4 level flasmanies of two cellsr( = 2) with the d imbalance
constraint @ = 1,2). From this figure, at any state (or node), th&atence of level betweety andc, are always
limited to d(= 1, 2).

It is straightforward to apply our code construction to tleese of the WOM codes with-imbalance constraint.
Figure[T presents a family of encoding functions and valdea message function constructed by the proposed
method. This example shows universality of the proposedtcoction, i.e., it can be applied to any state transition
graph.

Table[M shows the comparison between upper bound presemt®]i and the worst numbers of writes of the

TABLE I. W ORST NUMBERS OF WRITES t* OF PROPOSED WWOM CODES FOR (] LEVEL FLASH MEMORIES WITH N = 2 CELLS.
Mal]4 5 6 7 8
4 3 4 5 6 7
5 2 3 4 5 6
6 2 3 3 4 5
7 1 2 3 3 4
8 1 2 3 3 4
TABLE I1. C OMPARISON BETWEEN t* OF PROPOSED WOM CODES AND UPPER BOUND (( LEVEL FLASH MEMORIES)(N = 2, M = 8)

q=4 5 6 7 8 16 32 48

Upper bound 1 2 3 3 4 9 20 31

Proposed 1 2 3 3 4 9 20 31




TABLE IlI. W ORST NUMBERS OF WRITES t* OF PROPOSED WOM CODES FOR (] LEVEL FLASH MEMORIES WITH N = 3 CELLS.

Mql4 5 6 7 8
4 6 8 10 12 14
5 4 5 7 8 10
6 4 5 7 8 10
7 3 5 6 8 9
8 3 4 6 7 8

TABLE IV. W ORST NUMBERS OF WRITES t* oF PROPOSED WWOM CODES FOR (] LEVEL FLASH MEMORIES WITH N = 4 CELLS.

Mgl 4 5 6 7 8
5 7 9 12 14 17
6 5 7 9 11 13
7 5 7 9 11 13
8 5 7 9 11 13

proposed codesn(= 2,M = 8,d = 3). For M = 8, the worst numbers of writes of the WOM codes with the 3
imbalance constraint are upper bounded by

< {S(q -1
5

We can see that the worst numbers of writes of the proposed W@dés exactly coincide with the values of the
upper bound.

Tables[V] and_VIl present the worst numbers of writésof the proposed WOM codes with thie imbalance
constraint § = 3,4). The paperi[12] only deals with the case of two cefis=(2). It is not trivial to construct WOM
codes ( = 3,n = 4) with thed imbalance constraint by using the construction giveriir] [l our construction is
directly applicable even for such cases.

: (20)

VI. CoNcLusION

In this paper, we proposed a construction of fixed rate naafgi WOM codes based on integer programming.
The novel WOM codes witlm = 2, M = 8 achieve the worst numbers of writesthat meet the known upper bound
in the rangeq € [4, 8]. We discovered several nevfieient WOM codes foig level flash memories when = 3, 4.
For instance, ourn(= 3,q=7,M = 7,t* = 8) WOM code provides a larger worst number of writes than diahe
known code with the parametens £ 3,g=7,M = 7,t* = 7) [7]. In addition, We constructed several WOM codes
with d imbalance constraint for reducing ICI. Our WOM codes witk 2, M = 8,d = 3 achieve the worst numbers
of writest* that meet the known upper bound in the ramge[4, 8]. This implies the #iciency of the WOM codes
constructed by our construction. Another notable advantdghe proposed construction is its flexibility for hanglin
high dimensional cases. It is easy to construct for the cedtésmodestly largen when the integer programming
problem can be solved with reasonable time. The proposestremtion can be applied to various storage devices,
to various dimensions (i.e, number of cells), and variousl laf additional constraints.

TABLE V. CoOMPARISON BETWEEN t* oF PROPOSED WOM CODES WITH THE 0 IMBALANCE CONSTRAINT AND UPPER BOUND (N =2, M = 8,d = 3)

qg=4 5 6 7 8 16 32 48

Upper bound 1 2 3 3 4 9 18 28

Proposed 1 2 3 3 4 9 18 28

TABLE VI. W ORST NUMBERS OF WRITES t* OF PROPOSED WOM CODES WITH THE O IMBALANCE CONSTRAINT (N = 3)

d=2 d=3
Maql|4 8|4 8
5 4 104 10
6 4 914 10
7 3 9 |3 9
8 3 - 13 8
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TABLE VII. W ORST NUMBERS OF WRITES t* OF PROPOSED WOM cODES WITH THE 0 IMBALANCE CONSTRAINT (N = 4)

d=2 d=3

M| 4 8 |4 8

5 7 - |7 17

6 5 135 13

7 5 13| 5 13

8 5 135 13
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