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SUMMARY As technology further scales semiconductor devices,
aging-induced device degradation has become one of the major threats
to device reliability. In addition, aging mechanisms like the negative bias
temperature instability (NBTI) are known to be sensitive to workload (i.e.,
signal probability) that is hard to be assumed at design phase. In this work,
we analyze the workload dependence of NBTI degradation using a proces-
sor, and propose a novel technique to estimate the worst-case paths. In our
approach, we exploit the fact that the deterministic nature of circuit structure
limits the amount of NBTI degradation on different paths, and propose a
two-stage path extraction algorithm to identify the invariant critical paths
(ICPs) in the processor. Utilizing these paths, we also propose an opti-
mization technique for the replacement of internal node control logic that
mitigates the NBTI degradation in the design. Through numerical experi-
ment on two processor designs, we achieved nearly 300x reduction in the
sheer number of paths on both designs. Utilizing the extracted ICPs, we
achieved 96x–197x speedup without loss in mitigation gain.
key words: NBTI, aging effect, invariant critical path, processor

1. Introduction

The scaling of semiconductor devices is still continuing de-
spite the fact that the devices manufactured become much
less predictable. Statically, the uncontrollable shape of de-
vices causes local variations that greatly alter their perfor-
mance. Dynamically, materials age through a stochastic
process, making the predictive calculation of the lifespan
of devices much harder. While traditional methods rely on
the concept of critical paths where a set of paths can be
identified as being timing-critical, dynamic variations, also
known as aging, degrade arbitrary paths on a per-chip level.
Thus, it has become much harder to identify which path is
the “critical paths” in the design.

Among various aging mechanisms, negative bias tem-
perature instability (NBTI) is considered to be one of the
most crucial factors that shorten the lifespan of VLSI cir-
cuits. NBTI is known to degrade the threshold voltage (Vth)
of the pMOS transistor over its lifetime. However, the ex-
act amount of degradation depends on the amount of time
that the pMOS is turned ON, and is thus hard to determine
at design time. The conventional methods to mitigate the
NBTI degradation are by reducing its ON time. These meth-
ods include the internal node control (INC) technique [1],

Manuscript received March 14, 2017.
Manuscript revised July 10, 2017.
†The authors are with Department of Communications and

Computer Engineering, School of Informatics, Kyoto University,
Kyoto-shi, 606-8501 Japan.

a) E-mail: paper@easter.kuee.kyoto-u.ac.jp
DOI: 10.1587/transfun.E100.A.2797

the input vector control (IVC) method [2], and aging-aware
logic synthesis proposed in [3]. Obviously, NBTI-aware
timing calculations are required for these methods to cor-
rectly predict the worst-case path delay in the design, such
that mitigation techniques or re-synthesis can be applied to
the most-critical path in the design. Unfortunately, in gen-
eral, existing approaches for NBTI-aware timing analysis is
extremely time-consuming due to the fact that one needs to
consider all probabilistic combinations of input probabilities.
Some works (e.g., [1]) avoid this situation by simplifying the
per-gate NBTI degradation to be completely no degradation
or full degradation in advance. Nonetheless, for a real-world
general-purpose processor, this is not likely to be the case.

To pursue a methodology to systematically characterize
the worst-case path delay in the presence of NBTI degrada-
tion, we first published the preliminary result of the idea of
invariant critical path [4]. In the paper, we observed the fact
that certain paths in a design are much more likely to be-
come critical under NBTI, no matter what kind of workload
is given to the design. Following this fact, we proposed a two-
stage extraction technique for paths that are invariantly crit-
ical under NBTI degradation, thus named invariant critical
path (ICP). By applying our proposed two-stage extraction
algorithm and conducting experiment on two processors, we
found that only a tiny portion of paths can be extracted from
the large number of near-critical paths. While this is only
an empirical observation, we argue that practically, ICPs
are likely to be small in number. In other words, when the
workload applied to the design changes drastically, the delay
for each path may change significantly, but the relative path
delay between paths stays still. By exploiting this property,
we can identify the ICPs under NBTI degradation, regardless
of the workload being applied to the design.

Upon identifying the ICPs, we integrate our extracted
ICPs in the INC optimization process [5], [6]. While the
aforementioned INC technique is a known technique to mit-
igate NBTI degradation, as discussed in Sect. 2.4, to find
the optimal gates to be replaced by INC logic is a hard
decision problem. Existing studies either base their opti-
mization technique on unrealistic assumptions (e.g., in [5]
as described), or only evaluate their technique using small
circuits while relying heavily on circuit standby (e.g., in [7]).
In addition, existing studies fail to take into account the fact
that NBTI degradation can be highly dynamic, especially for
a general-purpose processor without standby time. Through
experiment, we show that using the extracted ICPs, INC op-
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timization involving highly dynamic NBTI degradation can
be easily solved by a simple exhaustive search algorithm on
the identified ICPs. We actually achieved better mitigation
gain across our test samples with better runtime compared to
[6], which only considered one single primary-input vector.
While this is only a single use-case of our ICP extraction
algorithm, it fully demonstrates the amount of useful infor-
mation the proposed ICPs can provide, especially for NBTI
mitigation techniques.

The key contribution of this work is summarized as
follows:

• An important observation of the relative invariance of
critical paths under NBTI stress, even when different
workloads are applied.

• A novel clustering-based ICP extraction algorithm that
significantly reduces the number of critical path candi-
dates in a design. Through experiment, we demonstrate
that less than 100 ICPs can be extracted from the large
amount of near-critical paths in processors. The ex-
tracted ICPs are proved effective in the INC optimiza-
tion process.

• The application of our extracted ICPs to optimize INC
replacement. We show that using ICPs, INC optimiza-
tion can be done with near-optimal mitigation gain with
significantly reduced runtime.

The rest of the paper is organized as follows. First, the
NBTI model and our preliminary research are presented in
Sect. 2. Second, the proposed two-stage path extraction al-
gorithm along with the ICP-based INC optimization method
is described in Sect. 3. Third, an ICP-based optimization
technique for the INC logic replacement is presented as one
of the applications of ICPs. Forth, the details of our ex-
periment will be discussed in Sect. 5. Finally, the paper is
concluded in Sect. 6.

2. Background and Motivation

In this section, we first explain the terms we use throughout
the paper, and the NBTI model used for our experiment.
We then discuss the preliminary research conducted that
becomes the main motivation of this work.

2.1 Terminology

Through the paper, we use the term invariant critical paths
(ICPs) to refer to this small subset of paths that are likely
to become the most timing critical under NBTI degradation,
after a certain time of use. It is noted, however, that the ICPs
extracted in our analysis, in general, are not the most critical
paths in a fresh chip without NBTI degradation. Work-
load here refers to the probabilities of the primary inputs
of the processor, which are the abstraction of running dif-
ferent application programs with different input data, and
is also occasionally referred to as the primary-input vector.
Signal probability is mainly used to indicate the probabil-
ity of a signal being in stress bias (logical zero for NBTI)

for the connecting gates, and is annotated for each signal.
The signal probabilities are determined by the primary-input
probabilities through probability propagation, and the NBTI
degradation for each gate along paths is then determined by
the signal probabilities annotated on this gate.

2.2 NBTI Model

To predict NBTI-induced Vth degradation, NBTI measure-
ments and mathematical models are studied in [8], [9]. Our
degradation calculation is based on an analytical model in
[8]. The NBTI-induced Vth degradation at a given signal
probability α is shown in the following equation.

|∆Vth(α) | ≈
(

0.001n2K2
vαCt

0.81t2
ox(1 − α)

)n
(1)

where Kv is a function of gate-source voltage, Vth, and tem-
perature. tox is the oxide thickness, n is the time exponent
which holds the value 1/6, α expresses the signal probability
of a pMOS transistor, and C is a function of temperature.
When α = 100%, |∆Vth | becomes infinite and the model
becomes incorrect. In a similar manner to what has been
shown in [10], an upper limit is thus defined by

|∆Vth | = (K2
v t)n (2)

2.3 Motivation

To obtain a more concrete idea on the distribution of signal
probabilities in real-world designs, we conducted a prelimi-
nary research on an example five-stage pipelined processor
[11]. The workload to this processor is application programs
from MiBench [12] and GAUT [13]. In this experiment, we
assumed that the processor will run a single program over a
period of 10 years under 400K temperature. For brevity, we
leave out the details of the experiment here, and they can be
referenced in Sect. 5.

Figures 1 and 2 are the distributions of themeans and the
standard deviations of all signal probabilities in the proces-
sor design, across various application programs. As marked
in the figures, most signal probabilities are stable, i.e., their
standard deviations are close to 0. Furthermore, the major-
ity of the signals remain static, where their means close to
either 0 or 1 with a 0 standard deviation. However, in terms
of path delay, as Table 1 demonstrates, the worst-case path
delay varies significantly from program to program. While
the difference in path delay is expected, an important ob-
servation here is that the worst-path ID column shows some
localities: under 8 different kinds of workload, only 4 dis-
tinct paths have became the worst-case path. This behavior
hints on the fact that, although the worst-path delay varies
greatly (from 5.8 ns to 6.8 ns), the worst-path ID is some-
what invariant. The invariance of path ID motivated us to
explore the relationship between NBTI-induced path delay
and workload, especially the relationship between primary-
input probabilities and critical paths.
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Fig. 1 Mean of signal probability obtained from application program
simulation.

Fig. 2 Standard deviation of signal probability obtained from application
program simulation.

Table 1 Worst-case path delay and worst-case path ID corresponding to
different application programs

Program Worst-path ID Worst-path delay [ns]
lms 3042 5.8651
aes 2929 6.0152
sobel 2929 6.0152
qsort 3042 6.0158
cordic 417 6.0399
sieve 441 6.3299
fft 417 6.4929

conv3x3 2929 6.6932

In sections that follow, it is eventually discovered that,
although path delays change significantly as primary-input
probabilities change, the paths that degrade the most under
NBTI is not changing. We define this behavior to be the
invariance of critical paths under different workloads.

2.4 Internal Node Control

The general idea of the INC technique is to replace an existing
logic gate that is upstream to the stressed gate with the INC
logic, which is functionally equivalent to the original one
but adding a recovery signal input to force its output value
to be logical one [5]. With the mitigation signal, INC logic
decreases the signal probabilities of downstream gates.

Figure 3 shows one implementation of INC logic. A
pMOS transistor and an nMOS transistor are added to the
original logic gate. The additional pMOS transistor connects
output node to the supply rail in parallel to the pull up network
(PUN) of the original logic gate. It is easy to see that as the

Fig. 3 General structure of the INC logic.

recover signal is asserted (logical “0”), the output of the INC
logic is forced to be “1”, and when the recovery signal is de-
asserted (logical “1”), the INC gate functions as the original
logic gate.

The INC method can effectively mitigate local NBTI
degradation. However, one important challenge to the ef-
fective utilization of the method is that it is extremely hard
to find the best gate to replace with INC. The amount of
NBTI degradation varies on a per-gate scale, and even when
the amount of degradation is fixed, the optimization problem
is still known to be NP-complete [14]. Previous studies on
the mitigation of NBTI using INC either focused on the so
called “static NBTI” where only the standby-time NBTI is
considered, and the amount of NBTI degradation is fixed to
either no or full degradation [1], or assumed that the primary-
input vector to the design converges to a single probability
value [6]. For a general purpose processor, neither assump-
tion holds; the processor can constantly operate without any
standby time, and workloads change dramatically across dif-
ferent usage of the processor. By integrating our invariant-
path extraction algorithm into the mitigation flow, however,
this problem can be solved easily. The details of our pro-
posed cluster-based INC optimization will be discussed in
Sect. 4.

3. Invariable Critical Path Analysis

In this section, the proposed two-stage path extraction pro-
cess is introduced. Figure 4 presents an overview of the
proposed technique. In the beginning, dataset generation
produces a set of data, where each piece of data refers to a
set of signal probabilities for all signals in the target design.
Each piece of data is generated in probability propagation,
where one particular random primary-input vector is prop-
agated through the design. A dataset then is defined as a set
of such data. Supposedly, the data in the dataset represent
various applications run on the processor and their inputs.
After generating the dataset, each signal in the target design
will obtain a set of gate probabilities. The timing analysis
with NBTI step is then applied to the dataset to obtain a set
of path delay distributions for the paths in the target design.
Next, a two-stage path extraction is performed to extract the
ICPs in the design. After the path extraction, error and path
reduction analysis is performed to ensure that the extracted
paths correctly capture the worst-case path delay generated
in the dataset. When the error converges, the extracted paths
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Fig. 4 Overview of the proposed technique, which includes a dataset
generation process and a two-stage path extraction algorithm.

Fig. 5 An example of an AND tree and an OR tree where the inputs are
set to have a probability of 0.5 of being at logic 0. It can be observed that
the AND tree amplifies the probability of logic 0, and the OR tree decreases
the probability of logic 0.

are then the extracted ICPs in this design.

3.1 Path Extractability

Before getting into the discussion of the path-extraction algo-
rithm, an important assumption needs to be explained; that
is, if the design is extractable. Here, an extractable design is
defined as a design where a small proportion of its critical
paths are invariant under workload-induced NBTI degrada-
tion. This definition coincides with the definition of ICP in
Sect. 1. Thus, an extractable design always contains ICPs,
and vice versa.

Under some special design decision, as NBTI degrades
the circuit, all paths have nearly equal chances to become the
most critical path. This design is not extractable. However,
it is also special since this condition requires all paths to
be virtually the same, such that the amount of degradation
in a particular path solely depends on the workload being
applied to it. NBTI degradation in such design is trivial
to estimate in such case (e.g., clock tree, and multiple ALU
units), where one path/unit can represent all other paths/units
in the design. On the other hand, general designs tend to
have distinct paths, and here, distinct paths are defined as
paths that share very little gates in common. In such case,
even if the paths have the same depth (i.e., same number
of stages of gates), they may have extremely different NBTI
degradation pattern, and is thus extractable.

We take Fig. 5 as an example for extractable design.
Assuming that the AND and OR gates roughly have the same

stage delay d, and that there is some function ∆d = f (p) that
maps the probability value p to a delay shift ∆d, the delay
of each path in the AND and OR trees can be expressed as
follows:

dAND = d + f (0.5) + d + f (0.75) + d + f (0.996) (3)
dOR = d + f (0.5) + d + f (0.25) + d + f (0.006) (4)
ddiff = f (0.75) − f (0.25) + f (0.996) − f (0.006)

(5)

It is easy to see that the difference between these two delay
values ddiff = dAND − dOR is always positive, so long as
f is a monotonically increasing function, which is the case
for NBTI. Thus, the idea behind our proposed method is to
completely ignore the chance that any path in the OR tree
can become the critical path, and we can extract only the
paths in the AND tree for later timing analysis. This design
containing an AND tree and an OR tree is thus considered
an extractable design. From hereon in this paper, the target
design is assumed to be extractable.

3.2 Dataset and Empirical Variables

Signal probability propagation has been studied extensively
in the field of power analysis [15] and NBTI-related proba-
bility propagation [16]. In this paper, a similar approach is
taken in calculating the propagation of signal probabilities
from the primary inputs. The generated dataset then acts as
a series of independent Monte-Carlo samples for determin-
ing parameters for the proposed path extraction algorithm.
These samples are then analyzed using an NBTI-aware tim-
ing analysis tool. Through timing analysis, gate delays will
be calculated, and if we add up the gate delays for each path,
a collection of path delay distributions can be obtained. This
set of path delay distributions, denoted as DPall , works as a
training dataset for the path extraction algorithm, and helps
to determine the empirical variables Temp. The threshold
delay Temp is used in the first-stage path extraction and will
be explained in Sect. 3.3.1.

3.3 Extraction Algorithm

After calculating the timing distribution of the target design
under different workloads using the previously mentioned
timing analysis, path extraction can finally be performed.
The two-stage path extraction algorithm is summarized inAl-
gorithm 1. The algorithm can be better understood through
Fig. 4. In Algorithm 1, lines 1–5 correspond to the first-stage
path extraction, and lines 6–15 complete the second stage of
the path extraction. Lines 16–22 are the error analysis step,
and the algorithm repeats until error converges or k = N .
The inputs to the algorithm include the predetermined Temp,
the delay distribution of all paths in the designDPall , the path
list that contains all paths in the design Pall, as described in
the previous Sect. 3.2. An additional term ε is added for
error analysis, which will be discussed in Sect. 3.3.2.
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3.3.1 First-Stage Path Extraction and Temp

The value of Temp is chosen based on DPall , the path timing
distribution of the generated dataset as (a) in Fig. 6. At first,
the choice of Temp can be made arbitrarily. A simple path
sampling is carried out once Temp is determined. The main
purpose of this stage is to reduce the large number of paths,
such that later stages of the algorithm run faster and more
efficient. The sampling process basically extracts paths that,
according to the result of timing analysis, have ever crossed
the barrier determined by Temp. Larger Temp reduces the
number of paths to be considered significant, but increases
the chance of missing paths that could have a chance to
become the most critical path under some primary-input
patterns that have not been applied (e.g., path 1 is left outwith
Temp

0 , but it could become the most critical path under some
primary-input vector). However, it is also likely that path 1
can never obtain a longer path delay than path 2 and path
3, if the real circuit looks like the one in Fig. 6(b). Hence,
by the assumption of extractable design, if the selected Temp

correctly captures all possible critical-path candidates (path
2 and path 3), further deduction in Temp will result in no
change in the result of the two-stage path extraction. Thus,
by performing the proposed path extraction algorithm on

Fig. 6 An example of three paths with two different T emp choices. (a) is
an example of path delay distribution where the x-axis is delay. Depending
on T emp, path 1 will or will not be extracted in the first stage. (b) is an
example circuit that could have a delay distribution in (a).

several Temp steps, the true empirical delay boundary Temp
true

can be found and verified.

3.3.2 Second-Stage Path Extraction

Although the first stage of the proposed path-extraction algo-
rithm already reduces the number of paths to be considered
significant, it fails to take into account the correlation be-
tween paths. That is, suppose two paths Pa and Pb can
both have their delays to be greater than Temp, both of them
are assumed to be paths that have a chance to become the
most critical paths in the design. However, if Pa and Pb are
mostly the same, with only a slight difference at some stages
along the path, the delays of these two paths are going to
be extremely close. In addition, if, in stages when Pa and
Pb have different gates and the delays for the different gates
in Pa are always greater than Pb (e.g., AND gate versus
inverter), then Pb essentially has no chance to become the
most critical path in the design, regardless of the primary-
input pattern (i.e., workload). Thus, to further reduce the
number of paths needed to be considered, the second stage
of the path-extraction algorithm is performed.

The main procedure in the second-stage path extrac-
tion is to partition the paths selected in the first stage into
groups, and select a representative path for each group. This
grouping process can be modeled as a classic multi-class
classification problem and potentially be solved by some ad-
vanced machine learning algorithm. In this paper, we used
the simple yet effective k-means++ clustering algorithm for
path partitioning [17]. The k-means++ algorithm is a popu-
lar algorithm mainly used in data mining [17] that partitions
n observations into k sets, where each observation is a d-
dimensional vector. The path vector p used in this study is an
N-dimensional vector consisting of path similarity measured
in the Jaccard similarity coefficient [18].

pi = (Ji0, Ji1, · · · , JiN ), where (6)

Ji j =
Gi ∩ G j

Gi ∪ G j
(7)

In (6), N is the number of paths after the first-stage of path
extraction algorithm, Ji j represents the Jaccard similarity
coefficient between path i and path j. Ji j can be calculated
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from (7), and Gi in the equation represents the set of gates
contained in path i. Thus, each similarity index Ji j is mea-
sured by the number of gates shared (intersection) by path i
and j, and the total number of distinct gates (union) in path
i and j.

Since the k-means++ algorithm works only as a clas-
sifier, it is necessary to elect a “real” representative path
from each group, instead of the centroid point. This repre-
sentative election actually determines the maximum error.
For example, if Pb in the previous example is selected as a
representative instead of Pa, the delays of this path group
is going to be constantly underestimated. In this work, we
used a simple majority approach for representative election,
as lines 11–15 indicate in Algorithm 1. The result of timing
analysis is again used, and the path in the group that has the
highest number of times being the worst-delay path in the
group is selected to be the representative.

After the group representatives are elected, the maxi-
mum error is calculated in lines 16–22 in Algorithm 1, where
the difference between the true worst-case path delay of all
paths in one piece of data D is compared to the worst-case
path delay of the paths in the representative list. This error
needs to be small, and a constraint ε is added to make sure
that the maximum error is below this value. If the error
is larger than ε, we consider the number of groups for the
k-means++ algorithm to be insufficient, such increment the
number of groups by one and repeat the grouping process.
Due to the stochastic nature of the dataset generation, for
extremely small number of datasets, this approach may re-
sult in more groups being used than necessary. However,
with a reasonable amount of datasets that correctly captures
the relative criticalness of each path, as will be described
in Sect. 5.3, correct representative-path selection results in a
quicker convergence of training (as well as testing) error.

4. Cluster-Based INC Optimization

In this section, we give a simple overview of the proposed
INC optimization method based on ICP. The method is
described in Algorithm 2. It is a simple algorithm that
basically contains a nested loop to generate a list of M gates
to be replaced by INC logic. The algorithm requires two
inputs, the Rep_List generated by Algorithm 1, and M . M
here is the number of maximum number of gates permitted
to be replaced by INC, and can be determined as a design
trade-off as in the traditional INC optimization techniques
[5], [6]. Basically, more INC means better NBTI mitigation,
but also more power consumption. Moreover, when the
worst-case path delay cannot be further reduced, addingmore
INC becomes meaningless. This fact can serve as an upper
bound for M .

As for the algorithm, we first consider all gates in the
extracted ICPs to be replacement candidate for the INC logic.
In Algorithm 2, the outer loop, which starts from line 3,
simply repeats the inner loop of optimizing a single INC
replacement iteratively from i = 0 to M − 1. The inner
loop, described in lines 5–13, tries to find the best gate to

be replaced by INC. The algorithm takes an exhaustive
approach, where it replaces one gate with INC logic at a
time, and recalculates the worst-case path delay after the
replacement. In each round of the inner loop, a worst-case
path delay, which corresponds to the INC replacement of a
particular gate, is calculated. This process is repeated for all
candidate gates, and the gate replacement that achieves the
minimum worst-case path delay is selected to be replaced
by INC and deleted from the candidate list. This process
goes on until i = M − 1. The algorithm per se is trivial.
Nevertheless, without ICP, we have to recalculate all path
delays in the whole design, which is obviously impractical.
With the small number of paths extracted as shown in Sect. 5,
the algorithm demonstrates excellent performance in terms
of both mitigation gain and runtime.

It is important to note here that in the process of execut-
ing Algorithm 2, it is required to calculate the aged delays of
gates in the design, which depends on the particular setting
of probabilities on the primary inputs. Thus, an optimized
solution on one particular setting may not be as optimized
on another one. However, as we will show in Sect. 5.4, our
empirical experiments indicate such approach suffices.

5. Experiment

In this section, we present the result of the invariant critical
path extraction algorithm and the INC optimization algo-
rithm. We first give a detailed result of the ICP extraction for
one of our test designs in Sect. 5.3, and then illustrate the ef-
ficiency of our extracted ICP in INC optimization described
in Sect. 5.4.

5.1 Experiment Setup

Numerical experiments are conducted using two example
processors. One is a five-stage pipelined processor from a
commercial IP library [19] (named “Shino”), and the other
is a modified version of the five-stage pipelined processor
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[11] that implements the full MIPS32 instruction set with a
co-processor handling exceptions (named “Kotori”). In the
experiment, Nangate 45 nm Open Cell Library [20] is used
for circuit synthesis using a synthesis tool [21]. Gate-level
probability is calculated using [22], and post-synthesis sim-
ulation is conducted using [23]. A static timing analysis
(STA) tool [24] is used to extract paths from the processor.
We have extracted the top 25,446 and 24,978 paths, ordered
by worst-case slack, from Shino and Kotori, respectively.
As later explained in Sect. 5.3, further increasing the num-
ber of paths extracted by the STA tool becomes irrelevant.
For timing analysis with NBTI, a fast method described in
[25] is implemented using the Python language, where the
traditional STA library is replaced with a three-dimensional
look-up table (LUT) that returns the gate delay with NBTI
degradation when the input signal probabilities are given.
The degradation condition, as also described in Sect. 2, is
400K for 10 years. All experiments were conducted on
Linux PC with Intel Xeon E5-2630 v2 2.60GHz CPU, us-
ing a single thread. The ICP extraction and ICP-based INC
optimization were implemented using the Python language.

5.2 Dataset Generation

To carefully evaluate the quality of the extracted invariant
critical paths, we used a training-test approach, where a
training set is used for path extraction, and a test set is used
for invariant critical path evaluation. In this experiment, to
each processor design, a training dataset of size 2,500 sam-
ples is generated, and the proposed two-stage path extraction
process is applied. The extracted invariant critical paths are
then evaluated on both the training set and a test dataset of
size 7,500 samples (total of 10,000 samples). We also show
that the result of random input vector applies to real-world
application programs as well. The error bound ε is taken to
be 1% (much smaller than the typical STA error).

Figures 7 and 8 are the results of timing analysis on the
set of training + test (10,000) and training only (2,500) sam-
ples where only the delay of the worst-slack path is shown.
The two figures share a similar shape of distribution. How-
ever, the largest delay recorded is drastically different. The
largest delay observed in training dataset is 6.7 ns, while
it is 9.0 ns for the test dataset. Comparing to the fresh-
time worst-case delay (delay without NBTI degradation) of
4.7 ns, depending on the workload variation, the delay can
be as much as 1.9x times longer than the fresh-time delay.
Thus, the training dataset we used cannot capture the full de-
graded delay range. Nevertheless, due to the relative order
property described in Sect. 1, by calculating the path delays
of the selected paths, it is demonstrated in Sect. 5.3 that this
value can be captured without considering a large amount of
paths in the design.

5.3 Experiment Result: Path Extraction

We summarize the path extraction result in Table 2, where
both designs tested achieved a significant amount of reduc-

Fig. 7 Delay distribution of the training + test dataset (10,000 samples).

Fig. 8 Delay distribution of the training dataset (2,500 samples).

Table 2 Summary of path extraction result.
Design Original paths Extracted paths Reduction
Shino 25,446 90 282x
Kotori 24,978 85 293x

Table 3 T emp selection and the corresponding number of paths extracted.
T emp Path Path Converge % Error

Delay [ns] 1st stg. 2nd stg.
µ + 3σ 6.321 98 98 No 6.77
µ + 2σ 6.180 142 142 No 6.15
µ + σ 6.039 225 85 Yes 0.07
µ 5.898 405 85 Yes 0.07

µ − σ 5.757 595 85 Yes 0.07
µ − 2σ 5.616 890 85 Yes 0.07
µ − 3σ 5.475 1510 85 Yes 0.07

tion in the number of critical paths. In what follows, we will
discuss the detailed experiment result for Kotori, and since
Shino draws extremely similar results, a detailed analysis is
omitted.

To determine the Temp, we assumed a normal distribu-
tion on the worst-case delay on the small dataset, and set
Temp according to the µ and σ of the normal distribution. It
is noted that the worst-case delay does not necessarily obey
a normal distribution, and the Temp selection can be made
using any approach. Our Temp choices, their corresponding
delays and the number extracted in the first stage as well as
in the second stage are summarized in Table 3. It can be
observed that the number of paths extracted in the first stage
increases in a log-like manner as we decrease the boundary
delay. However, as the result from the second stage shows,
only an extremely limited number of paths are actually im-
portant. Other paths are generally considered to be paths
that can obtain a large path delay, but always less than the
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delay of the invariant critical path. On the other hand, if
Temp is too large, as in the case of µ + 3σ and µ + 2σ, the
error never converges, and the path extraction algorithm ac-
tually fails at these Temp choices. Overall, it can be observed
that the training phase of the invariant critical path selection
correctly captured the relative path orders between paths, re-
sulting in negligible errors when evaluated on the full dataset
(10,000 samples).

Figure 9 gives the result of second-stage path extrac-
tion for a single Temp choice. The horizontal axis denotes
the number of groups initially given for k-means++ classi-
fication, and the vertical axis shows delay error. The figure
reveals that when distinctive paths are not separated, both
training set and test set retain large errors. Once the neces-
sary paths are separated, the errors drop significantly below
ε, which is 1%. The same result is obtained evaluating
application programs.

To echo with the preliminary research in Sect. 2, the
extracted 85 paths are evaluated against all paths using dif-
ferent signal probabilities determined by each application
programs. Table 4 summarizes the result for each applica-
tion. It is clear from the table that worst-path delays are
completely captured by the extracted invariant critical path
with a 1% ε (actually ε can be as small as 0.1%, since all

Fig. 9 Maximum percent error calculated using training and test datasets
as the number of groups used for k-means++ algorithm increases.

Table 4 Summary on the worst-case delay evaluated on the extracted
invariant critical paths for different programs.

Program Extracted Extracted True % Error
worst ID delay [ns] delay [ns]

lms 2929 5.8602 5.8651 0.08
aes 2929 6.0152 6.0152 0
sobel 2929 6.0152 6.0152 0
qsort 2929 6.0152 6.0158 0.008
cordic 417 6.0399 6.0399 0
sieve 417 6.3255 6.3299 0.07
fft 417 6.4929 6.4929 0

conv3x3 2929 6.6932 6.6932 0

Table 5 Summary of INC optimization result
# INC Worst delay Worst delay Worst delay ICP Runtime AP Runtime Runtime

Design w/o INC ICP-based INC AP-based INC reduction
Kotori 6 9.02 ns 6.24 ns 6.14 ns 274.7 s 26513 s 96x
Shino 50 7.19 ns 5.55 ns 5.57 ns 3104.4 s 612874 s 197x

errors are around 0.08% at 85 groups). Note that these er-
rors are all results evaluated on the full dataset with 10,000
samples.

5.4 Experiment Result: INC Optimization

Figure 10 depicts the NBTI mitigation effect of INC logic
over the 10,000 random samples generated for Shino. A
significant amount of NBTI mitigation is observed in all
samples. To further demonstrate that the extracted ICPs
can fully represent the design even when INC presents, we
adjusted line 7 in Algorithm 2 to recalculate the delays for all
paths in the whole design, instead of only in ICP_List. The
resulting algorithm (temporarily named the AP-based INC
optimization) is a trivial brute-force optimization method
that is extremely time consuming to perform.

Table 5.3 gives a summary for the result of INC opti-
mization, and Table 6 provides information on the runtime
of dataset generation and two-stage path extraction. The
number of gates that are replaced with INC is drastically dif-
ferent across design, which is expected. With similar post-
INC mitigation gain, the runtime reduction, without dataset
generation time, for the ICP-based INC optimization is 197x
for Shino, proving the efficiency of the ICP-based method.
Since we consider ICP to be available at the time of INC op-
timization, runtime for dataset generation and two-stage path
extraction is not included in the runtime reduction. However,
as Table 6 indicates, even including the ICP-extraction time,
we can still achieve 74x runtime reduction on Shino, for ex-

Fig. 10 Worst-case path delay of Shino evaluated on all samples (training
+ test) before and after INC mitigation optimized on ICPs.

Table 6 Summary of dataset generation and path extraction runtime
result

Dataset Path
Design Generation Extraction
Kotori 4744 s 4619 s
Shino 2029 s 6227 s
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Fig. 11 Worst-case path delay of Shino evaluated on all samples (training
+ test) after INC mitigation.

ample. This is because the runtime of such generation is
only related to circuit size, and not how hard it is to optimize
INC in the design. In the case of Shino, an ICP extraction is
clearly much more efficient than an all-path-based method.

It is observed that, in the case of Shino, the ICP-based
INC replacement achieves a better mitigation gain compared
to AP-based method. This is due to the fact that while the
INC optimization is conducted using only one probability
sample as described in Sect. 4, the results in Table 5.3 is
the worst-case result evaluated across 10,000 samples. In
addition, as Fig. 11 illustrates, in terms of mitigation gain,
ICP-based method actually performs equally good or better
in the majority of cases for Shino.

6. Conclusion

In this paper, we proposed a novel approach for the extraction
of ICPs under NBTI degradation, and applied the extracted
ICPs to the INC optimization problem. Motivated by the fact
that the number of invariant critical paths may be extremely
small, we utilized a systematical approach of dataset gener-
ation and two-stage path extraction to carefully classify and
extract the invariant critical paths from a design, ensuring
these extracted paths really represent the whole group. By
conducting a numerical experiment, we extracted the ICPs
in two example five-stage pipelined processors, and verified
the extracted paths on a test dataset. We have shown that
with a tiny error bound (< 1%), worst-case path delay can be
successfully obtained by only calculating the delays of less
than 100 paths in a large processor design. Finally, to truly
demonstrate the invariability of our ICPs, we use the ICPs to
optimize the INC replacement, and achieved the same level
of mitigation gain with over 96–197x speedup.
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