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1 Introduction

Secret sharing (SS)_[117] is a cryptographic scheme to enaakxret to multiple shares
being distributed to participants, so that only qualified §athorized) sets of participants
can reconstruct the original secret from their shares.ifioadlly both secret and shares
were classical information (bits). Several authars [483,6xtended the traditional SS to
guantum one so that a quantum secret can be encoded to qustmves.

When we require unqualified sets of participants to have iméoomation of the secret,
the size of each share must be larger than or equal to thatoéts8y tolerating partial
information leakage to unqualified sets, the size of shaaade smaller than that of secret.
Such an SS is called a ramp (or non-perfect) [SS |L,14,21].qUmatum ramp SS was
proposed by Ogawa et &l. [I15]. In their construction [15] adl @s its improvement [22], the
size of shares can lietimes smaller relative to quantum secret than its previoastruction
[41/8]18], wherdl is the number of qudits in quantum secret.
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In their construction[[15], each share is a quantum state gulimensional complex
linear space, and has to be larger than or equal to the numbef participants. Whem
is large,q also has to be large. But it is not clear whether or not suchige ldimensional
guantum systems are always readily available. To deal with s situation, we need a
quantum ramp SS allowing > g. We stress that we study the ramp (non-perfect) SS while
[4118]18] and their subsequent developments$ [11, 12] stutiie perfect SS, and that none of
the results in this paper are contained in [4, 8,12, 16, 18].

On the other hand, the present paper can be regarded as algetien of [8, 16].
Becausel[8, 16] studied connection between perfect quaStarand the Calderbank-Shor-
Steane (CSS) quantum error-correcting codés [2,19], vehiteproposed encodin@l(6) of
guantum secret into quantum shares is the same as that qfatyeCSS codes. The con-
nection between quanturampSS and quantum error correction seems first studied in [11].
Our new contributions that are not given in[11] are (a) neagsand sfficient conditions
for qualified sets and forbidden sets that can be easily eukbly a digital computer, (b)

a quantum procedure partially reconstructing the quanteenes by an intermediate set of
shares, and (c) a construction of quantum ramp SS that aidvitsarily largen for a fixed

g. Item (a) completely characterizes the qualified and theiddien sets. Such a complete
characterization cannot be obtained by regarding the stzariion of quantum secret as the
erasure decoding of quantum error-correcting cddes [feth (b) above clarifies how much
guantum information in the secret can be reconstructed biptarmediate set, which is a
share set neither qualified nor forbidden (unauthorized.néfe that item (c) above does
not contradict withq > +/(n+ 2)/2 [11, Eq. (5)], becausé [11, Eq. (5)] considered perfect
guantum SS.

It is well-known that all linear classical ramp SS can be tamsed from a pair of
linear code<L, ¢ C; C Fg [3)5], whereF is the finite field withg elements. Smith_[18]
studied connection betwegrerfectlinear classical SS angerfectquantum SS by using
the monotone span program that can expressparfgctlinear classical SS, but he did not
considered ramp SS. We call a quantum stategrdamensional system as a qudit. In this
paper we shall show the following.

Theorem1 LetJC {1,....,0andJ = {1, ..., \J. Forx = (X, ..., %) € ngefine

P3(xX) = (X%)ie3. We definéP; to be anFg-linear map from G/C; to P;3(C1)/P;(Cy) sending
X+C, € C1/C, to Py(x) + P3(Cy) € P3(C1)/P3(Cy). A guantum ramp SS can be constructed
fromany C; ¢ C; € Fg, regardless of n and g.

1. The constructed quantum SS encodes a quantum sedah@; — dimC,) qudits to n
shares. Each share is a qudit.
2. Aset J of participants can reconstruct

dim P, (ker(P5)) 1)
qudits out of[dimC, — dimC,) qudits of the encoded quantum secret. If
dimP;(ker(P5)) = dimC; — dimC; 2)

then the set J of participants can reconstruct the secrefieptly. This means that J is
a qualified set. In this casé has no information of the secret, which means thi a
forbidden (also called unauthorized) set.

3. The condition[{R) is equivalent to both

dimP3(C1) — dim P3(C») = dimC; - dimC, and 3)
dim Pj(C]_) —dim Pj(Cz) =0. (4)
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Condition [(4) is equivalent to
dimCy nker(P;) —dimCy nker(P;) = 0. (5)
4. Both[3) and[(#) are also a necessary condition for J to bealified set.

This paper is organized as follows: Secfidn 2 proposes tbeding of secrets and shows
Item[d in Theorenl]l. Sectidn 3 proposes the decoding of seanekit shows Itenis 2 ahd 3
in TheorentIL. Sectidnl 4 proves Itéin 4 in Theofdm 1 by computiegHolevo information
of the setJ. It also computes the coherent information as a byprodustti@[% shows
that Theoreni]l completely characterizes the qualified artiddden sets of the quantum
ramp SS by Ogawa et al. [15]. Sect[dn 6 gives an algebraic ggmn{AG) construction. A
major benefit of the AG construction is thatan become arbitrarily large for a fixed20].
SectiorlY gives concluding discussions.

2 Encoding Secrets

We shall propose a construction of a quantum ramp SS fromtadesir of linear codes
C2 ¢ Cy ¢ Fg. Our proposal is a quantum version of classical ramp SS gegpby Chen
et al. [3, Section 4.2]. LeG; and H; be g-dimensional complex linear spaces. We also

assume that orthonormal bases@fand H; are indexed byFq as{|s)}«r,. The quan-
tum secret is din€; — dimC, qudits on®™7T "% G,. Fix an Fy-linear isomorphism
f . FgMEdmC _, C,/C,. Also, {ls) | s € F§M"9™%) is an orthonormal basis of

®Ima=dme G We shall encode a quantum secretntgudits in ®?:1 H; by a com-

plex linear isometric embedding. To specify such an embegdi is enough to specify the

image of each basis std? ®?:iTC1'dimcz Gi. We encodés) to

1 n
= Dime (j:gl)q{j. (6)

xef(s)

We note that the proposed encodiip (6) is equivalent to 2SS code<[2,19]. Recall that
by definition of f, f(s) is a subset o€,, f(s) N f(s1) = 0 if s # 51, and f(s) containg|C,|
vectors. From these properties we see fiat (6) defines a ertiq@ar isometric embedding.
The quantum syster#; is distributed to thg-th participant.

Example 2We show a slightly modified variant of Ogawa et al.|[15] as aanegle. Let
q=7,n=5L=3,a1=3,22=5a3=6,a4=1,a5 = 4. Fors,, s, S3 € F7, [$1%S3) IS
encoded to

5
1
7 2 QIr + s+ 0} + 0. ™

reF; j=1

This encoding can be described by
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3 Decoding Secrets
3.1 Preliminary Algebra

In this subsection we show Iteh 3 in Theorem 1 in order to thice the proposed decod-
ing procedure. The equivalence between (4) and (5) folloas fForney’s second duality
lemma[[7, Lemma 7] and kePg) = {(xq, ..., %) € Fg| x = 0if i € J}.

Equation[(B) is equivalent tB; being an isomorphism, anid (4) is equivalenﬁgobeing
the zero map. From these observations we see[that (3 andigH) Z) and vice versa. This
finishes the proof of Itefnl 3 in Theordm 1.

Remark 3Equation[(b) corresponds 1| [9, Eg. (3)] for classical rarp S

3.2 Proposed Decoding Procedure

Suppose that the quantum secret is

dimCy—dimC,
> e X G ®)
dimCy -dimC; i=1
seFq

Itis encoded to qudits as

H,. 9)

Z a(s)vlt:_|2|x>e -

dimCy -dimCy 2l yef (s) i

seFq

Decompose keRj) to a direct sunV @ (ker(P5) N ker(Ps)), and decompos€;/C, to W &
Ven ker(ﬁjl LetG(J) to be the complex linear space spanned|8yl f(s) € V}. We have
dimgG(J) = |P;y(ker(P5))| because

dimP;(ker(P5))
= dim ker(P5) — dim ker(P5) N ker(P;)
= dimV. (10)

The spac@?:'Tcl_d'mcz Gi can be decomposed §%J) ® Gres; WhereGestis the complex
linear space spanned Bg«w) | f(skw) e W ker(Py)}, and|sy) ® |sw + k) € G(J) ® Grest
is identified with|s) € @17 "% G for s = s5 + sw + S With 55 € FY(V), sy €
f-3(W) ands¢ € f-Y(ker(P,)). This identification is a unitary map betwegJ) ® Gres:and
®Ima-dn® G, because itis linear and preserves the inner product.

Example 4We retain the notations from Examglge 2. Lét= {1,2,3} andJ = {4,5}.
Firstly we examine keﬁj) c C1/Cy. When 61, S, s3) = (2,1,0) or (s1, S, S3) = (0,0,1),
P5(f(s1, 82, s3)) = P3(Cy), from which we see that ke%) is two-dimensional linear space
spanned by (2, 1, 0) andf (0, 0, 1). On the other hand®;(f (2, 1,0)) # P3(C,) andP;(f(0,0,1)) =
P;(C,), which mean that keﬁj) N ker(P,) is one-dimensional linear space spanned by
f(0,0,1). We also observe that is the one-dimensional space spannedf{# 1,0), that
ker(P;) is the one-dimensional space spanned {0, 1). There is some freedom in choos-
ing W, for example, we can choo$¥ as the one-dimensional space spanned (fiy0, 0).
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G(J) is the 7-dimensional complex linear space spanneflday ® |a) ® |0) | a € F7},
while Grestis the 49-dimensional complex linear space spanngfsby® [0) ® |s3) | S1, S5 €
F-}.

In this section we shall prove that a skbf participants can reconstruct the part of the
guantum secref18) frorf](9). The reconstructed part is & #ig(J). By reordering indices
we may assuméd = {1, ...,|J|}. We also assume

dimP;(ker(P5)) > O, (11)

otherwise the set can reconstruct no part of the secret by the proposed degpdicedure.

The restriction ofP; o f to V is injective by the definition of/. This and the definitions
of V. andW imply that there exists aRq-linear isomorphisng; from P;(C1)/P;(C,) to
ngmPJ(Cl)’dim PG with the following condition. When we writs = s; + Sy + S« in the
same way as the previous paragraph oz ngmq‘dim thengi(Py(f(9)) = (S5, Sw) €
FgmPaC-dmPy(C) it @) holds then we hav¥ = C1/C; and we regardy, andsg as0 and
sy ass. Observe thagy, is inverting the restriction oP; o f to V. .

On the other hand, there also existdgrinear epimorphisng, from P;(Cy) toFy ™)
that is one-to-one on every coset belonging to the facta@alirspacd?;(C;)/P;3(C, N
ker(P5)). The above map can be constructed as follows: Find a dstaot decomposition
of P3(C1) = P3(C2 nker(P5)) ® U Forx € P3(Cy), find a decompositiow = x; + Xz such

thatx; € P3(C; N ker(P5)) andxz € U. Then mapx; by a some fixed linear isomorphism

from P,(C, N ker(Py)) to Fq ™" wwhile ignoringx,. Observe thag, is extracting

the P;(C; n ker(P5))-component.

By a construction similar tay,, there also exists aRg-linear epimorphisngz from
P3(C1)/P5(C2 N ker(Py)) to Fgq™ P amP(Grker®s) yhat is one-to-one on on every coset
belonging to the factor linear spa8g(C;)/P;(C,) such that the value dj; is determined
by sw, sk, and P3(x) independently ok;. Observe also thads is extracting theP;(C»)-
component from the factor linear spa@g(C1)/P;(C, N ker(P5)).

Consider theF,-linear mapg, from P;(Cy) to F3™ ) sendingv € P;(C1) to (g (v +
P3(C2)), 92(V), 93(v+P3(Canker(P5)))). We see thad, is anFg-linear isomorphism because
it is surjective and the domain and the imaggphave the same dimension.

Forv € P;(C,), we can construct a unitary operation sending '1.32'1 H;jtolga(v),0) €
®'jJ:'1 H;j, whereQ is the zero vector of lengtfd| — dim P,;(Cy). Since this unitary operation

does not chang®{;..1, . . ., Hn, it can be executed only by the first to e th participants.
Applying the unitary operation t§¥9) gives

a®—F= D 15w,
dimCy -dimC; |CZ| xef(s)
seFq t 2
92(P3(x)), 93(Pa(x) + P3(C2 N ker(Py))), 0, P5(x)). (12)
02(P3(x)) can become any vector Fﬂim Pa(Conker®s) independently 0§;, sy, s« andP5(x).

Hereafter we denotg(P;(x)) by u;. For afixeds € ngmq‘dimCZ P5(x) can become any vec-

torin the coseﬁj(f(s)) € P3(C1)/P5(Cy), andsy determines which coset &;(C,)/P5(C>)
containsP5(x) independently o;, sc andu;. Hereafter we denote the cosfé}(f(s)) =
P5(x) + P5(C>) by gs(sw). By the definition ofgs, g3(P3(x) + P3(C, N ker(P5))) is deter-
mined by onlysy, sx andP3(x), that is, independent af. Hereafter we denotgs(P;(x) +
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P3(C. nker(P3))) by gs(sw, sk, P3(x)). By using these notations we can rewritel(12) as

1
D, aslsy IS U, G6(Sw, Sk, U2), O, Uz),  (13)
dimCq -dimCp |C2| dimP;(Cp mker(Pj))
q ueFq

U2€95(Sw)

seF

which means that the palt;) of the quantum secref](8) is reconstructed but in general
entangled with the rest of quantum system.
If the quantum secret is a product state written as

PO [Z a(&)lsﬁ]@(z Q’(S\N,SK)EW’SrO]

SEFglmcl—dlmcz s;eV Sw»SK

then [13) can be written as

1
a(&)lsﬁ] ® a(Sw, Sk)— Isw; U1, 9s(Sws Sk» U2), 0, U) |,
[SJZE\:/ % \Y |CZ| FdImPJZ((;zmker(PJ))

ureFy

U2€0s(Sw)

and the reconstructed secret is not entangled with the fgstamtum system.

Observe also that the number of qudits in the reconstruetedgdimV = dim 5J(ker(53))
and if (2) holds then the entire secret is reconstructedaBszthe complement of any qual-
ified set is forbidden by [15, Proposition 3], we see that thieJsof participants has no
information on the quantum secrgt (8)[i (2) holds. This fieis the proof of Iter]2 in The-
oremd1. O

Example 5We retain the notations from Examjle 4. We hdve {1, 2, 3}, dimP;(C,) = 3,
and dImPJ(Cz) =1. dImPJ(Cl)/PJ(Cz) =2.
When we express
s=a(2,1,0)+s3(0,0,1) + s(1,0,0),
— ——— ———
=S; =Sk =Sw
and fixr in (@), the index vectox in (7)) becomes

X=(r+a+3s +6s3r +5s +6S3,1 +6a+ 65 + 653,
r+3a+ s +S3,r+3a+4s; + Sg).

01((X1, X2, X3)+P3(C2)) = (Bxa—X1—2X3, 2%2— X1 —X3) = (&, s1). We haveC,nker(Py) = {0}
andg, is the zero map. We hawg(xg, X2) = 2X1 — X3 = r + 3a + 653 andgs(xg, X2) =
(a, s1, 1 +3a+6s3). Therefore, after applying the proposed decoding proeedhe statd{7)
of encoded shares becomes

1
—Z|a,sl,r+3a+6%,r+3a+sl+%,r+3a+4sl+%)
ﬁrer

= 1 Z |a, S, 1" +6S3, 1" + S + S, I’ + 45 + )
\/? r'eF7
wherer’ =r + 3a.
We see that; determines, independently of bailand s, the cosef(r’ + s; + Sz, I’ +
4s; + 53) | 1’ € F7}, which isgs(sw). P5(X) = (" + s1 + S3, I’ + 45, + Sg), 1 andsz uniquely
determinegz (X1, X2, X3) = I’ + 653 which isgs.
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4 Holevo Information and Coherent Information of a Set of Shaes
4.1 Holevo Information

In this section we prove that boffl (3) afdl (4) are necessay/timbe a qualified set. We use
the Holevo information [13] defined as follows. L8}, andS,,; be sets of density matrices,
I' a completely positive trace-preserving map frén to Sout, {01, - - -, om} € Sin, andP a
probability distribution orps, ...,pm}. The Holevo information is defined as

K(P{p,...pm), 1) = H (Z P(por(pi)] = > PEIHT (), (14)

i=1 i=1

where H(-) denotes the von Neumann entropy counted in,|dthe Holevo information
essentially expresses the classical information that eareinsferred ovef [13].

Let I'; be the completely positive trace-preserving map i8R, ™% G;) to
S((X)jEJ ‘H;) induced by the encoding procedure proposed in Sellion &rexi(-) denotes

the set of density matrices on a complex spa&y K; we denote
K (uniform distribution {|s)(sf | s € F§M =42} 1y). (15)

By [15, Theorem 1] if
Kj < dlmCl - dImCZ (16)

thenJ is not a qualified set. The encoding procedure in Seklion pis@astate schemg [115,
Section 2], that is, the quantum state of all the shares s itine encoded quantum secret
is pure. By [15, Proposition 3], i is not a forbidden set, thehis not a qualified set. By
[15, Theorem 1] if

K;>0 a7

thenJ is not a forbidden set.
We shall prove the next proposition. BM (3] (41.1X16) and)(Propositior b implies
that both [[B) and{4) are necessary dao be a qualified set.

Proposition 6
K;= dim PJ(C]_) —dim PJ(CZ) (18)

Proof I';(|s)(g) is the partial trace of {9) ov@@ H;. By the definition of partial trace

T'3(1s)(s)
1
e D IPs(xa))(P3 (%)l (P3(x0)IP3(x2))
— ———
X1,%26f(S) o rkerPr
1
~ic S Pxa)XPa(xe)
2 uePx(f(s) xaef(INP5H(u) o€ (NP5 (u)
1
=G IP3(x1)) > (Palxo)
2 uePy(i(9) x1€f(9NP3H() xee H(NP3H(U)

1
ICal Z Z IP3 (Xl»} [ Z (Py(x2)l|.  (19)
’ x2¢€ f(s)N((0.u)+ker(Py))

ueP5(f(s)) \xa€f(s)N((0,u)+ker(P5))
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Foruy, uz € P5(f(9), if f(s) N ((0,u1) + ker(P3)) = f(s) N ((0, uz) + ker(P5)) thenx; and
X2 in (I9) are taken over the same $(x) + P;(C, N ker(P5)), wherex is any vector in
f(s) N ((0,u1) + ker(P5)). Otherwisex; andx, in (I9) are taken over two disjoint sets in
P;(f(9). So [19) is equal to

ET [ZM](ZM], (20)
ICal AePy(f(s))/~ \veA veA

where~ is the equivalence relation that defingsv, € P;(Fg) to be equivalent it/ € v, +
P3(Co nker(P5)). 20) is an equal mixture ¢P;(C,)/P3(Cz N ker(P5))I projection matrices
to non-overlapping orthogonal spaces, therefore its voanan entropy is dir;(C,) —
dim P;(C, n ker(P5)), which is the second term in the right hand side[o] (14).

By (20), the density matrix of the first term in RHS of bf{14) is

e 3 5 (205

seFUmCL-dm, ICal pep T~ veA

Z<v|] . (21)

1
AeP;(Cy)/P;(Canker(P5, [ A V>]( €A
)/ J( N ])) ve Vi

=&
The von Neumann entropy ¢f (21) is

dim P3(Cy) — dim P3(C; N ker(P5)) (22)
by the same argument as the last paragraphl ByK34) dim P;(Cy) — dimP;(C,). O

4.2 Coherent Information

We use the same notation &s](14). Denotd byhe channel to the environment so that any
pure state is mapped to a pure statd &/ I'e. The channel to the environment By is 5.
Then the coherent information of the input statend the channdr is defined byl[183]

H(I"(p)) - H(I'e(0))- (23)

Equation[[ZB) can become negative. The quantum capacixpisgsed by the maximum of
the coherent information over[6].
The coherent information df; and the completely mixed secraagncll,TCZ 2 epdimcs—dime, [S)(S]
q

is (22) subtracted by (22) with substituted byl. Therefore the coherent information is
dim P;(C1) — dimC, n ker(P5) — (dim P5(Cy) — dimC, N ker(Py)). (24)

We consider to maximizé (24) by replaci@g by D such thatC, c D c C;. This amounts
to maximize [[2B) over the quantum state completely mixed tve subspace spanned by
{I] f(s) c D).

Lemma 7 Let D be as above. Define
D’ = C, + (D nker(Py)).
Then we have

dimP;(D) — dimC, N ker(P5) — (dim P5(D) — dimC;, N ker(P;))
= dimPy(D’) — dimC; nker(P5) — (dimP5(D’) — dimC, N ker(Py)). (25)
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Proof LetD = D’@D”. Then dimD” = dim P;(D") becaus®” nker(P5) = {0}. Therefore
theD” component irD does not help to increase the valuelofl (24). TBuyields the same
value for [Z24) aD and we have (25). O

So we see thaD = C; + (Cy N ker(P5)) maximizes the coherent information to its
maximum value
dim PJ(CZ + (C1 N kerﬂi’j))) —dim Cn ker(Pj)
- (dlm Pj(Cz + (Cl N ker(Pj)) —dimCy n ker(PJ))

=dimP3(Cz)
= dim PJ(CZ + (C]_ N ker(Pj))) - (dlm Cn ker(Pj) +dim Pj(Cz) —dimCon ker(PJ))

=dimP3(Cy)

= dim P;(kerPs3).

We remark that the proposed decoding procedure in Sdcli@edhstructs precisely that
number of qudits in the secret.

5 Analysis of the Conventional Scheme

In this section we show that the conventional quantum rampes&SI[[15] can be regarded
as a special case of the proposed construction, and itfigdadind forbidden sets can be
identified by Theorerl1. Lety, .. .,ay, be pairwise distinct nonzdl@lements irFg, which
correspond toy, ..., X, in [15]. Denote &1, ...,an) by a. Letv € (Fqg \ {0})". Then the
generalized Reed-Solomon code GR@, V) is [10, Section 10.88]

{(vih(@1), . . ., ah(an)) | degh(x) < k- 1}, (26)

whereh(x) is a univariate polynomial oveffy. Let1 = (1, ..., 1) € Fg and at = (ak,
Lak) e Fg- The conventional scheme [15] is a special case of the peaposnstruction
with C; = GRSk(a, 1) andC, = GRSk_L(a, ab). Observe thaC, ¢ Cy, dimC; = K,
and dimC, = k — L. By the property of the generalized Reed-Solomon codesqse¢l10,
Section 11.84]), any subsétc (1, ...,n} satisfies both[{3) andl(4) |0] > dimC; and
13| < dimC,. Observe that the original restriction= dim C, +dim C, [15] is removed here.

6 Algebraic Geometric Construction

In this section we give a construction ©f > C, based on algebraic geometry (AG) codes.
A major benefit of the AG codes is thatcan become arbitrarily large for a fixed[20].
For terminology and mathematical notions of AG codes, @eater to[[20]. LetF/F, be

an algebraic function field of one variable ov&y, P, ..., P, pairwise distinct places of
degree one iffr, andG;, G, divisors of F whose supports contain nonefy, ..., P,. We
assumes; > G,. Denote by£(G;) the Fq-linear space associated with. The functional
AG code associated witB1, P, ..., P, is defined as

C(Gy, P1,..., Pn) = {(f(P1),.... f(Pn) | f € L(G1)}.

1 In [15] a; = 0 was not explicitly prohibited, but an author bf[15] infoeththate; must be nonzero for
alli=1,...,n
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SinceG; > G, we haveC(Gy, Py, ...,Py) 2 C(Gy, Py, ..., Py). We further assum€(Gy,
Py, ..., Pn) * C(Gz, Py, ... ,Pn).

Theorem 8 The ramp quantum SS constructed frofGgG Py, ..., B) 2 C(Gy, Py, ...,
P,) encodeslimC(Gy, Py, ..., By) —dimC(G,, P, ..., B) qudits to n shares. We have

dImC(Gl, Py,..., Pn) - dImC(Gz, P, ..., Pn)
> degG; - degG; - g(F), (27)

where ¢F) denotes the genus of F. Aset]1, ..., ntis a qualified set and its complement
J is a forbidden set if

[J] = max1+ degG;, n — (degG, — 29(F) + 1)}. (28)
Proof Equation [[2¥) follows just from
dimC(Gy, P1.. .., Py) = dim £(Gy) — dim £(Gy — Py — - - — Py), (29)
and the Riemann-Roch theorem[20]
degG; - g(F) + 1 < dim £(G1) < max0, degG; + 1}, (30)
where the left inequality of (30) becomes equality if
degG;: > 2g(F) — 1. (31)

Firstly we claim that[(B) and{4) hold if

19| > 1+ degG, (32)
1] < degG, — 29(F) + 1. (33)
By reordering indices we may assume that {1, ...,|J|}. Observe that
P3(C(G1, Py, ..,Pn)) =C(Gy, Py,...,Py). (34)
If 32) holds then by[(30) we havé(G; — P; — - -- — Py)) = {0}, which means thaL(G,) is
isomorphic toC(Gy, Py, ..., Py) as anFg-linear space by (29). By the same argument we

also see thaf(G;) is isomorphic taC(Gy, Py, .. .,Py,). Thus we have seen thaf{32) implies

@.
If (83) holds then

degGz — Ppa — - = Pn) > 29(F) - 1,
which implies by [(31)
dim £(G; - Pjjjs1 — --- — Py) = degG; — [J] - g(F) + L. (35)

By the same argument
dim £(G,) = degG, — g(F) + 1. (36)
Equations[(20) [(35) and (B6) imply diB(Gz, Piyj+1, ..., Pn) = 13, which in turn implies

C(Gz, Pyps1, - - -, Pn) = Fy\. Therefore we see th4L(33) impliés (4).
Finally noting [28)= (32) and [3B) finishes the proof.0
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Remark 9As the generalized Reed-Solomon codes is a special case afofl€s with
g(F) = 0 [20], Sectiori b can also be deduced from Thedrem 8 insteasling [10, Section
11.84].

Theorem 10 We retain notations from Theordrh 8 and assulegG; < n. The numbei{1)
of qudits in quantum secret that can be decoded by J is

L(G1- X5 Pj) + L(G2)

M G = 3,5 P) + 262) 1 (LG~ 5 P + LG 37)

Proof Equation[(1) is equal to
dim ker(P5) — dim ker(P;) N ker(P5). (38)
Since we assume d&j < n, the evaluation map € £(G1) — (h(Py1), ..., h(Pn) € Fgis

injective and we can deal with the space of functionL{®s;) to count the dimensions of

(38).

Forh; + L(Gy) € L(G1)/ L(Gy), its corresponding coset belongs to lﬁgt)(if and only
if there existsh, € £L(Gy) such thahy(P;) — hy(P;) = Ofor all j e J, which is equivalent to
hy—hy € £L(G1— Zjej P;). In other words, the cosét + £(G,) satisfies the above condition
if and only if there existy, € L(G1 - ¥,5Pj) such thathy, = b} (mod L(Gp)). The
dimension of space of cosdis + £(G;,) with the above condition is given by

i £G1~ 25 P) + £(G2) 39
L(Gy)

Moreover, while satisfying the condition of the last paeggr, the coset corresponding
to h; + £(Gy) belongs to kefR;) if and only if there exists anothéy, € L(G1 - X jc; Pj)
such thaty, = h (mod £(Gy)). The dimension of space of cos¢is+ £(G2) with the
above two conditions is given by

dim (L(G1 - X3 Pj) + L(G2)) N (L(G1 - Xjes Py) + L(G2))
L(Gy) '
By (38), subtracting(40) fromi (39) givels (37)O

(40)

7 Conclusion

We have shown that a quantum ramp secret sharing scheme amsteucted from any
nested pair of linear codes, and also shown necessary &iaesu conditions for the qual-
ified and the forbidden sets as Theollém 1. A construction steddinear codes is given by
the algebraic geometry in Theoréin 8. The following issued@ure research agenda.

What is a better construction &; 2 C, than Theoreml8 wheq < n? In particular,
(33) should use both divisofs; andG, because (3) anfll(4) use both of nested linear codes.
Also, J corresponds to a set &f-rational points on an algebraic curve when AG codes are
used, but only the size afis taken into account if_(33). The geometryJo$hould also be
taken into account. We shall investigate them in future.
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