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1 Introduction

Secret sharing (SS) [17] is a cryptographic scheme to encodea secret to multiple shares
being distributed to participants, so that only qualified (or authorized) sets of participants
can reconstruct the original secret from their shares. Traditionally both secret and shares
were classical information (bits). Several authors [4,8,18] extended the traditional SS to
quantum one so that a quantum secret can be encoded to quantumshares.

When we require unqualified sets of participants to have zeroinformation of the secret,
the size of each share must be larger than or equal to that of secret. By tolerating partial
information leakage to unqualified sets, the size of shares can be smaller than that of secret.
Such an SS is called a ramp (or non-perfect) SS [1,14,21]. Thequantum ramp SS was
proposed by Ogawa et al. [15]. In their construction [15] as well as its improvement [22], the
size of shares can beL times smaller relative to quantum secret than its previous construction
[4,8,18], whereL is the number of qudits in quantum secret.
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In their construction [15], each share is a quantum state on aq-dimensional complex
linear space, andq has to be larger than or equal to the numbern of participants. Whenn
is large,q also has to be large. But it is not clear whether or not such a large dimensional
quantum systems are always readily available. To deal with such a situation, we need a
quantum ramp SS allowingn > q. We stress that we study the ramp (non-perfect) SS while
[4,8,18] and their subsequent developments [11,12] studied the perfect SS, and that none of
the results in this paper are contained in [4,8,12,16,18].

On the other hand, the present paper can be regarded as a generalization of [8,16].
Because [8,16] studied connection between perfect quantumSS and the Calderbank-Shor-
Steane (CSS) quantum error-correcting codes [2,19], whileour proposed encoding (6) of
quantum secret into quantum shares is the same as that of theq-ary CSS codes. The con-
nection between quantumrampSS and quantum error correction seems first studied in [11].
Our new contributions that are not given in [11] are (a) necessary and sufficient conditions
for qualified sets and forbidden sets that can be easily checked by a digital computer, (b)
a quantum procedure partially reconstructing the quantum secret by an intermediate set of
shares, and (c) a construction of quantum ramp SS that allowsarbitrarily largen for a fixed
q. Item (a) completely characterizes the qualified and the forbidden sets. Such a complete
characterization cannot be obtained by regarding the reconstruction of quantum secret as the
erasure decoding of quantum error-correcting codes [11]. Item (b) above clarifies how much
quantum information in the secret can be reconstructed by anintermediate set, which is a
share set neither qualified nor forbidden (unauthorized). We note that item (c) above does
not contradict withq >

√
(n+ 2)/2 [11, Eq. (5)], because [11, Eq. (5)] considered perfect

quantum SS.
It is well-known that all linear classical ramp SS can be constructed from a pair of

linear codesC2 ( C1 ⊆ Fn
q [3,5], whereFq is the finite field withq elements. Smith [18]

studied connection betweenperfect linear classical SS andperfectquantum SS by using
the monotone span program that can express anyperfectlinear classical SS, but he did not
considered ramp SS. We call a quantum state in aq-dimensional system as a qudit. In this
paper we shall show the following.

Theorem 1 Let J ⊆ {1, . . . , n} and J = {1, . . . , n} \ J. For x = (x1, . . . , xn) ∈ Fn
q define

PJ(x) = (xi)i∈J. We definẽPJ to be anFq-linear map from C1/C2 to PJ(C1)/PJ(C2) sending
x+C2 ∈ C1/C2 to PJ(x)+PJ(C2) ∈ PJ(C1)/PJ(C2). A quantum ramp SS can be constructed
from any C2 ( C1 ⊆ Fn

q, regardless of n and q.

1. The constructed quantum SS encodes a quantum secret of(dimC1 − dimC2) qudits to n
shares. Each share is a qudit.

2. A set J of participants can reconstruct

dim P̃J(ker(̃PJ)) (1)

qudits out of(dimC1 − dimC2) qudits of the encoded quantum secret. If

dim P̃J(ker(̃PJ)) = dimC1 − dimC2 (2)

then the set J of participants can reconstruct the secret perfectly. This means that J is
a qualified set. In this caseJ has no information of the secret, which means thatJ is a
forbidden (also called unauthorized) set.

3. The condition (2) is equivalent to both

dim PJ(C1) − dim PJ(C2) = dimC1 − dimC2 and (3)

dim PJ(C1) − dim PJ(C2) = 0. (4)
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Condition (4) is equivalent to

dimC⊥2 ∩ ker(PJ) − dimC⊥1 ∩ ker(PJ) = 0. (5)

4. Both (3) and (4) are also a necessary condition for J to be a qualified set.

This paper is organized as follows: Section 2 proposes the encoding of secrets and shows
Item 1 in Theorem 1. Section 3 proposes the decoding of secrets and it shows Items 2 and 3
in Theorem 1. Section 4 proves Item 4 in Theorem 1 by computingthe Holevo information
of the setJ. It also computes the coherent information as a byproduct. Section 5 shows
that Theorem 1 completely characterizes the qualified and forbidden sets of the quantum
ramp SS by Ogawa et al. [15]. Section 6 gives an algebraic geometric (AG) construction. A
major benefit of the AG construction is thatn can become arbitrarily large for a fixedq [20].
Section 7 gives concluding discussions.

2 Encoding Secrets

We shall propose a construction of a quantum ramp SS from a nested pair of linear codes
C2 ( C1 ⊆ Fn

q. Our proposal is a quantum version of classical ramp SS proposed by Chen
et al. [3, Section 4.2]. LetGi andH j be q-dimensional complex linear spaces. We also
assume that orthonormal bases ofGi andH j are indexed byFq as {|s〉}s∈Fq. The quan-

tum secret is dimC1 − dimC2 qudits on
⊗dimC1−dimC2

i=1 Gi . Fix an Fq-linear isomorphism
f : FdimC1−dimC2

q → C1/C2. Also, {|s〉 | s ∈ FdimC1−dimC2
q } is an orthonormal basis of⊗dimC1−dimC2

i=1 Gi . We shall encode a quantum secret ton qudits in
⊗n

j=1H j by a com-
plex linear isometric embedding. To specify such an embedding, it is enough to specify the
image of each basis state|s〉 ∈

⊗dimC1−dimC2

i=1 Gi . We encode|s〉 to

1
√
|C2|

∑

x∈ f (s)

|x〉 ∈
n⊗

j=1

H j . (6)

We note that the proposed encoding (6) is equivalent to that of CSS codes [2,19]. Recall that
by definition of f , f (s) is a subset ofC1, f (s) ∩ f (s1) = ∅ if s , s1, and f (s) contains|C2|
vectors. From these properties we see that (6) defines a complex linear isometric embedding.
The quantum systemH j is distributed to thej-th participant.

Example 2We show a slightly modified variant of Ogawa et al. [15] as an example. Let
q = 7, n = 5, L = 3, α1 = 3, α2 = 5, α3 = 6, α4 = 1, α5 = 4. Fors1, s2, s3 ∈ F7, |s1s2s3〉 is
encoded to

1
√

7

∑

r∈F7

5⊗

j=1

|r + s1α j + s2α
2
j + s3α

3
j 〉. (7)

This encoding can be described by

C1 = {(r + s1α j + s2α
2
j + s3α

3
j ) j=1,...,5 | r, s1, s2, s3 ∈ F7},

C2 = {(r, r, r, r, r) | r ∈ F7},
f (s1, s2, s3) = {(r + s1α j + s2α

2
j + s3α

3
j ) j=1,...,5 | r ∈ F7}.



4 Ryutaroh Matsumoto

3 Decoding Secrets

3.1 Preliminary Algebra

In this subsection we show Item 3 in Theorem 1 in order to introduce the proposed decod-
ing procedure. The equivalence between (4) and (5) follows from Forney’s second duality
lemma [7, Lemma 7] and ker(PJ) = {(x1, . . . , xn) ∈ Fn

q | xi = 0 if i ∈ J}.
Equation (3) is equivalent tõPJ being an isomorphism, and (4) is equivalent toP̃J being

the zero map. From these observations we see that (3) and (4) imply (2) and vice versa. This
finishes the proof of Item 3 in Theorem 1.

Remark 3Equation (5) corresponds to [9, Eq. (3)] for classical ramp SS.

3.2 Proposed Decoding Procedure

Suppose that the quantum secret is

∑

s∈FdimC1−dimC2
q

α(s)|s〉 ∈
dimC1−dimC2⊗

i=1

Gi . (8)

It is encoded ton qudits as

∑

s∈FdimC1−dimC2
q

α(s)
1
√
|C2|

∑

x∈ f (s)

|x〉 ∈
n⊗

j=1

H j . (9)

Decompose ker(̃PJ) to a direct sumV ⊕ (ker(̃PJ) ∩ ker(̃PJ)), and decomposeC1/C2 to W⊕
V ⊕∩ ker(̃PJ). LetG(J) to be the complex linear space spanned by{|s〉 | f (s) ∈ V}. We have
dimG(J) = |P̃J(ker(̃PJ))| because

dim P̃J(ker(̃PJ))

= dim ker(̃PJ) − dim ker(̃PJ) ∩ ker(̃PJ)

= dimV. (10)

The space
⊗dimC1−dimC2

i=1 Gi can be decomposed asG(J) ⊗ Grest, whereGrest is the complex
linear space spanned by{|sKW〉 | f (sKW) ∈W ⊕ ker(̃PJ)}, and|sJ〉 ⊗ |sW + sK〉 ∈ G(J) ⊗ Grest

is identified with |s〉 ∈
⊗dimC1−dimC2

i=1 Gi for s = sJ + sW + sK with sJ ∈ f −1(V), sW ∈
f −1(W) andsK ∈ f −1(ker(̃PJ)). This identification is a unitary map betweenG(J)⊗Grest and⊗dimC1−dimC2

i=1 Gi , because it is linear and preserves the inner product.

Example 4We retain the notations from Example 2. LetJ = {1, 2, 3} and J = {4, 5}.
Firstly we examine ker(̃PJ) ⊂ C1/C2. When (s1, s2, s3) = (2, 1, 0) or (s1, s2, s3) = (0, 0, 1),
PJ( f (s1, s2, s3)) = PJ(C2), from which we see that ker(̃PJ) is two-dimensional linear space
spanned byf (2, 1, 0) andf (0, 0, 1). On the other hand,PJ( f (2, 1, 0)) , PJ(C2) andPJ( f (0, 0, 1)) =
PJ(C2), which mean that ker(̃PJ) ∩ ker(̃PJ) is one-dimensional linear space spanned by
f (0, 0, 1). We also observe thatV is the one-dimensional space spanned byf (2, 1, 0), that
ker(̃PJ) is the one-dimensional space spanned byf (0, 0, 1). There is some freedom in choos-
ing W, for example, we can chooseW as the one-dimensional space spanned byf (1, 0, 0).
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G(J) is the 7-dimensional complex linear space spanned by{|2a〉 ⊗ |a〉 ⊗ |0〉 | a ∈ F7},
whileGrest is the 49-dimensional complex linear space spanned by{|s1〉 ⊗ |0〉 ⊗ |s3〉 | s1, s3 ∈
F7}.

In this section we shall prove that a setJ of participants can reconstruct the part of the
quantum secret (8) from (9). The reconstructed part is a state inG(J). By reordering indices
we may assumeJ = {1, . . . ,|J|}. We also assume

dim P̃J(ker(̃PJ)) > 0, (11)

otherwise the setJ can reconstruct no part of the secret by the proposed decoding procedure.
The restriction of̃PJ ◦ f to V is injective by the definition ofV. This and the definitions

of V and W imply that there exists anFq-linear isomorphismg1 from PJ(C1)/PJ(C2) to
FdimPJ(C1)−dim PJ(C2)

q with the following condition. When we writes = sJ + sW + sK in the
same way as the previous paragraph fors ∈ FdimC1−dimC2

q theng1(P̂J( f (s)) = (sJ, sW) ∈
FdimPJ(C1)−dim PJ(C2)

q . If (2) holds then we haveV = C1/C2 and we regardsW andsK as0 and
sJ ass. Observe thatg1 is inverting the restriction of̃PJ ◦ f to V.

On the other hand, there also exists anFq-linear epimorphismg2 from PJ(C1) toF
dimPJ(C2∩ker(PJ))
q

that is one-to-one on every coset belonging to the factor linear spacePJ(C1)/PJ(C2 ∩
ker(PJ)). The above map can be constructed as follows: Find a directsum decomposition
of PJ(C1) = PJ(C2 ∩ ker(PJ)) ⊕ U For x ∈ PJ(C1), find a decompositionx = x1 + x2 such
thatx1 ∈ PJ(C2 ∩ ker(PJ)) andx2 ∈ U. Then mapx1 by a some fixed linear isomorphism

from PJ(C2 ∩ ker(PJ)) to F
dimPJ(C2∩ker(PJ))
q , while ignoringx2. Observe thatg2 is extracting

thePJ(C2 ∩ ker(PJ))-component.
By a construction similar tog2, there also exists anFq-linear epimorphismg3 from

PJ(C1)/PJ(C2 ∩ ker(PJ)) to Fdim PJ(C2)−dim PJ(C2∩ker(PJ))
q that is one-to-one on on every coset

belonging to the factor linear spacePJ(C1)/PJ(C2) such that the value ofg3 is determined
by sW, sK , and PJ(x) independently ofsJ. Observe also thatg3 is extracting thePJ(C2)-
component from the factor linear spacePJ(C1)/PJ(C2 ∩ ker(PJ)).

Consider theFq-linear mapg4 from PJ(C1) to FdimPJ(C1)
q sendingv ∈ PJ(C1) to (g1(v +

PJ(C2)), g2(v), g3(v+PJ(C2∩ker(PJ)))). We see thatg4 is anFq-linear isomorphism because
it is surjective and the domain and the image ofg4 have the same dimension.

Forv ∈ PJ(C1), we can construct a unitary operation sending|v〉 ∈
⊗|J|

j=1H j to |g4(v), 0〉 ∈
⊗|J|

j=1H j , where0 is the zero vector of length|J| − dim PJ(C1). Since this unitary operation
does not changeH|J|+1, . . . ,Hn, it can be executed only by the first to the|J|-th participants.
Applying the unitary operation to (9) gives

∑

s∈FdimC1−dimC2
q

α(s)
1
√
|C2|

∑

x∈ f (s)

|sJ, sW,

g2(PJ(x)), g3(PJ(x) + PJ(C2 ∩ ker(PJ))), 0,PJ(x)〉. (12)

g2(PJ(x)) can become any vector inF
dimPJ(C2∩ker(PJ))
q independently ofsJ, sW, sK andPJ(x).

Hereafter we denoteg2(PJ(x)) by u1. For a fixeds∈ FdimC1−dimC2
q PJ(x) can become any vec-

tor in the coset̃PJ( f (s)) ∈ PJ(C1)/PJ(C2), andsW determines which coset ofPJ(C1)/PJ(C2)
containsPJ(x) independently ofsJ, sK andu1. Hereafter we denote the cosetP̃J( f (s)) =
PJ(x) + PJ(C2) by g5(sW). By the definition ofg3, g3(PJ(x) + PJ(C2 ∩ ker(PJ))) is deter-
mined by onlysW, sK andPJ(x), that is, independent ofsJ. Hereafter we denoteg3(PJ(x) +
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PJ(C2 ∩ ker(PJ))) by g6(sW, sK , PJ(x)). By using these notations we can rewrite (12) as
∑

s∈FdimC1−dimC2
q

α(s)|sJ〉
1
√
|C2|

∑

u1∈F
dimPJ (C2∩ker(P

J
))

q

u2∈g5(sW)

|sW, u1, g6(sW, sK , u2), 0, u2〉, (13)

which means that the part|sJ〉 of the quantum secret (8) is reconstructed but in general
entangled with the rest of quantum system.

If the quantum secret is a product state written as

∑

s∈FdimC1−dimC2
q

α(s)|s〉 =

∑

sJ∈V
α(sJ)|sJ〉

 ⊗

∑

sW,sK

α(sW, sK)|sW, sK〉


then (13) can be written as


∑

sJ∈V
α(sJ)|sJ〉

 ⊗



∑

sW,sK

α(sW, sK)
1
√
|C2|

∑

u1∈F
dimPJ (C2∩ker(P

J
))

q

u2∈g5(sW)

|sW, u1, g6(sW, sK , u2), 0, u2〉



,

and the reconstructed secret is not entangled with the rest of quantum system.
Observe also that the number of qudits in the reconstructed part is dimV = dim P̃J(ker(̃PJ))

and if (2) holds then the entire secret is reconstructed. Because the complement of any qual-
ified set is forbidden by [15, Proposition 3], we see that the set J of participants has no
information on the quantum secret (8) if (2) holds. This finishes the proof of Item 2 in The-
orem 1. ⊓⊔
Example 5We retain the notations from Example 4. We haveJ = {1, 2, 3}, dimPJ(C1) = 3,
and dimPJ(C2) = 1. dimPJ(C1)/PJ(C2) = 2.

When we express
s= a(2, 1, 0)︸    ︷︷    ︸

=sJ

+ s3(0, 0, 1)︸     ︷︷     ︸
=sK

+ s1(1, 0, 0)︸     ︷︷     ︸
=sW

,

and fixr in (7), the index vectorx in (7) becomes

x = (r + a+ 3s1 + 6s3, r + 5s1 + 6s3, r + 6a+ 6s1 + 6s3,

r + 3a+ s1 + s3, r + 3a+ 4s1 + s3).

g1((x1, x2, x3)+PJ(C2)) = (3x2−x1−2x3, 2x2−x1−x3) = (a, s1). We haveC2∩ker(PJ) = {0}
andg2 is the zero map. We haveg3(x1, x2) = 2x1 − x3 = r + 3a + 6s3 andg4(x1, x2) =
(a, s1, r +3a+6s3). Therefore, after applying the proposed decoding procedure, the state (7)
of encoded shares becomes

1
√

7

∑

r∈F7

|a, s1, r + 3a+ 6s3, r + 3a+ s1 + s3, r + 3a+ 4s1 + s3〉

=
1
√

7

∑

r′∈F7

|a, s1, r
′ + 6s3, r

′ + s1 + s3, r
′ + 4s1 + s3〉

wherer ′ = r + 3a.
We see thats1 determines, independently of botha ands3, the coset{(r ′ + s1 + s3, r ′ +

4s1 + s3) | r ′ ∈ F7}, which isg5(sW). PJ(x) = (r ′ + s1 + s3, r ′ + 4s1 + s3), s1 ands3 uniquely
determineg3(x1, x2, x3) = r ′ + 6s3 which isg6.
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4 Holevo Information and Coherent Information of a Set of Shares

4.1 Holevo Information

In this section we prove that both (3) and (4) are necessary for J to be a qualified set. We use
the Holevo information [13] defined as follows. LetSin andSout be sets of density matrices,
Γ a completely positive trace-preserving map fromSin to Sout, {ρ1, . . . ,ρm} ⊂ Sin, andP a
probability distribution on{ρ1, . . . ,ρm}. The Holevo information is defined as

K(P, {ρ1, . . . , ρm}, Γ) = H


m∑

i=1

P(ρi)Γ(ρi)

 −
m∑

i=1

P(ρi)H(Γ(ρi)), (14)

whereH(·) denotes the von Neumann entropy counted in logq. The Holevo information
essentially expresses the classical information that can be transferred overΓ [13].

Let ΓJ be the completely positive trace-preserving map fromS(
⊗dimC1−dimC2

i=1 Gi) to
S(
⊗

j∈JH j) induced by the encoding procedure proposed in Section 2, whereS(·) denotes
the set of density matrices on a complex space·. By KJ we denote

K(uniform distribution, {|s〉〈s| | s ∈ FdimC1−dimC2
q }, ΓJ). (15)

By [15, Theorem 1] if
KJ < dimC1 − dimC2 (16)

thenJ is not a qualified set. The encoding procedure in Section 2 is apure state scheme [15,
Section 2], that is, the quantum state of all the shares is pure if the encoded quantum secret
is pure. By [15, Proposition 3], ifJ is not a forbidden set, thenJ is not a qualified set. By
[15, Theorem 1] if

KJ > 0 (17)

thenJ is not a forbidden set.
We shall prove the next proposition. By (3), (4), (16) and (17), Proposition 6 implies

that both (3) and (4) are necessary forJ to be a qualified set.

Proposition 6
KJ = dim PJ(C1) − dim PJ(C2). (18)

Proof ΓJ(|s〉〈s|) is the partial trace of (9) over
⊗

j∈JH j . By the definition of partial trace

ΓJ(|s〉〈s|)

=
1
|C2|

∑

x1,x2∈ f (s)

|PJ(x1)〉〈PJ(x2)| 〈PJ(x1)|PJ(x2)〉︸             ︷︷             ︸
=1⇔x2∈x1+ker(PJ)

=
1
|C2|

∑

u∈PJ( f (s))

∑

x1∈ f (s)∩P−1
J

(u)

∑

x2∈ f (s)∩P−1
J

(u)

|PJ(x1)〉〈PJ(x2)|

=
1
|C2|

∑

u∈PJ( f (s))


∑

x1∈ f (s)∩P−1
J

(u)

|PJ(x1)〉




∑

x2∈ f (s)∩P−1
J

(u)

〈PJ(x2)|



=
1
|C2|

∑

u∈PJ( f (s))


∑

x1∈ f (s)∩((0,u)+ker(PJ))

|PJ(x1)〉




∑

x2∈ f (s)∩((0,u)+ker(PJ))

〈PJ(x2)|

 . (19)
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For u1, u2 ∈ PJ( f (s)), if f (s) ∩ ((0, u1) + ker(PJ)) = f (s) ∩ ((0, u2) + ker(PJ)) thenx1 and
x2 in (19) are taken over the same setPJ(x) + PJ(C2 ∩ ker(PJ)), wherex is any vector in
f (s) ∩ ((0, u1) + ker(PJ)). Otherwisex1 andx2 in (19) are taken over two disjoint sets in
PJ( f (s)). So (19) is equal to

1
|C2|

∑

A∈PJ( f (s))/∼


∑

v∈A
|v〉


∑

v∈A
〈v|
 , (20)

where∼ is the equivalence relation that definesv1, v2 ∈ PJ(Fn
q) to be equivalent ifv1 ∈ v2 +

PJ(C2∩ ker(PJ)). (20) is an equal mixture of|PJ(C2)/PJ(C2∩ ker(PJ))| projection matrices
to non-overlapping orthogonal spaces, therefore its von Neumann entropy is dimPJ(C2) −
dim PJ(C2 ∩ ker(PJ)), which is the second term in the right hand side of (14).

By (20), the density matrix of the first term in RHS of of (14) is

1
qdimC1−dimC2

∑

s∈FdimC1−dimC2
q

1
|C2|

∑

A∈PJ( f (s))/∼


∑

v∈A
|v〉


∑

v∈A
〈v|


=
1
|C1|
,

∑

A∈PJ(C1)/PJ(C2∩ker(PJ))


∑

v∈A
|v〉


∑

v∈A
〈v|
 . (21)

The von Neumann entropy of (21) is

dim PJ(C1) − dim PJ(C2 ∩ ker(PJ)) (22)

by the same argument as the last paragraph. By (14)KJ = dim PJ(C1) − dim PJ(C2). ⊓⊔

4.2 Coherent Information

We use the same notation as (14). Denote byΓE the channel to the environment so that any
pure state is mapped to a pure state byΓ ⊗ ΓE. The channel to the environment forΓJ is ΓJ.
Then the coherent information of the input stateρ and the channelΓ is defined by [13]

H(Γ(ρ)) − H(ΓE(ρ)). (23)

Equation (23) can become negative. The quantum capacity is expressed by the maximum of
the coherent information overρ [6].

The coherent information ofΓJ and the completely mixed secret 1
qdimC1−dimC2

∑
s∈FdimC1−dimC2

q
|s〉〈s|

is (22) subtracted by (22) withJ substituted byJ. Therefore the coherent information is

dim PJ(C1) − dimC2 ∩ ker(PJ) − (dim PJ(C1) − dimC2 ∩ ker(PJ)). (24)

We consider to maximize (24) by replacingC1 by D such thatC2 ⊂ D ⊂ C1. This amounts
to maximize (23) over the quantum state completely mixed over the subspace spanned by
{|s〉 | f (s) ⊂ D}.

Lemma 7 Let D be as above. Define

D′ = C2 + (D ∩ ker(PJ)).

Then we have

dim PJ(D) − dimC2 ∩ ker(PJ) − (dim PJ(D) − dimC2 ∩ ker(PJ))

= dim PJ(D
′) − dimC2 ∩ ker(PJ) − (dim PJ(D

′) − dimC2 ∩ ker(PJ)). (25)
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Proof Let D = D′⊕D′′. Then dimD′′ = dimPJ(D′′) becauseD′′∩ker(PJ) = {0}. Therefore
theD′′ component inD does not help to increase the value of (24). ThusD′ yields the same
value for (24) asD and we have (25). ⊓⊔

So we see thatD = C2 + (C1 ∩ ker(PJ)) maximizes the coherent information to its
maximum value

dim PJ(C2 + (C1 ∩ ker(PJ))) − dimC2 ∩ ker(PJ)

− (dim PJ(C2 + (C1 ∩ ker(PJ))︸                              ︷︷                              ︸
=dimPJ(C2)

−dimC2 ∩ ker(PJ))

= dim PJ(C2 + (C1 ∩ ker(PJ))) − (dimC2 ∩ ker(PJ) + dim PJ(C2) − dimC2 ∩ ker(PJ))︸                                                                 ︷︷                                                                 ︸
=dimPJ(C2)

= dim P̃J(kerP̃J).

We remark that the proposed decoding procedure in Section 3 reconstructs precisely that
number of qudits in the secret.

5 Analysis of the Conventional Scheme

In this section we show that the conventional quantum ramp secret SS [15] can be regarded
as a special case of the proposed construction, and its qualified and forbidden sets can be
identified by Theorem 1. Letα1, . . . ,αn be pairwise distinct nonzero1 elements inFq, which
correspond tox1, . . . , xn in [15]. Denote (α1, . . . ,αn) by α. Let v ∈ (Fq \ {0})n. Then the
generalized Reed-Solomon code GRSn,k(α, v) is [10, Section 10.§8]

{(v1h(α1), . . . , vnh(αn)) | degh(x) ≤ k− 1}, (26)

whereh(x) is a univariate polynomial overFq. Let 1 = (1, . . . , 1) ∈ Fn
q andαL = (αL

1,
. . . ,αL

n) ∈ Fn
q. The conventional scheme [15] is a special case of the proposed construction

with C1 = GRSn,k(α, 1) andC2 = GRSn,k−L(α, αL). Observe thatC2 ( C1, dimC1 = k,
and dimC2 = k − L. By the property of the generalized Reed-Solomon codes (seee.g. [10,
Section 11.§4]), any subsetJ ⊆ {1, . . . ,n} satisfies both (3) and (4) if|J| ≥ dimC1 and
|J| ≤ dimC2. Observe that the original restrictionn = dimC1+dimC2 [15] is removed here.

6 Algebraic Geometric Construction

In this section we give a construction ofC1 ⊃ C2 based on algebraic geometry (AG) codes.
A major benefit of the AG codes is thatn can become arbitrarily large for a fixedq [20].
For terminology and mathematical notions of AG codes, please refer to [20]. LetF/Fq be
an algebraic function field of one variable overFq, P1, . . . , Pn pairwise distinct places of
degree one inF, andG1, G2 divisors ofF whose supports contain none ofP1, . . . , Pn. We
assumeG1 ≥ G2. Denote byL(G1) theFq-linear space associated withG1. The functional
AG code associated withG1, P1, . . . ,Pn is defined as

C(G1,P1, . . . ,Pn) = {( f (P1), . . . , f (Pn)) | f ∈ L(G1)}.
1 In [15] αi = 0 was not explicitly prohibited, but an author of [15] informed thatαi must be nonzero for

all i = 1, . . . ,n.
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SinceG1 ≥ G2 we haveC(G1, P1, . . . , Pn) ⊇ C(G2, P1, . . . , Pn). We further assumeC(G1,
P1, . . . ,Pn) , C(G2, P1, . . . ,Pn).

Theorem 8 The ramp quantum SS constructed from C(G1, P1, . . . , Pn) ) C(G2, P1, . . . ,
Pn) encodesdimC(G1, P1, . . . , Pn) − dimC(G2, P1, . . . , Pn) qudits to n shares. We have

dimC(G1,P1, . . . ,Pn) − dimC(G2,P1, . . . ,Pn)

≥ degG1 − degG2 − g(F), (27)

where g(F) denotes the genus of F. A set J⊆ {1, . . . , n} is a qualified set and its complement
J is a forbidden set if

|J| ≥ max{1+ degG1, n− (degG2 − 2g(F) + 1)}. (28)

Proof Equation (27) follows just from

dimC(G1,P1, . . . ,Pn) = dimL(G1) − dimL(G1 − P1 − · · · − Pn), (29)

and the Riemann-Roch theorem [20]

degG1 − g(F) + 1 ≤ dimL(G1) ≤ max{0, degG1 + 1}, (30)

where the left inequality of (30) becomes equality if

degG1 ≥ 2g(F) − 1. (31)

Firstly we claim that (3) and (4) hold if

|J| ≥ 1+ degG1, (32)

|J| ≤ degG2 − 2g(F) + 1. (33)

By reordering indices we may assume thatJ = {1, . . . ,|J|}. Observe that

PJ(C(G1,P1, . . . ,Pn)) = C(G1,P1, . . . ,P|J|). (34)

If (32) holds then by (30) we haveL(G1 − P1 − · · · − P|J|) = {0}, which means thatL(G1) is
isomorphic toC(G1, P1, . . . , P|J|) as anFq-linear space by (29). By the same argument we
also see thatL(G1) is isomorphic toC(G1, P1, . . . ,Pn). Thus we have seen that (32) implies
(3).

If (33) holds then

deg(G2 − P|J|+1 − · · · − Pn) ≥ 2g(F) − 1,

which implies by (31)

dimL(G2 − P|J|+1 − · · · − Pn) = degG2 − |J| − g(F) + 1. (35)

By the same argument
dimL(G2) = degG2 − g(F) + 1. (36)

Equations (29), (35) and (36) imply dimC(G2, P|J|+1, . . . , Pn) = |J|, which in turn implies

C(G2, P|J|+1, . . . ,Pn) = F|J|q . Therefore we see that (33) implies (4).
Finally noting (28)⇒ (32) and (33) finishes the proof.⊓⊔
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Remark 9As the generalized Reed-Solomon codes is a special case of AGcodes with
g(F) = 0 [20], Section 5 can also be deduced from Theorem 8 instead ofusing [10, Section
11.§4].

Theorem 10 We retain notations from Theorem 8 and assumedegG1 < n. The number (1)
of qudits in quantum secret that can be decoded by J is

dim
L(G1 −

∑
j∈J Pj) +L(G2)

(L(G1 −
∑

j∈J Pj) +L(G2)) ∩ (L(G1 −
∑

j∈J Pj) +L(G2))
. (37)

Proof Equation (1) is equal to

dim ker(̃PJ) − dim ker(̃PJ) ∩ ker(̃PJ). (38)

Since we assume degG1 < n, the evaluation maph ∈ L(G1) 7→ (h(P1), . . . , h(Pn) ∈ Fn
q is

injective and we can deal with the space of functions inL(G1) to count the dimensions of
(38).

For h1 + L(G2) ∈ L(G1)/L(G2), its corresponding coset belongs to ker(P̃J) if and only
if there existsh2 ∈ L(G2) such thath1(Pj ) − h2(Pj) = 0 for all j ∈ J, which is equivalent to
h1−h2 ∈ L(G1−

∑
j∈J Pj). In other words, the coseth1+L(G2) satisfies the above condition

if and only if there existsh′1 ∈ L(G1 −
∑

j∈J Pj) such thath1 ≡ h′1 (modL(G2)). The
dimension of space of cosetsh1 + L(G2) with the above condition is given by

dim
L(G1 −

∑
j∈J Pj) +L(G2)

L(G2)
. (39)

Moreover, while satisfying the condition of the last paragraph, the coset corresponding
to h1 + L(G2) belongs to ker(̃PJ) if and only if there exists anotherh′′1 ∈ L(G1 −

∑
j∈J Pj)

such thath1 ≡ h′′1 (modL(G2)). The dimension of space of cosetsh1 + L(G2) with the
above two conditions is given by

dim
(L(G1 −

∑
j∈J Pj) +L(G2)) ∩ (L(G1 −

∑
j∈J Pj) +L(G2))

L(G2)
. (40)

By (38), subtracting (40) from (39) gives (37).⊓⊔

7 Conclusion

We have shown that a quantum ramp secret sharing scheme can beconstructed from any
nested pair of linear codes, and also shown necessary and sufficient conditions for the qual-
ified and the forbidden sets as Theorem 1. A construction of nested linear codes is given by
the algebraic geometry in Theorem 8. The following issues are future research agenda.

What is a better construction ofC1 ) C2 than Theorem 8 whenq < n? In particular,
(33) should use both divisorsG1 andG2 because (3) and (4) use both of nested linear codes.
Also, J corresponds to a set ofFq-rational points on an algebraic curve when AG codes are
used, but only the size ofJ is taken into account in (33). The geometry ofJ should also be
taken into account. We shall investigate them in future.

Acknowledgements The author would like to thank Profs. Ivan Damgård, Johan Hansen, Olav Geil, Diego
Ruano, and Dr. Ignacio Cascudo, for helpful discussions. Hewould also like to thank Prof. Tomohiro Ogawa
for clarification of [15]. This research is partly supportedby the National Institute of Information and Com-
munications Technology, Japan, by the Japan Society for thePromotion of Science Grant Nos. 23246071 and
26289116, and the Villum Foundation through their VELUX Visiting Professor Programme 2013–2014.



12 Ryutaroh Matsumoto

References

1. Blakley, G.R., Meadows, C.: Security of ramp schemes. In:Advances in Cryptology–
CRYPTO’84, Lecture Notes in Computer Science, vol. 196, pp. 242–269. Springer-Verlag (1985).
doi:10.1007/3-540-39568-7_20

2. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A54(2), 1098–
1105 (1996)

3. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random
error correccting codes. In: Advances in Cryptology–EUROCRYPT 2007,Lecture Notes in Computer
Science, vol. 4515, pp. 291–310. Springer-Verlag (2007). doi:10.1007/978-3-540-72540-4_17

4. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett.83(3), 648–651
(1999). doi:10.1103/PhysRevLett.83.648

5. dela Cruz, R., Meyer, A., Solé, P.: Extension of Massey scheme for secret sharing. In: Proc. ITW 2010.
Dublin, Ireland (2010). doi:10.1109/CIG.2010.5592719

6. Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans.
Inform. Theory51(1), 44–55 (2005). doi:10.1109/TIT.2004.839515

7. Forney Jr., G.D.: Dimension/length profiles and trellis complexity of linear block codes. IEEE Trans.
Inform. Theory40(6), 1741–1752 (1994). doi:10.1109/18.340452

8. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000).
doi:10.1103/PhysRevA.61.042311

9. Kurihara, J., Uyematsu, T., Matsumoto, R.: Secret sharing schemes based on linear codes can be precisely
characterized by the relative generalized Hamming weight.IEICE Trans. FundamentalsE95-A(11),
2067–2075 (2012). doi:10.1587/transfun.E95.A.2067

10. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1977)
11. Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correc-

tion. Phys. Rev. A88(4), 042332 (2013). doi:10.1103/PhysRevA.88.042332
12. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A78(4), 042309

(2008). doi:10.1103/PhysRevA.78.042309
13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University

Press, Cambridge, UK (2000)
14. Ogata, W., Kurosawa, K., Tsujii, S.: Nonperfect secret sharing schemes. In: Advances in Cryptology

– AUSCRYPT ’92,Lecture Notes in Computer Science, vol. 718, pp. 56–66. Springer-Verlag (1993).
doi:10.1007/3-540-57220-1_52

15. Ogawa, T., Sasaki, A., Iwamoto, M., Yamamoto, H.: Quantum secret sharing schemes and reversibility
of quantum operations. Phys. Rev. A72(3), 032318 (2005). doi:10.1103/PhysRevA.72.032318

16. Sarvepalli, P.K.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev.
A 86(4), 042303 (2012). doi:10.1103/PhysRevA.86.042303

17. Shamir, A.: How to share a secret. Comm. ACM22(11), 612–613 (1979).
doi:10.1145/359168.359176

18. Smith, A.D.: Quantum secret sharing for general access structures (2000). arXiv:quant-ph/0001087
19. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. London Ser.

A 452(1954), 2551–2577 (1996)
20. Stichtenoth, H.: Algebraic Function Fields and Codes,Graduate Texts in Mathematics, vol. 254, 2nd

edn. Springer-Verlag, Berlin Heidelberg (2009). doi:10.1007/978-3-540-76878-4
21. Yamamoto, H.: Secret sharing system using (k, l, n) threshold scheme. Electronics and Communications

in Japan (Part I: Communications)69(9), 46–54 (1986). doi:10.1002/ecja.4410690906. (the original
Japanese version published in 1985)

22. Zhang, P., Matsumoto, R.: Quantum strongly secure ramp secret sharing. Quantum Information Process-
ing (2014). doi:10.1007/s11128-014-0863-2

http://dx.doi.org/10.1007/3-540-39568-7_20
http://dx.doi.org/10.1007/978-3-540-72540-4_17
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1109/CIG.2010.5592719
http://dx.doi.org/10.1109/TIT.2004.839515
http://dx.doi.org/10.1109/18.340452
http://dx.doi.org/10.1103/PhysRevA.61.042311
http://dx.doi.org/10.1587/transfun.E95.A.2067
http://dx.doi.org/10.1103/PhysRevA.88.042332
http://dx.doi.org/10.1103/PhysRevA.78.042309
http://dx.doi.org/10.1007/3-540-57220-1_52
http://dx.doi.org/10.1103/PhysRevA.72.032318
http://dx.doi.org/10.1103/PhysRevA.86.042303
http://dx.doi.org/10.1145/359168.359176
http://arxiv.org/abs/quant-ph/0001087
http://dx.doi.org/10.1007/978-3-540-76878-4
http://dx.doi.org/10.1002/ecja.4410690906
http://dx.doi.org/10.1007/s11128-014-0863-2

	1 Introduction
	2 Encoding Secrets
	3 Decoding Secrets
	4 Holevo Information and Coherent Information of a Set of Shares
	5 Analysis of the Conventional Scheme
	6 Algebraic Geometric Construction
	7 Conclusion

