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Abstract

In order to prevent the capacitive crosstalk in on-chip buses, several types ofcapacitive crosstalk avoidance codeshave been

devised. These codes are designed to prohibit transition patterns prone to the capacity crosstalk from any consecutivetwo words

transmitted to on-chip buses. This paper provides a rigorous analysis on the asymptotic rate of(p, q)-transition free word sequences

under the assumption that coding is based on a pair of a stateful encoder and astateless decoder. The symbolsp andq representk-bit

transition patterns that should not be appeared in any consecutive two words at the same adjacentk-bit positions. It is proved that

the maximum rate of the sequences equals to thesubgraph domatic numberof (p, q)-transition free graph. Based on the theoretical

results on the subgraph domatic partition problem, a pair oflower and upper bounds on the asymptotic rate is derived. We also

present that the asymptotic rate−2 + log
2

(

3 +
√
17

)

≃ 0.8325 is achievable for thep = 01 ↔ q = 10 transition free word

sequences.

I. I NTRODUCTION

A VLSI-chip consist of several components such as CPU cores and reliable interconnection between them are essential to build

a robust system on-chip. Inter components usually communicate with each other via an on-chip bus, which is a bundle of lines. For

example, a CPU chip with multiple cores equips data buses forexchanging data among the cores. In recent VLSI technology,

shrinking the circuit size is still of great importance because it leads to better yields, lower power consumption, and faster

computation. However, shrinkage of VLSI-chip tends to cause a negative impact on reliable inter-component communication. In

order to decrease the circuit size, we have to make the line width and line spacing narrower. It results in increased capacitance

between adjacent lines in on-chip buses [6]. When the clock frequency is sufficiently high, the capacitive couplings between two

adjacent lines become nonnegligible. The capacitive coupling induces thecapacitive crosstalk, which significantly degrades the

reliability of data exchange over buses.

Assume that we have 3 adjacent linesL1, L2, L3 in an on-chip bus. The center lineL2 is called avictim line. BetweenL1

andL2 (and alsoL2 andL3), there are capacitive couplings. Consider the situation where the sender component changes the

signals emitted to the bus from(L1, L2, L3) = (0, 1, 0) to (L1, L2, L3) = (1, 0, 1) at a certain time instant. The abrupt increase

of the voltage inL1 andL3 induces transient current flows from the both side linesL1 andL3 to the victim lineL2 through the

capacitive coupling between them. As a result, the timing ofthe voltage transition in the victim line is delayed againstothers at

the receiver component. This phenomenon is called thecapacitive delay, which is one of the major harmful effects of capacitive

couplings.

In order to avoid or to weaken the effect of the capacitive crosstalk, several techniques for avoiding the capacitive crosstalk

have been devised. A simple method is to insert several ground lines into the buses to shield the signal lines. This methodis easy

http://arxiv.org/abs/1601.06880v1
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to implement but it cannot provide an optimal solution in terms of space efficiency. Another promising method for preventing

the capacitive crosstalk is to exploitcapacitive crosstalk avoidance codes[6]. The main idea of capacitive crosstalk avoidance

codes is to prohibit transition patterns prone to the capacity crosstalk from any consecutive two words transmitted to abus. For

example, if two consecutive words do not have any adjacent transition010 ↔ 101, the immunity to the capacitive crosstalk is

expected to be improved [6].

Pande et al. [7], Sridhara and Shanbhag [8] presented codingschemes satisfing the condition that a codeword having the

pattern010 (resp.101) are not followed by a codeword having the pattern101 (resp.010) at the same bit positions. They call

the codes satisfying the above constraintforbidden overlap codes (FOC). Another type of a constraint is also discussed by the

same authors. The coding to avoid the transition patterns10 ↔ 10 is said to be forbidden transition coding (FTC) [7] [8]. For

example, Pande et al. [7] proposed a simple 3-bit input/4-bit output stateless FTC. Recently, Nisen and Kudekar presented an

advanced joint FTC and ECC [10] and showed a density evolution analysis.

This paper provides a rigorous analysis on the asymptotic rate of the(p, q)-transition free word sequences under the assumption

that coding is based on a pair of a stateful encoder and astateless decoder. The(p, q)-transition free word sequences is a natural

generalization of FOC and FTC. The symbolsp and q representk-bit transition patterns that should not be appeared in any

consecutive two words at the same adjacentk-bit positions. The term “asymptotic” represents the situation where the word length

grows to infinity.

Victor and Keutzer [9] presented rate analyses for the(10, 01)-transition free word sequences in the case where both of an

encoder and a decoder are stateful, and in the case where bothof them are stateless. The asymptotic rates for combinations of

a stateful encoder and a stateless decoder remains to be studied and thus it brings us a theoretical interest and challenge. The

stateless decoder has a significant practical advantage over the stateful decoder because it can prevent error propagation at the

decoder caused by decoding errors.

II. PRELIMINARIES

The argument presented in this paper heavily relies on graphtheory, especially on domatic partition problems [4] and subgraph

domatic partition problems [5]. Notation and several fundamental facts required throughout the paper will be introduced in this

section.

A. Notation

Let G = (V,E) be an undirected graph, where the setsV andE represent the sets of vertices and edges, respectively. Fora

nodev ∈ V , the degree ofv is denoted byd(v). The symbolsδ(G) and∆(G) represent the minimum and maximum degrees

of G, respectively. Theedge densityof G, denoted byǫ(G), is defined asǫ(G)
△
= |E|/|V |. The set of consecutive integers from

a to b is denoted by[a, b]. The symbolZ represents the set of integers.

B. Subgraph domatic partition (SubDP) problems

The directed graph version of subgraph domatic partition (SubDP) problem was first discussed by Wadayama, Izumi and Ono

[5].

In the following analysis, we use the undirected subDP problem as a key tool. To present its definition, we need to clarify the

definitions of dominating sets and domatic partitions.
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Definition 1 (Dominating set):A dominating setD of G = (V,E) is a subset ofV such that any nodev ∈ V belongs toD

or is adjacent to a node inD.

Definition 2 (Domatic partition):Let D1, D2, . . . , Dk be a partition ofV ; namely,
⋂

i∈[1,k] Di = V and any pair of subsets

Di andDj is disjoint. The partition is called adomatic partitionif all the subsetsD1, D2, . . . , Dk are dominating sets.

The domatic numberD(G) is the largest number of subsets in a domatic partition ofG; i.e.,

D(G)
△
= max{k|D1, D2, . . . , Dk is a domatic partition}. (1)

A number of theoretical studies on domatic partitions and its applications have been published [4]. It is known that computing

the domatic numberD(G) is an NP-hard problem. The domatic number can be upper bounded by

D(G) ≤ δ(G) + 1, (2)

which is called thedegree bound[4]. A non-trivial lower bound proved by Feige et al. [2] has the form:

D(G) ≥ (1 − o(1))(δ(G) + 1)/ ln∆(G), (3)

that is derived using Lovász local lemma [1].

The SubDP problem proposed in [5] is a natural extension of the domatic partition problem, which admits choosing an

appropriate subgraph to increase the domatic number. The solid definition of an undirected graph version of the SubDP problem

is given as follows.

Definition 3 (SubDP problem):Let G = (V,E) be a given undirected graph. The problem to find the SubDP numberS(G)
△
=

maxG′⊆GD(G′) is called theSubDPproblem. The notationG′ ⊆ G means thatG′ is a subgraph ofG.

In a broad sense, we want to have not only the SubDP number but also the corresponding subgraphG′ and the maximal domatic

partition ofG′. It should be noted that the subDP problem is proved to be NP-hard [5].

III. (p, q)-TRANSITION FREE WORD SEQUENCES

A. (p, q)-transition free word sequences

Let p andq be binary (0 or 1) sequences of lengthk; e.g.,p = 101 andq = 010 (k = 3). The pair of sequencesp andq is

called aforbidden transition pair. In what follows, a word means a binary sequence of lengthn(n > k) that corresponds to the

set of signals exchanged in an on-chip bus. Two binary sequencesx andy of finite or infinite length are said to be(p, q)-violating

if there is an indexi ∈ Z satisfying

p = xi+1xi+2 · · ·xi+k, q = yi+1yi+2 · · · yi+k

or

q = xi+1xi+2 · · ·xi+k, p = yi+1yi+2 · · · yi+k,

wherexi andyi denotei-th elements of the sequencesx andy, respectively. Otherwise, the pairx andy is said to be(p, q)-

transition free.

Our goal is to design an encoder and a decoder that generate word sequences (i.e., word streams exchanged in the buses) with

the (p, q)-transition free property.
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Definition 4 ((p, q)-transition free word sequence):Suppose that we have an infinite sequence of words(. . . , ai, . . .) where

ai(i ∈ Z) is a word of lengthn. If ai and ai+1 are (p, q)-transition free for anyi ∈ Z, then the sequence is said to be

(p, q)-transition free word sequence.

In the scenario of the data transmission over on-chip buses,it is reasonable to assume(p = 10, q = 01) (FTC) or (p =

101, q = 010)(FOC) [6] [7] [8]. In order to avoid (or weaken) the effect of capacitive crosstalk,(p, q)-violating two words

should not be sent consecutively. This means that a word sequence sent to the buses should be a(p, q)-transition free word

sequence.

B. Asymptotic rate of(p, q)-transition free word sequences

In this paper, we will discuss state dependent encoders for converting a message sequence to a(p, q)-transition free word

sequence. An encoder consists of anencoding functionE : [1,M ] × {0, 1}n → {0, 1}n that computes the next state of the

encoder from a message in the range[1,M ] entered into the encoder and the current state kept in the encoder. The symbolM

represents the cardinality of the message alphabet. A set ofstates of the encoder consists of words in(p, q)-transition free word

sequences. An infinite sequence of states(. . . , si, . . .) generated by the recursionsi+1 = E(mi, si) must be a(p, q)-transition

free word sequence for any message sequence(. . . ,mi, . . .). The statesi+1 computed by the encoding functionE is sent to the

channel and then the encoder state is updated tosi+1.

A decoding functionD : {0, 1}n → [1,M ] must satisfy the following consistency condition:

m = D(E(m, s)) (4)

for any m ∈ [1,m] and anys ∈ {0, 1}n. This means that the decoding function satisfying this consistency condition can

immediately obtain the correct message by observing an output from the encoder. Note that the decoder does not have internal

memories to keep its state, which is a desirable feature for adecoder to prevent error propagation due to channel noises.

For a given forbidden transition pair(p, q), a pair(n,M) is said to beachievableif there exists a pair of encoding and decoding

functions satisfying the consistency condition (4). The maximum rate of(p, q)-transition free word sequences is naturally defined

by

R(p, q, n)
△
= max

(n,M) is achievable

log2 M

n
. (5)

Based on this maximum rate, we define the asymptotic rate of(p, q)-transition free word sequences by

R(p, q)
△
= lim sup

n→∞

R(p, q, n). (6)

The problem setup is slightly different from the conventional problem setups of coding for constraint sequences that allow an

encoder to have multiple words in its memories instead of only a single word assumed in this paper. In our scenario, the number

of possible words are exponential ton. It thus may be reasonable to investigate the simplest encoder that requires the least

hardware complexity.

C. (p, q)-transition free graph

It will be convenient to name the state transition graphs representing the(p, q)-transition free constraints.

Definition 5 ((p, q)-transition free graph):Assume a directed graphG = (V,E) with |V | = 2n nodes. Letb be a bijection

betweenV and all binary words of lengthn, i.e.,{0, 1}n. The word corresponding to a nodev ∈ V is denoted byb(v) ∈ {0, 1}n.
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Fig. 1. (10, 01)-transition free graphG(10, 01, 3): no (p, q)-violating words containing forbidden transition pairs10, 01 at the same bit positions, such as
101 and010, are connected.

Any two nodesv, w ∈ V are connected if and only ifb(v) andb(w) are(p, q)-transition free. Then, the graphG is said to be a

(p, q)-transition free graph.

By the definition, the(p, q)-transition free graph is uniquely determined by(p, q) andn, which is denote byG(p, q, n). As an

example, Fig.1 presents the(10, 01)-transition free graphG(10, 01, 3). It can be observed that no(p, q)-violating two words are

connected; every pair of adjacent nodes contain no forbidden transition pair01 ↔ 10.

IV. A SYMPTOTIC GROWTH RATE OFSUBDP NUMBER

In this section, we will discuss the asymptotic growth rate of SubDP number that has a close relationship to the maximum

rateR(p, q, n).

A. Maximum rate and SubDP number

Assume that a graphG∗ = (V ∗, E∗) is the optimal subgraph ofG(p, q, n) that gives the SubDP number ofG(p, q, n). There

is a domatic partition ofG∗ producing disjoint subsets ofV ∗, D1, D2, . . . , DS(G(p,q,n)) where any subsetDi is a dominating

set ofG∗. From this partition, we can define a decoding functionD by D(b(x))
△
= i if x ∈ Di for x in V ∗. It is evident that,

for any x ∈ V ∗ and for anyi ∈ [1, S(G(p, q, n))], the neighbor set ofx (nodes adjacent tox andx itself) includes at least one

node belonging toDi. According to the decoding function defined above, an encoding function is defined byE(b(x), i) △
= b(y)

for x ∈ V ∗ and i ∈ [1, S(G(p, q, n))]. In this equation, the nodey ∈ V ∗ should be in the neighbor set ofx and belong to

Di. It is easy to see that the pair of these encoding and decodingfunctions satisfies the consistency condition (4). SinceG∗

is a subgraph ofG(p, q, n), an output word sequence from this encoder becomes a(p, q)-transition free word sequence. In this

case, we haveM = S(G(p, q, n)) and it leads to a lower bound on the maximum rate of(p, q)-transition free word sequences:

R(p, q, n) ≥ log2 S(G(p, q, n))/n.

On the other hand, assume that we know a pair of encoding and decoding functions(E ,D) achievingR(p, q, n). Let G′ =

(V ′, E′) be a subgraph ofG(p, q, n) satisfying the following conditions. The set of nodesV ′ is the set of nodes satisfying

∀v ∈ V ′, ∀m ∈ [1, 2nR(p,q,n)], b−1(E(m, b(v))) ∈ V ′ (7)
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and the edge setE′ is given by

E′ = {(s, b−1(E(m, b(s)))) | s ∈ V ′,m ∈ [1, 2nR(p,q,n)]}. (8)

Note that both(a, b) and(b, a) represents the identical undirected edge. The decoding function generates a partition ofV ′ of size

2nR(p,q,n) and it needs to be a domatic partition. This observation leads to the inequalityS(G(p, q, n)) ≥ 2nR(p,q,n). Combining

two inequalities onR(p, q, n), we immediately have the equality on the maximum rate:

R(p, q, n) =
log2 S(G(p, q, n))

n
. (9)

Therefore, studying asymptotic rate of the(p, q)-transition free word sequences is equivalent to study the asymptotic behavior

of the SubDP number of the(p, q)-transition free graph.

B. Bounds on asymptotic growth rate of SubDP number

The next theorem presents upper and lower bounds on the asymptotic growth rate of the SubDP number for general graph

sequences.

Theorem 1:Assume that a sequence of undirected graphsGn = (Vn, En)(n = 1, 2, 3, . . .) with 2n-nodes have a non-vanishing

limit of the asymptotic growth rate of the edge density:

α
△
= lim

n→∞

1

n
log2 ǫ(Gn) > 0.

The asymptotic growth rate of the SubDP numberS(Gn) of this graph sequence is bounded as

α ≤ lim sup
n→∞

1

n
log2 S(Gn) ≤

1 + α

2
. (10)

(Proof of Theorem 1) From the definition of the edge density, we have

ǫ(Gn) = |En|/|Vn| = |En|/2n. (11)

By exploiting a graph pruning method presented in [3], we canretrieve an induced subgraph̃G ⊆ Gn satisfying

δ(G̃) ≥ ǫ(Gn) = |En|/2n. (12)

The lemma due to Feige et al. [2] guarantees the existence of adomatic partition ofG̃ with the domatic number satisfying

D(G̃) ≥ (1 − o(1))(δ(G̃) + 1)/ ln∆(G̃) (13)

≥ (1 − o(1))(ǫ(Gn) + 1)/ ln∆(Gn). (14)

In the derivation of the last inequality, the inequality (12) was used. Due to this inequality, we can derive a lower boundon the

asymptotic growth rate ofS(G̃) in the following way:

lim sup
n→∞

1

n
log2 S(G) ≥ lim sup

n→∞

1

n
log2 D(G̃) (15)

≥ lim
n→∞

1

n
log2 ǫ(Gn) = α. (16)
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We then consider the opposite direction. LetG∗ = (V ∗, E∗) be the subgraph ofGn that gives the SubDP numberS(Gn). For

any nodev ∈ G∗, the degree ofv must satisfyd(v) ≥ S(Gn) − 1. By using this inequality ond(v), we have a sequence of

inequalities:

|En| ≥ |E∗| = (1/2)
∑

v∈V ∗

d(v) (17)

≥ (1/2)|V ∗|(S(Gn)− 1) (18)

≥ (1/2)S(Gn)(S(Gn)− 1). (19)

The last inequality is based on a simple fact that|V ∗| ≥ S(Gn). In summary, the quantity2|Vn|ǫ(Gn) can be lower bounded

by 2|Vn|ǫ(Gn) = 2|En| ≥ S(Gn)(S(Gn)− 1). Taking limsup on the both sides of the above inequality, we immediately obtain

lim
n→∞

1

n
log2 2|Vn|ǫ(Gn) ≥ lim sup

n→∞

1

n
log2 S(Gn)(S(Gn)− 1) (20)

that can be reduced to the upper bound

lim sup
n→∞

1

n
log2 S(Gn) ≤

1 + α

2
(21)

in the claim of the theorem. �

Note that the bounds shown in Theorem 1 are sharp. Suppose that the graphGn is the complete graph of size2n. In this

case, we have

α = lim
n→∞

1

n
log2

2n(2n − 1)

2n+1
= 1. (22)

Substituting α = 1 into the bounds, the lower bound coincides with the upper bounds and we obtain

lim supn→∞(1/n) log2 S(Gn) = 1.

V. A SYMPTOTIC GROWTH RATE OF EDGE DENSITY

In this section, we will describe a method for evaluating thenumber of edges of the(p, q)-transition free graph that is required

for deriving the asymptotic growth rate of the edge density:α(p, q)
△
= limn→∞(1/n) log2 ǫ(G(p, q, n)).

A. Size of edge set ofG(p, q, n)

Let N(p, q, n) be the number of the(p, q)-transition free word pairs; i.e.,

N(p, q, n)
△
= |{(a, b) ∈ {0, 1}n × {0, 1}n | a, b: (p, q)-tr. free}|. (23)

The numberN(p, q, n) can be used for counting the size of the edge set, denoted byE(p, q, n) of G(p, q, n):

|E(p, q, n)| = N(p, q, n)− 2n

2
. (24)

The term2n in the numerator is included to exclude the pairs consistingof the same word. The denominator compensates over

counts on edges;(a, b) and (b, a) represents an identical edge inG(p, q, n).

B. Counting of(10, 01)-transition free word pairs

This subsection describes how to countN(p, q, n). In order to simplify the discussion, we will focus on the simplest case

(FTC) wherep = 10, q = 01 in this subsection (general cases are to be discussed later).
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Fig. 2. State transition graph for(10, 01)-transition free sequence pair: the label sequence of any walk in this graph corresponds to a(10, 01)-transition free
sequence pair.

Suppose the situation where an infinite sequence. . . , (ai, bi), (ai+1, bi+1), . . . follows the state transition graph depicted in

Fig. 2 where(ai, bi) ∈ {0, 1}2 for i ∈ Z. Since there are no state transitions between(1, 0) ↔ (1, 0) in the state transition graph,

the two sequences(. . . , ai, . . .) and(. . . , bi, . . .) are(10, 01)-transition free. Furthermore, any(10, 01)-transition free sequence

pair corresponds to an allowable walk in the state transition graph. Thus, calculation ofN(10, 01, n) can be done by counting

the number of allowable walks of lengthn in the state transition graph. It is simply carried out by using matrix multiplication:

N(10, 01, n) = (1111)An−1















1

1

1

1















, A
△
=















1 1 1 1

1 1 0 1

1 0 1 1

1 1 1 1















, (25)

whereA is an adjacent matrix of the state transition graph in Fig. 2.The largest eigenvalue ofA is

λmax =
1

2

(

3 +
√
17
)

and the corresponding eigenvector is

pmax =

(

1,−1 +
1

4

(

3 +
√
17
)

,−1 +
1

4

(

3 +
√
17
)

, 1

)T

. (26)

It is well known that, for any nonzero initial vectorx, Anx approaches toβλn
maxpmax whenn goes to infinity whereβ is a

real constant. By using this fact, we immediately have

lim
n→∞

1

n
log2 N(10, 01, n) = λmax =

1

2

(

3 +
√
17
)

. (27)

We are now ready to evaluateα(10, 01):

α(10, 01) = lim
n→∞

1

n
log2 ǫ(G(10, 01, n)) (28)

= lim
n→∞

1

n
log2

( |E(10, 01, n)|
2n

)

(29)

= lim
n→∞

1

n
log2

(

λn
max(1 + o(1))

2n

)

(30)

= log2 (λmax/2) (31)

= −2 + log2

(

3 +
√
17
)

≃ 0.8325. (32)
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Substituting the valueα(10, 01) into the upper and lower bounds in Theorem 1, the following corollary is obtained.

Corollary 1: The asymptotic rateR(10, 01) for the (10, 01)-transition free word sequences is bounded as

− 2 + log2

(

3 +
√
17
)

≤ R(10, 01) ≤ −1 + log2
(

3 +
√
17
)

2
. (33)

Note that the values in the bounds can be approximated as0.8325 ≤ R(10, 01) ≤ 0.9162.

It is shown in [9] that the asymptotic growth rate of the minimum degree of the(10, 01)-transition free graphs is given by

lim
n→∞

1

n
log2 δ(G(10, 01, n)) = log2

(

1 +
√
5

2

)

≃ 0.6942. (34)

This means that the asymptotic rate of coding schemes constructed directly from the domatic partition ofG(10, 01, n) cannot

exceed 0.6942 because the domatic number is less than or equal to δ(G(10, 01, n)) + 1. On the other hand, Corollary 1 gives a

guarantee of existence of coding schemes with the asymptotic rate beyond 0.8325. An apparent implication of this observation

is that finding an appropriate subset inG(p, q, n) is crucial for achieving near optima rate whenn is sufficiently large. In other

words, considering SubDP problems onG(p, q, n) is indispensable to design efficient long codes for the(p, q)-transition free

word sequences. Note that Victor and Keutzer [9] reported that the asymptotic rate of stateless coding for the(10, 01)-transition

free word sequences cannot exceed 0.6942.

C. Counting for general(p, q)-transition free sequence pairs

The key of successful calculation of the number of edges inG(10, 01, n) was to define an appropriate state transition graph

representing all the(10, 01)-transition free sequence pairs. The same technique can be extended to general cases. Assume that a

directed graphG with 22k−2 nodes is given and that each node is labeled with a binary2k−2 tuple (i.e., there is a bijection between

the node set and{0, 1}2k−2). If and only if, for any pair of(p, q)-transition free sequencesa = (. . . , ai, . . .), b = (. . . , bi, . . .)

and for any indexi ∈ Z, an edge from the node with label

(ai+1, bi+1, ai+2, bi+2, . . . , ai+k−1, bi+k−1) ∈ {0, 1}2k−2

to the node with label

(ai+2, bi+2, ai+3, bi+3, . . . , ai+k, bi+k) ∈ {0, 1}2k−2

exists, then the graphG is said to be the(p, q)-transition free pair graph. Any (p, q)-transition free sequence pair corresponds

to a walk on the(p, q)-transition free pair graph. This means that countingN(p, q, n) is equivalent to count the number of

possible walks of lengthn in the (p, q)-transition free pair graph. As in the case of the previous subsection, we can use the same

technique to evaluate the growth rate ofN(p, q, n). The largest eigenvalue of the adjacent matrix of(p, q)-transition free pair

graph dominates the asymptotic behavior of the number of theedge set ofG(p, q, n). For example, the(p = 101, q = 010)-

transition free pair graph(k = 3) consists of 16-nodes. Except for the two nodes corresponding to the forbidden transition pair,

every nodes in the graph has outbound degree 4. Precisely speaking, the edges0110 → 1001 and1001 → 0110 are missing.

From the maximum eigenvalue of the adjacent matrix of this graph, we can immediately evaluate the asymptotic growth rateof

the edge density asα(101, 010) ≃ 0.9636.
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