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Exponent Function for Stationary Memoryless
Channels with Input Cost at Rates above the
Capacity
Yasutada Oohama
i T c05 e prove o o eonsmicdon s Bhove.  methods by AfmoTo2], Debek and Kormét 3] and Nagaoka.

the capacity the correct probability of decoding tends to zeo  [5], Hayashi and Nagaok&l[6] to derive the result. Our method

exponentially as the block lengthn of codes tends to infinity. In can be regarded as the fourth new method, having the foltpwin
the case where both of channel input and output sets are finiteve

two merits:
determine the optimal exponent function on the above expomgial .
decay of the correct probability. To derive this result we ug 1. Our method and the method of Nf”‘gaOKh .[5]’ Hayashi
a new technique called the recursive method, which is based and Nagaoka [6] are based on the information spectrum
on the information spectrum approach. The recursive method method. Those two methods have a common advantage
utilizes a certain recursive structure on the information pectrum that they also work for the derivation of the expo-
quantities. nent function for general memoryless channels(GMCs),

where the channel input and outputs are real lines. On
the other hand, the method of type used by Dueck and
Korner [3] only works for DMCs where channel input
and output sets are finite.

Keywords—Stationary memoryless channels, Strong converse
theorem, Information spectrum approach

. INTRODUCTION 2. The recursive method is a general powerful tool to prove
A certain class of noisy channels has a property that the strong converse theorems for several coding problems in
error probability of decoding goes to one as the block length information theory. In fact, this method played important
n of transmitted codes tends to infinity at rates above the roles in deriving exponential strong converse exponent
channel capacity. This property is called the strong cawer for communication systems treated i [8]{12].

property. In the case of DMCs without cost Arimotd] [2] By the first merit, we derive a I.ower bound of_the optimal
proved that the error probability of decoding goes to oneeXponent funct|on_ f_or GMCs. This lower bound is thoug_ht to
exponentially and derived a lower bound of the exponenP€ useful for deriving explicit lower bounds of the optimal
function. Subsequently, Dueck and Korner [3] determirel t €XPonent functions for several examples of GMCs.
optimal exponent function for the error probability of ddow I
to go to one. They derived the result by using a combinatorial l\/iEMORYLESSCHANNELS WITH INPUT COST
method base on the type of sequendes [1]. The equality of ) . .
the lower bound of Arimotol[2] to that of the optimal bound W€ consider a stationary discrete memoryless chan-
of Dueck and Kérner[[3] was proved by the author [4]. A N€l(DMC) with the input sett” and the output sed. We
simple derivation of the exponent function in the problerh se3SSUme t_haP( a_ndy are f'”“? sets. A case wheré and Y
up of quantum channel coding was given by NagadRa [5]2€ 'e@l lines will be treated in SectipnlVI. . o
Hayashi and Nagaokal[6]. In the derivation they used the The SDMC is specified by the following stochastic matrix:
information spectrum method introduced by Ham [7] and a 4
min-max expression of the channel capacity. W {W-(y|17)}(m4{)ex><y- (_1)

In this paper, we determine the optimal exponent function ofk€t X" be a random variable taking values &1'. We write
the correct probability of decoding at rates above capdoity an element ofX™ asa™ = zyxs---2,. Suppose thatX™
DMCs with input cost. This result can be obtained by a method'as a probability distribution on¥™ denoted bypx~ =
quite parallel with the method Dueck and Korngr [3] used tof{px»(z")},ncn- Similar notations are adopted for other
obtain the optimal exponent function in the case withoutinp random variables. Let™ € J™ be a random variable obtained
cost. Instead of using their method, we use a new method baség the channel output by connecting” to the input of
on the information spectrum method. A main contribution ofchannel. We write a conditional distribution " on given
this paper is that we establish a new powerful method to derivX" as
a tight exponent function at rates above the capacity for BMC W= {Wn(yn|zn)}(mn,yn)exnxyn .
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Let K, be uniformly distributed random variables taking The supremum of alk-achievableR underI" is denoted by

values in message sefs,. Cpmc (e, T|W). We set

The random variablds,, is a message sent to the receiver.
A sender transform&’,, into a transmitted sequenc€™ using Comc(T|W) 2 inf Comc (e, T|W),
an encoder function and sends it to the receiver. In thismpape €(0,1)

we assume that the encoder functipf”) is a deterministic o _ _
encoder. In this case;™ is a one-to-one mapping froid,, which is called the channel capacity. The maximum error

into A The joint probability mass function o™ x )" is probability of decoding is defined by as follows:

given by n n) (,(n) ) (n
L P{), = PO (o™, 9 |)
Pr{(X™Y") = (2™,y™")} = T HW (ye |zt (k)), 2 l?el%x Pr{d)(”)(Y”) £ kK, =k}
n t=1 n
where z;(k) = [e™(k)];, t = 1,2,---,n are thet-th Based on this quantity, we define the maximum capacity as

components of™ = 2" (k) = (™ (k) and|K, | is a cardinality ~ follows. For a givens € (0,1), R is e-achievable underT,
of the setC,,. The decoding function at the receiver is denotedif for any § > 0, there exist a positive integer, = nq(e, )
by v("). This function is formally defined by : y» — K,,.  and a sequence of paif§p™, (™) : o™ (K,) € ST} |
Letc: X — [0,00) be a cost function. The average cost onsuch that for any: > ng(e, d),

output of (™) must not exceed'. This condition is given by

; n 1
™ (K,) € I, where P (o™ M W) <&, —log|Kn|>R—46 (4
’ n
s 2 {x" can: L > elm) < F}. The supremum of alt-achievable rates undéris denoted by
i Cmpmc(e, T|W). We set

The average error probabilities of decoding at the recawer

defined by Cun,pmc(D[W) = sé?éf,n Cm,pmc(e, TIW)
P = PM (o™ ™) 2 Pr{yp™M(Y") £ K,} which is called the maximum capacity of the DMC. Set
e = W)= max  I(px, W), ©)
For k € K, setD(k) 2 {y" : (" (y") = k}. The families Ei);i()(()g)f
of sets{D(k)}rex, is called the decoding regions. Using the
decoding regionPC") can be written as where P(X) is a set of probability distribution ot and
1 I(px,W) stands for a mutual information betweeti and
PM =1 —— Z Pr{Y"™ € D(k)| X" = o™ (k))} Y when input distribution ofX is px. The following is a well
L et known result.
1 ol ol n Theorem 1. For any DMCW, we have
:1—mz Z w (y i )(k))
" kek, y"€D(k) Cm,DMC(F|W) = ODMC(F|W) = C(F|W)
1 n n
=1- 1Kol Z w (D(k) “P( )(k)) : Han [7] established the strong converse theorem for DMCs
kekn with input cost. His result is as follows.
Set Theorem 2 (Han [[7]): If R > C(T'|W), then for any
() (™Y - oM (F (Moo satisfyi
PO — P (o) M) 2 1 — PO (oM () |117). {(@"™, M) pW(K,) € SR 32, satisfying
. n) . 1.
The quantltyPE ) is called the average correct probability of — liminf M,, > R,
decoding. This quantity has the following form nonmee
1 we have
(n) — n (n)
PO = e X W (PW 47 ) lim P (o™, W) = 1.
ke, n—00
For givene € (0,1), R is e-achievable underI" if for any The following corollary immediately follows from this the-

d > 0, there exist a positive integery = ng(¢,0) and a  grem.

sequence of pair§(x™, p(™) : o™ (K,) € ST} | such Corollary 1: For each fixece € (0,1) and any DMCW,
that for anyn > ng(e, ), we have

1
P (oM pMW) < e, - log|Kn| > R—6.  (3) Cm.pmic (e, T|W) = Cpomc(e, T|W) = C(T|W).



To examine an asymptotic behaviorBi")(gq(”>,w(’”).f_or Proof of this theorem is given in Append® B. LBl =
largen at R > C(I'|W), we define the following quantities: max,cy c(z).The casel' > T',., corresponds to the case
without cost. In this case Dueck and Korner [3] show that

G"™(R,T|W)
1 G*(R,T|W) = Gpk (R, T|W).
S min (——) log P (™), ™ [W), |
(™) (M) n They derived the bound?*(R,I'|W) < Gpk(R,T|W) by
™ (Kn)est, using a combinatorial method based on the type of sequences.
(1/n) log Mn 2R Our method to prove Theordr 3 is different from their method
G*(R,T|W) 2 lim G (R,T|W). since we do not use a particular structure of types.
n—00 We next derive a lower bound @¥*(R,T'|W). To this end
On the above exponent functions, we have the followingve define several quantities. Define
property. (ks )
Property 1: 2 ax, QW)

a) By definition we have that for each fixed > 1, 5, W W (y|z)erAel)
G™(R,T|W) is a monotone increasing function of Slog| Y ax(@)W(yl) () ;

R > 0 and satisfie<7"™) (R,T'|W) < R. (@y)eXxy
b) The sequencéG™ (R,T'|W) },>1 of exponent func- QUMWY L max  min QEN(gx, Q|W),
tions satisfies the following subadditivity property: ax EP(X) QEP(Y)
(s 2)
G(ner) (R,F|W) G(p, A) (R F|W) A )‘(R MF1)+/§\2 (W)7
nG™ (R, T|W) + mG™ (R,T|W) \
< . (6) G(R,T|W) 2 sup GWN (R, T|W).
n—+m 1,A>0
from which we have that:* (R, I'|W) exists and is equal  our main result is the following.
to inf,>1 GM(R,T|W). _ Theorem 4: For any DMCW, we have
c) For fixedR > 0, the functionG*(R,T'|W) is a mono-
tone decreasing function df. For fixedI' > Iy = G*(R,T|W) > G(R,T|W). (8)

mingey ¢(z), the function G*(R,T|W) a monotone

increasing function of? and satisfies Proof of this theorem will be given in SectignllV. Arimoto

[2] derived a lower bound aof#* (R, T'|WW), which we denote by
G*(R,T|W) < R. (7)  Gar(R,T'|W). To describe this exponent function we define
some functions. FoA € [0,1), define

d) The function G*(R,T|W) is a convex function of (1)
(R,T). JH (gx W)

Proof of Property 1l is given in Appendix] A. = A
S DI { (ylz)e™ “Acm} :

X
l1l. M AIN RESULT vey Lec

A
GUN(R,T, qx|W) 2 MR — L) — J#) (qx |W),
GENRTIW) L min GEN(RT, gx W),
AR ( | ) qXIél%)I(lX) AR ( le )

In this section we state our main result. Define

A
Gpk (R, T'|W) = i R—I(gx, +
pk(RIW) = min - {[R —1(gx,qv|x)]

Eg [e(X)]<T Furthermore, set

D w
+ D(gyix|Wlax)} Gar(R,T[W) 2 sup GUN(R,TIW)

where P(X x ) is the set of joint probability distributions A*go B
onX x Y, [t]t = max{0,¢}, and
= sup min G (R,F,qX|W)
I = E {1 QYIX(Y|X)} L0 gx €P(X)
N = (0] 5 €10,
ax,qy|x q |08 oy (Y) .
QYIX(Y|X)} = sup |A(R—pl)— max J¥(gx[W)|.
D W =B, |log = —~ >0, eP(X)
(vl Wlax) = B, 1o 2EC2 = o
Using the standard method developed by Csiszar and Korndthen we have the following proposition.
[1], we can prove the following theorem. Proposition 1: For any DMCW and for anyu, A > 0, we
Theorem 3: For anyR > 0, have the following:

G*(R,I'|W) < Gpk (R, T'|W). GEN(R,TIW) = GV 5 (R, T W) (9)



In particular, we have

G(R,T|W) = Gar(R,T|W). (10)

Proof of this proposition is given in Sectidnl V. We next

state a relation betwee@sr(R,T'|W) and Gpk( R,T|W).
To this end we present a lemma stating th&x ( R, T'|W)
has two parametric expressions. kor- 0, we define

GW (R, T|W)

A
= min { [R —I(ax.avpx)] "+ Dlayix[|Wlax)

— (0 = Eqy [e(X)]) }- (11)
For u, A > 0, we define
A
Gl (R,TIW)
A
= min {A [R = I(gx, gy x)] = 1T + By [e(X)]
+ D(gyx||Wlax)}- (12)
Then we have the following lemma.
Lemma 1: For anyR > 0, we have
Gok(R,T[W) = max GER(RTIW).  (13)
14
For anyu > 0, any R > 0, we have
(1) _ (ke A)
Ghi (R, T|W) = Jmax Gpi (R, T|W). (14)
The two equalities[{13) an@{1L4) imply that
Gok(R.T|W) = max G (R.IW).  (15)
n=>0,

XE[0,1]

Proof of this lemma will be given in Appendix]C. The fol-
lowing proposition states that the two quantitiégg (R, I'|W)
and Gpk (R, T'|W) match.

Proposition 2: For anyu, A > 0, we have the following:

GLRY (R, TIW) =GRV (R TW). (16)
In particular, we have
Gar(R,T|W) = Gpk (R, T|W). 17)

Proof of this proposition is given in Sectidnl V. From

Theorem$B[14 and Propositions[1, 2, we immediately obtain

the following theorem.
Theorem 5: For any DMCW, we have

G*(R,T|W)

= G(R,T|W) = Gar(R,T|W) = Gpk (R, T|W). (18)

IV. PROOF OF THERESULTS

We first prove the following lemma.
Lemma 2: For anyn > 0 and for any(p(™), 4(™)) satisfying
(1/n)log|K,| > R, we have

PO (o™ pM|W) < pxnyn {

1. Wr(ynxm)

R< —log——————
In (I9) we can choose any probability distributigh~ on

yr.
Proof : For 2™ inX™, set

1
+n,I'> EC(X")} +e ™.(19)

n JAN n n n n —n n
A”™) = {y" - W(y"|z") = [Kale™™"Qyn (y") }-
Let . A(z™) stand fory™ — A(z™). Then we have the following:

PY) = o 32 W (D) N A 1) [ ) )

ke

> w (D) NAGH)) o) (k) )

keky,

On the quantityA\y, we have

wn(y"™|xXm)
Qyn(Y™)

wn(y"|Xxm)
Qyn(Y™)

> %C(X")}

1w yr|xn)
{RS nlog Qyn(Y™)

r> %C(X")}.

v

+n,

a 1 1

(b)

1 1
n n

()

< pxnyn +n,

(20)

Step (a) follows from the definition ofA. Step (b) follows
from X" = o™ (K,) € 8. Step (c) follows from(1/n)
log || > R. Hence it suffices to show\; < e~ to prove
Lemmal2. We have the following chain of inequalities:

() 1 h —
A1 S e 3 Kl @y (DGR NATIE)

ke,
()
ke,

<e ™

< > Qv (D(k)) = e " Qyn

ke,
<e ™,



Step (a) follows from that for every” € D(k) N A(o(™) (k)),
we haveW " (y"|p™ (k) < e ™|, |Qy (y™). u
From Lemmd[R, we have the following lemma
Lemma 3: For anyn > 0 and for any(p("™), (")) satisfying
(1/n)log|K,| > R, we have

P (™, ™M |W) < pxnyn {

n

1
n, T > - Zc(Xt)} +e ",

1~ WYXy
R<— log ——————= +
K ; Qi(Yy) t=1

Proof: In (I9) in Lemmd®, we choosg@y - having the form
Qv (Y") = ] Q:(¥2).
t=1
Then from the bound{19) in Lemnid 2, we obtain

P (o), | T1) < pw{

1< W (Y| X,) 1 & } _
R< =) log————+nT2>=> c(X;)p+e ",
w280 PILCD

completing the proof.

Proof: Under the condition(1/n)log|K,| > R, we have
the following chain of inequalities:

a)
P (o), |W) < pxnyn{

(b) 1
< exp [n{—/\(R —ul) + A\ +EQ(“’)‘) (p(")7 Qn)H
+e7 ™1, (21)

Step (a) follows from Lemmia 3. Step (b) follows from Lemma
[4. We choose; so that

1
—n=-AR—ul)+ A+ EQM ™, Q"). (22)

n
We use the following lemma, which is well known as the Solving [22) with respect tg, we have

Cramer’s bound in the large deviation principle.
Lemma 4. For any real valued random variab¥ and any
6 > 0, we have

Pr{Z > a} <exp[— (fa —logE[exp(02)])] .

Here we define a quantity which serves as an exponential

upper bound ofP{™ (o™ (™ [W). Let P (W) be a set
of all probability distributiong x~y~» on X™ x Y™ having the
form:

PXxnyn ($n7 yn)

= prt\xtfl (ze|z" =)W (ye|ze).
t=1

For simplicity of notation we use the notatigf®) for pxnyn
e P (W). For p™ € PO(W) and Q" = {Q:}1, €
P(Y), we define

n Wk(y;lXt)e—u)\c(Xt)
QN (p™ Q") £ log By
! t[[l Q7 (Y)

By Lemmad B an@l4, we have the following proposition.
Proposition 3: For any A > 0, any Q" € P™()), and any
(o™ (M) satisfying(1/n) log |K,,| > R, we have

1 n n
/\(R_ I ) _ EQ(#A)(p( )’Q )

< 2exp T ;

—n

for somep(™ e P (W) and for anyQ™ € P"()).

1
A(R = ') =~ (p(, Q")

1+ A
For this choice of; and [21), we have

pgn)((p(n)’z/,(n)|w) < 2e7 M1
1
AR = jiT) = =N ), Qn)

’[’I:

= 2 j—
exp n Y ’
completing the proof. m
Set
ﬁ(lu"r)‘) (W)
1
Ssup max o omin 00N (0, Q).

n>1pMep™ (W) QUEP™ (V) N

By the above definition oﬁ(“”\)(W) and Propositiofl]3, we

have

AR — ) — 2% (w)
1+ A

Then from [2B), we obtain the following corollary.
Corollary 2: For anyu, A > 0, we have

1
GM(R,T|W) > — —log2. (23)

AR — ul) — a* N w)

*(R,T|W) >
G (RT|W) = o

We shall call" (W) the communication potential. The
above corollary implies that the analysis oY (W) leads

to an establishment of a strong converse theorem for the DMC.



In the following argument we drive an explicit upper bound  Proof:

of ﬁ(“’A)(W). For eacht = 1,2,---,n, define the function
of (x4,y:) € & xY by

N W)\ (yt |It)ef,u)\c(zt)
Qi\(yt)

fét’/\)(xtvyt)

For each = 1,2,--- ,n, we define the probability distribution

(1,2

A A
(h,N) = {pXth;Qt(xt7yt)}

Pxtyt.ot — .
XtYtQ (zt,yt)eXt x Yt

by

A
pgébty)t;Qt (Ita yt)
t
N WA
= C; 'pxeye(at,y) Hfé“ )(xiayi)
i=1
t

= 7 e (2) AW (wile) £

i
i=1

>\) ('ria yl)}v
where
A

t
A
Ci 2B, lH 4N (X3,
=1

are constants for normalization. For each 1,2, --- ,n, set

A) A _
q)(H ) & C«ﬁc«ﬁfl17

) 2 (24)

where we defin€y = 1. Then we have the following lemma.

Lemma 5:
QU (i), Q") = Y log by, (25)
t=1
Proof: From [24) we have
log @5 = log C; — log Cy_1. (26)
Furthermore, by definition we have
QN (p™ Q™) =log C,,, Co = 1. (27)

From [28) and[(27)[(25) is obvious. [
The following lemma is useful for the computation@j”’f)
fort=1,2,---,n. ’
Lemma 6: For eacht = 1,2,--- ,n, and for any( 2!, y!) €
Xt x Yt we have
pg?t’yt;@ (Ita yt)

— ((I)(#-)\))—l (1,2

t—1 t—1
t,Qt pxt—lyt—l;Qt—l(x Y )

Xpo\Xt*I(xt|xt_1)W(yt|xt)f(g:7)\)(xtayt)' (28)
Furthermore, we have
A A _ _
(I)ELMQt) = Z pg?t—)lyt—l;Qt—l(‘rt 17yt 1)
mt,yt
x P, xe-1 (@ e W (el fE) (20, 90). (29)

(1,2

By the definition oprth_Qt

-, n, we have

('rt’yt)’ t = ]"27

A
pg?ty)t;@ (xta yt)

t
= O 'pxe () [[AW (wile) £5° (iwi)}. - (30)
1=1
Then we have the following chain of equalities:
WA
pg‘{t’y)t;@ (fctayt)

t
(a) ~— 0
L O pxeeny [JAW (il 137 (i w0)}
=1
t—1
_ _ A
= O pxe (7Y [TV (wilwa) £8 (26, w0)
=1
xpx, xe-t (@YW (yelze) F (0, ye)

(E) t—l)

_ A _
= C 1Ct—1pg?£72yt71;@71($t 1,y
_ A
xpx, xt-1 (@ |2 W (el F3 (20, 30)

_ (@(H;X))flpglggi\)IYtil;Qtil (:1715717 ytfl)

t,Q?t
xpx, xeo (@YW (el 3 (@ me). (31)
Steps (a) and (b) follow froni(30). Frorh {31), we have
B D iy (32)

A — —
= pg?tfzytfl Q-1 (xt 17 yt 1)

XpXt‘Xt71(‘Tt|xt71)W(yt|xt)fC(2t)>\)(xt7yt)' (33)

Taking summations of (32) and (33) with respect:toyt, we
obtain

A A — _
(I)i(E#Q') = Zpg?t—)lyt—l;Qt—l (xt 17yt 1)

wt7yt
_ A
xpx, x- (@t (yelan) F5 (e w),
completing the proof. [ |
We set
A
pg?t?étfl(xt)

A — — _
= Z p‘(;;t—)lyt—l;Qt—l('rt 1,yt 1)pXt\X’5*1(xt|xt 1)'

pt—1 yt—1

Then by [29) in LemmBAl6 and the definition ﬁ}%ﬁ’” (T4, Yt),

we have
(1, N)
Ol =
Tt,Yt

W)\ (yt |xt )ef,u)\c(zt)
QZ\ (y)

P (@)W (i)

(34)

The following proposition is a mathematical core to prove ou

main result.
Proposition 4: For anyA > 0, we have

a Ny < N w),



Proof: We first observe that by (25) in Lemrha 5 andl(34),

we have
QBN (pm, Q) = Zlog oy, (35)
A
(I)E#Qr) = Z ng Q);t 1(9615) (yelwe)
Tt,Yt

W)\ —pAe(xy)

~ (yt|$;\5)€ (36)
Q7 (ye)

In (38), we setgx, (z;) = pg‘("’g, 1 (x). Note thatgy, is a

function of Q'~1. We define a joint distributiog; = ¢x,y, on
X x Y by

@t (e, ye) = ax,v, (e, y) = ax, ()W (ye| ).

Then we have

() W)\ (}/t |Xt)ef,u)\c(Xt)
o, Ot = Eq, 3
Q7 (Y1)
We define Q" = {Q:}}, recursively. For eacht =

1,2,---,n, we choose); so that it m|n|m|zes<1>(”Qk) Let

Qoptt be one of the m|n|m|zes on the above optimization

problem. We serpt {Qop“ Note thatQopt+ can
be determined recursively dependmg on the 1 previous
m|n|zersQOpt Then we have the following:

WA (}/t |Xt)ef,u)\c(Xt)

log @/ =1
o8 t7QOt o8 Qoptt(}/t)

Elh

Q) w
R, (ax., QIW)

<max min QW (gx, QW) =

QU (W),
ax; QEP(Y)

(37)
Hence we have the following:

1
min = Q /\)( (n) QM) < Q(lh)\)( (n) Qopt)

Qn eP"(y)
a) 1 Z
log

Step (a) follows from[(35). Step (b) follows frof (37). Since
[@8) holds for anyn > 1 and for anyp™ ¢ P (W), we
have

S Q(u,/\)(W),

t (38)

u A)
OP

ﬁ(ﬂv)‘) (W)
= su min _Q(Nv)‘) (n) n
n>1:; p<">eP<")(W) QreP™(Y) n »™.Q")
< QN W),

completing the proof. |
Proof of Theorem[d From Corollary(2 and Propositidd 4,

we haveG*(R,T|W) >G®N (R, T|W) for any u, A > 0.

Hence we have the bour@*(R,T'|W)>G(R,T|W). |

V. EQUIVALENCE OF THREE EXPONENT FUNCTIONS

In this section we prove Propositioh$ 1 ahd 2 stated in
Section[II]. We first prove Propositidd 1. The following is a
key lemma to prove this proposition.

Lemma 7: For anygx € P(X)

) (gx |W).

min QW (gx, QW) = (1 4+ A)J*

QeEP(Y)

The distributionQ € P(Y) attaining(1 + \).J% 755) (x| W)
is given by

—R[qu

reX

I+

W1+)\ y|(E) —;L>\C(LE)‘| ,

wherex is a constant for normalization, having the form

Sl )IE

I+

W1+)\ y|x)e pAc(z)]

yey LreX
= exp [70 7 (gx W) (39)
Proof: We observe that
QN (W) =
V) = mar, Joeq o1, 2 ax (&)W vlo)
W(ylx)e‘”(x’] }
— . 40
{ Q(y) (40)

On the objective function of the minimization problem iresid
the logarithm function in[{40), we have the following chaiih o

inequalities:
A
W (y|z)ere®)

qu Q(y)
Z [Z ax (z)WH (y|z)e” ‘“C(””)] Q ()

(a) e o
> z qu YW (yl)e e
Y
X{ZQ(y)}
‘ 1N 1A
= Z[qu YW (yl2)e —“*c@]
= exp {(1+0)J0T) (qx W) }. (41)

In (a), we have used the reverse Holder inequality

po () (2)



which holds for nonegative,;,b; and fora + § = 1 such
that eithera > 1 or 8 > 1. In our case we have applied the
inequality to

1=,
ai =~ qu YW ()o@,
bi — Q (- )7
(avﬁ) - (1 + /\7 _/\)

In the reverse Holder inequality the equality holds if amdyo

if a" = an for some constant. In (41), the equality holds
for

T+
Wl-i—)\ y|x)e pe(z) ,

)=k ZQX

wherex is a normalized constant. From_{41), we have

QUMW) = (1+)) max J(“’1+*)((JX|W)

ax €P(X)
completing the proof. |
Proof of Proposition [ The equality [[P) in Propositiohl 1
immediately follows from Lemma]7. Usindl(9), we prove
G(R,T| W) = Gpk(R,T|W). We have the following chain
of inequalities:

G(R,T|W) =
(a)

= max max
—_A
120 p=125€(0,1)

25, G (R IIW)
>

Gf{‘g{’) (R,T|W) = Gar(R,T|W).
Step (a) followns from[{9) in Propositidd 1. [ |
We next prove Propositionl 2. We can show tifatg (R
W) and G(“ ) (R,T|W) satisfies the following property.
Property 2
a) The functionGagr(R,T'|W) is monotone increasing
function of R and is positive if and only ifR >

C(T|W).
b) Forye Y, set
=Y gx(a { (ylw)e ““C(””)}ﬁ
zeX

Then, for € (0,
on the probability distributionyx € P(X) that mini-
mizesJ(#N (gx|W) is

> {Wipleje @}

yey

P> A
yey
for any z € X with equality if gx (x) # 0.
We now proceed to the proof of Proposmﬁh 2.
Proof of (IB) in Proposition We proveG Y2V ( R, T|W)
= G (R,T|W). For a given joint dlstrlbu'uon

(qX7 qY|X) = {qX (x)QY\X(ylx)}(z_’y)exxy )

1], necessary and sufficient conditions

we introduce the stochastic matrigyy = qX‘y(ZC|y)}
(z.y)exxy and the probability distributiony = {gy (v)} yey
by

ax (2)gy|x (ylz) = av (Y)ax|y (z]y), (z,y) € X x V.

The abovegyy is called a backward channel. Usirigy,
qx|y ), we obtain the following chain of equalities:

-A {I(QX, QY\X) — pEqy [C(X)]}
+D(qy | x||Wlgx)
= AD(gxvllaxlay) + D(gy, ax v llax, W)
+MAE(QY;QX\Y)[C(X)]

= Z Z av (V)axyy $|y)log{qx|y,\7(|y)}

yEY TEX ax" ()

+ Z Z av (y)ax|v (z[y)

yeyzeX
(JX|Y($|y)QY(y)
<l o (yme,mﬂ }

= Z Z av (y)ax v (zly)

yeyYrecX

< los axy (ly)
g3 (@)W (yla)erre(@)

}

+ av(y)loggy (y)
yey
MDD avwaxyy(ely)
yeyzeX
qX\Y(SCkU)

xlog{

+ZQY

yey
= (1 = N)D(gx v llax|vlay) + D(ay|lgy)
—JH (gx [W). (42)

wheregx;y = {dx|v(z|y)} (z,y)cxxy is a stochastic matrix
whose components are

dle(:c|y) = ﬁqx(:z:){w(ymefwc(m)}
(UCay)EXxy (43)

and ¢y = {Gv(y)},cy is a probability distribution whose
components are

Lo Ayt
av (y) = m )

Hence, by[(4R) and the non-negativity of divergence, weinbta
GUAN(R,T, qx[W) > GUV(R,T, gx|W)
for any gx € P(X). Next, we prove

GUAN (R, TIW) = GYY (R, TW).

|

7) {W (ylz)errel) } 7

)log qv ()

ye . (44)



To this end it suffices to show that for any> 0,

A A
GUIN (R TIW) < GYY (R,TIW).

Let ¢x be a probability distribution that attains the minimum

of Gf{‘g) (R,T,qx|W). Then, by Propertff]2, we have

> {Wialaje @} A~ < 30 A

yey yey

(45)

for any x € X with equality if gx(x) # 0. Forz € X with
gx(z) > 0 andy € Y, define the matrixt’ = {V(y|z)}

(z,y)EX XY by
dy (y)axy (xly) (

V(ylz) = P Y) EX XY, (46)
By (@3) and [(4%), eacl(y|z) has the following form:
()
V(y|x) = ZyeyA(y)liA
1 —pAe(x ﬁ 1
x wqx<x>{w<y|gc>e e} — o
_ {Wlylz)e @ T A 47)

2 yey Ay

Taking summation of both sides &f (47) with respectte )
and taking [(4b) into account, we obtain

> {wylyee
yeY
> Ay

yey

The above equality implies that’ is a stochastic matrix.
Furthermore, note that fromh_(46),

1+
A(y)~

=1

> V(yle) =

yey

ax @)V (ylz) = ¢y (W)axy (=ly), (v,y) € X x V.
Then, choosingy = Gy, ¢x|y = 4x|v in @2), we have, for
A >0,

GUAN (R, T|IW)
SM(R =) = I(gx, V) + pEqy [e(X)]}
+D(VI[Wlgx)
= AR — ) = J0V (qx |W) = G (R, T[W),
completing the proof. [ |

We prove [(IF) in Proposition] 2 by (1L6).

Proof of (I7) in Proposition @ We prove Gar(R,T|
W) = Gpk (R,T'|W). Letg% be an input distribution attaining
C(T'|W). Then, by the definition OG](D“}’(O) (R,T|W), we have

G (RTIW) < —u(I' = Egg [e(X))) <0 (48)
for any 1 > 0. Hence we have

max G40 (R, T|W) = 0.
n>0

Then we have the following chain of inequalities:

_ (1, /\)
GDK(Ra 1—‘|W) - H>r%a)'\X>OG (R7F|W)
_ (/’L7)‘) (p, M)
= Jnax Gpg (RTW) = max Gpg (7,T[W)
a=5£>0 p=a
_ a)\ W) (a,\)
= 23, OB R TIW) 2 mas GGE (R T
(b) @ )\)
= max GN (R, T|W) = Gar(R,T|W).
Step ( 2 followns from[(16) in Propositidn 2. Step (b) follw
from G R I'\wW) =0 for any a > 0. [ |

VI. EXTENTION TO GENARAL MEMORYLESSCHANNELS

In this section we consider a stationary general memoryless
channel(GMC), wheret and ) are real lines. The GMC is
specified with a noisy channél’. We assume that for each
X = ze€ X, W has a conditonal density functidi’ (dy|z).
Except for Theoreni]3, Properfy 2 part b), and Proposition
[, the results we have presented so far also hold for this
general case. Lejx be a probability measure off having
the densitygx(dz). Let @ be a probability measure ol
having the density)(dy). In the case of GMC, the definitions
of QN (gx, QW) and Q) (W) are

QN (gx, QW)

1og {//dxdyqx

Q(;M( W)=

Wl-l—)\(y'x)e—u)\c(w)
Q*(y) ’

maxman ) (gx, QIW).

ax

For GMC W, we define the exponent function§(#*)(
R,T|W) andG(R,T'|W) in a manner similar to the definitions
of those exponent functions in the case of DMC. The following
theorem is a generalization of TheorE 4 to the case of GMC.

Theorem 6: For any GMCW, we have
G"(R,I|W) = G(R,T'|W) (49)

We next describe a lemma which is a generalization of
LemmalT to the case of GMC. Fore [0, 1), define

g (gx|W)

2105 [ ay | [ asaxte) {Wilore 0} ] o

Then we have the following lemma.
Lemma 8: For any probability densitity functionjxy =
q(dz) on X, we have
min QN (g, Q) = (14 X)W (gx W),
The probability density functior) attaining(1+ ) J¢ %) (
gx|W) is given by

I+X

Q) = x [ [ dwax@w e | T



wherex is a constant for normalization, having the form

= fan]fasastm o]

= exp [J(“”%)(qle)} :

_1_
T+X

(50)

For GMC W, we define the exponent functiorﬁﬁ{‘f@)(
R,T|W) and Gar(R,T|W) in a manner similar to the def-
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of (p(™, (™) is that for M,, = |e"?], the decoden)™
always outputs a constant messagg < M,,. In this case we
have

lim
n— o0

1 n n n
(—5) log P (o), 4 |W)

(—l) log M,, = R.
n

lim
n— o0

initions of those exponent functions in the case of DMC.Hence we have[Z) in the part c). We finally prove the part
From LemmdB, we have the following proposition, which isd). Let |a| be an integer part ofi. Fix any a € [0,1]. Let

a generalization of Propositién 1 to the case of GMC.
Proposition 5: For any GMCW and for anyu, A > 0, we
have the following:

GUN (R TIW) = GET (R TW). (51)
In particular, we have

From Theorenil6 and Propositibh 5, we immediately obtain

the following result.
Theorem 7: For any GMCW, we have

G*(R,T|W) > G(R,T|W) = Gar(R,T|W). (53)

TheoremB is related to the upper bound@f(R,T|W).
Proof of this theorem depends heavily on a finitenesstof
We have no result on the upper bound @f(R,T'|W) and
the tightness of the boun@(R,T'|WW). In the case of GMC,

G(R,T|W) andGar(R,T'|W) are not computable since those

are variational problems. On the other ha6dR,T'|W) has a
min-max expression. I [13], the author succeeded in oiptzin
an explicit form of G(R,T'|W) for additive white Gaussian

noise channels(AWGNS) by utilizing the min-max property of

G(R,T|W).

APPENDIX
A. General Propertieson G*(R,T|W)

a =1— «a. We choosgn, m) so that

A

n=rke 2 |kal|, m= ks 2 [kal.

For this choice ofn andm, we have

1 1 - n - k
k a_n—i—m_k—la

m

(55)

o

<
n—+m

%
Fix small positiver arbitrary. Then, for any

k > max{(aR+ aR')/t,(al' +al")/7},
we have the following chain of inequalities:

Gkatka) (4R + aR' — 7,0l + al’ — 7| W)

((1- ) ansar)
1 -
nR+mR' nl +mI’ W

n+m = n+m
) nG™ (R, T|W) +mG™ (R, T'|W)

n—+m

(%) G(n+m) (

(

g)

IN

(d) k
< (527 o6 rw) + act) (@ W) (59)

In this appendix we prove Properfy 1 describing general

properties onG* (R, T'|W).
Proof of Property[l} By definition it is obvious that for fixed
I > 0, G™(R,T|W) is a monotone increasing function of
R > 0 and that for fixed? > 0, G (R,T|W) is a monotone
increasing function ol > 0. We prove the part b). By time
sharing we have that
v)

G(ntm)
n+m n-+m

- nGM™ (R, T|W) + mGU) (R, T'|W)

nR 4+ mR nl 4+ mI’

)

T (54)

The part b) follows by lettingk = R’ andT' = I in (B4).

We next prove the part ¢). By definition it is obvious that for

Step (a) follows from the part a) and
k > max{(aR + aR')/t,(al +al")/7}.

Step (b) follows from the part a). Step (c) follows from1(54).
Step (d) follows from[(Bb). Letting: — oo in (BE), we have

G* (aR+ aR' — 1,al + al’ — 7|W)

< aG*(R,T|W) + aG*(R,T'|W), (57)

wherer can be taken arbitrary small. We choaBg T, and

«, as
R =R +2yT, r’_r+2\/?,}

a=1-/T. (58)

fixed T' > 0, G*(R,T'|W) is a monotone decreasing function For the above choice o/, I, anda, we have

of R > 0 and that for fixedR > 0, G*(R,T'|W) is a monotone
increasing function of* > 0. It is obvious that the worst pair

aR+aR =R+2r, ol'+al’=T+27. (59)



Then we have the following chain of inequalities:
G (R+7,T +7|W)
@ g (aR+aR' — 1,al +al’ — 7|W)
(2) aG*(R,T|W) + aG* (R, T'|W)
(g) G*(R,T|W) +aR’
Y (1 - VPG (R,T|W) + VTR + 27
< G*(R,T|W) + /TR + 27. (60)

Step (a) follows from[{39). Step (b) follows from (57). Step (
follows from (@). Step (d) follows fron{(38). For any poskiv
7, we have the following chain of inequalities:

—
Nl

G* (aR + aR',al’ + al’'|W)
=G (aR+aR —7+7,al +al’ — 17+ 7|W)

(a)

< G*(aR+aR —1,al +al’ — 7|W)
+VT(aR+aR — 1)+ 27

(b)

< aG*(R,T|W) + aG*(R',T'|W)

+VT(aR+aR') +7(2 — /7). (61)

Step (a) follows from[{60). Step (b) follows frorh {57). Since

7 > 0 can be taken arbitrary small ih (61), we have

G* (aR + aR',al’ +al’|W)
< aG*(R,T|W) + aG* (R, T'|W),

which implies the convexity o&*(R,T'|W) on (R,T). &

B. Proof of Theorem[3

In this appendix we prove Theorel 3. We first describe

some definitions necessary for the proof. Ere X", set

o {t:z = a} .

pm”(x)-— e X,

n

The probability distributionp,.» e {pan () }zexr ON X is
called the type of sequences k™. Let P,(X) be a set
of all types of sequences iR™. Let P(Y|X) be a set of
all conditional distributionsgy-|x on ) for given X € X.
We fix § € [0,1/2). We conS|der any paifgx,qy|x) €
Pn(X) x P(Y|X) satisfyingE,,c¢(X) < T'. For such pair
of (¢x,qv|x), we can construct am-length block code
(¢, (")) with message sét,, satisfying:

a) Pgn)(¢(")a¢(")|QY|X) >1-4.

b) all codewordsp™ (k),k € K, have the identical type

ax-

¢) =log|K,| > min{R, I(qx,qy|x) — 6}
By the condition b), we have(¢™ (k)) = E, c¢(X) < T.
Hence then-length block code¢(™), (™) satisfies the cost

constraint. Furthermore, by this condition we can obtam th Here we set),, (0) 2 L —
n

following result.
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Lemma 9: For everyk € C,,, we have
03 (076 ()
wn(yn[e) (k)

(62)

> @ (o™ (k) log

yneyn
= nD(qy|x|[Wlgx).

Proof: For eachk € IC,,, we set
¢ (k) = 2" (k) = 1 (k)wa (k) - - wn(k).
For eachk € K,,, we have the following chain of equalities:

QY|X(y |60 (k)

Y ax ("1™ (k) log E W (g6 (k)

yneyn
@) qy|x (yelze(k))
2 Gy 1x (i |z (k) log o XATHTEE)
27 20 i (I T T )
QY\X(?JW)
t:x (k) =a}lq yla)log ———=
anXUeZyH t }| Y\X( | ) W(y|a)
QY|X(y|a)
=n Pan (k) (@)qy|x (yla) log —————
=12, 2 panw (v (ol o T i
© ZZQX (JY|X y|a)10g7qy‘X(y|a)
aEX yey W(yla)

= nD(qv|x||Wlgx)-

Step (a) follows from the memoryless property of the noisy
channel. Step (b) follows from that,» ;) = gx € Pp(X). B
For k € IC,,, we set

an(k) EWHDERIG™ (k) = Y W6 (k)),
ymeD(k)

Bu(k) 2 gp x DESM(R) = 3 @ x ("6 (k)),
yneD(k)

an(k) 21— an(k) = g x (DE)S™ (k).

Ba(k) £ 1= Bu(k) = g x (DE)|¢™ (k).

Furthermore, set

A
w3 ot

ke,

1
DY k)

ke,

=P ("™, p™M|W),
=P (6™, ™ gy x).

The quantityP{™ (¢, (" |IW) has a lower bound given by
the following Lemma.
Lemma 10: For anyd € [O 1/2), we have

P (¢!, M |W) =

()[o™ (k))
kelC
> exp{—n[(1 - 5)71D(QY|X||W|QX) +m(d)} (63)

§)~*h(1 — 4) andh(-) stands for
a binary entropy function.
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Proof: We have the following chain of inequalities: have the following:

P (o), () 1
”D(QY\XHWl(JX) (<P P W)

@ QY|X(yn|¢(n)(k)) Z wm™(D " (k)
= keZ’C y%n qY|X Y |¢ ( )) n(yn|(b(n)(]€)) | ke,
%? TP [ﬂn<k>log 2 4 BT og ﬁf%%%] D SR RIS
" gek, n Qn kei% —Kn
Bn (k) Bn (k) n (n)
- 5 | e AR
Kek, |7 (K] " | @ || .
© Br B > i XP{=n[(1 =67 Dlgy x[IWlax) + m(9)]}
> Bn 1Og — + ﬂn log p— _h(ﬁn) - ﬂn log Qip, (b)
@ > exp [-n{R - (I(qx,qv|x) = 0)
2 —h(1—6) — (1 —6)logan. (64) +(1 = 8) " Dlgy|x|[Wax) + 1 (6)}]

()
Step (a) follows from Lemm@ 9. Steps (b) and (c) follow from > exp [—n {[R — I(gx, qv|x)]*
the log-sum inequality. Step (d) follows from that (- 6)71D(QY|X||W|QX) Ny %(5)}} . (66)

By = P (6™ ¢(n)|QY|X) >1-6 Step (a) follows from[{@3) in Lemnial0. Step (b) follows from
IC,| > enllax.avix) =9l ‘step (c) follows from[a] < [a]*.
andé € (0,1/2]. From [63), we obtain Combining [65) and((G6), we have

P (o™, 4™ W)

= PO (M) () >exp [-n{[R —I(qx,qvx)]"

> exp <_ nD(QY|X||VZ|QX5) + h(l — 5)) _|_(1 o 6)71D(QY|X||W|QX) + 5 + nn((s)}} (67)
_ N -l for any gx € P,(X) with E;, ¢(X) < T andgyx € P(
= exp{—n[(1 - 0)™ Dgyx[[Wlgx) + m(3)]}, Y|X). Hence from[{8l7), we have
completing the proof. | e PO (o™
Proof of Theorem[3 We first consider the case wheRe< n 08 te (™, 9IW)
I(gx,qv|x) — 6. In this case we choosg™ = ¢(™). Then < n%ir%X) {[R—I(gx.qvix)]"
e n bl
we have ézfxc(x)gr,
(1) ( (1) oy(m) (n)( (m) () P
P ¢IW) = P, W) + (1= 8)" Dlay x|Wlax) + 8 + n(6)}
@ exp{—n[R+ 06 — I(gx, qyx)]" <(1-0)7" L AR Iax, avpo)l”
—n[(1 = 8)"'D(gy|x||Wlax) + 1.(5)]} Eqx c(X)<T,
(b) ay | x EP(V|X)
> exp{—n[R - I(qx,qv|x)|" + D(gyx[IWlgx)} + 0 4+ 1n(9)
—n[(1—6)""D(gyx|[Wlax) + 6 +nn(5)]}.  (65) < (1—=6)""Gok(R,T|W)+6+nu(6) +en.  (68)

The quantity{s, },>1 appearing in the last inequality is an
error bound coming from an approximation of the marginal
distribution ¢% of ¢* achievingGpxk (R,T'|W) by some suit-
able typeqx € P,(X). Sinceqx € P,(X) can be made
[R+0—I(ax,qvix)]" < [R—I(ax,qvix)]" +0. arbitrary close th}( b)y letting n sufficie(ntI))/ large, we can
choosee,, so thate,, — 0 asn — oco. We further note that
We next consider the case whefe > I(¢x,qy|x) — 6.  n,(5) — 0 asn — oo. Hence by lettingr — cc in (€8), we
Consider the new message &gt satisfying|K,,| = el"R]. For  obtain
new message sét,,, we definex™ (k) such thaty ">( )= . a1
oM (k) if k € K. Fork € K, — K,,, we definep™ (k) G TIW) < (1= 0)" Gok(R, TIW) +4.
arbitrary sequence o™ having the typegx. We use the Sinced can be made arbitrary small, we conclude t6&{ R
same decodep(™ as that of the message s6t,. Then we ,T'|W) < Gpk (R, T|W). [

Step (a) follows from the conditio® + 0 — I(gx, gy x) < 0.
Step (b) follows from that
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C. Proof of Lemma[ll Then, we the following chain of inequalities:

In this appendix we prove Lemnid 1. We can show that (a) , ,
Gk (R, T|W) satisfies the following property. Gpk (R, I'|W) < Gpk (R, I"|W) + p(I" = T)

Property 3: (b)
<[R-I(q%, ¢ T+ D(q; Wlq5 I'-T
a) For every fixed > 0, the functionGpx (R, T|W) is (_)[ (@5 @y o)l + DlayxlWlase) + ud )
monotone increasing faR > 0 and takes positive value & [R—I(q¢%, @& )] + D(gi x [|Wd)
if and only if R > C(T'|W). For every fixedR > 0, X (;/)‘X .
the functionGpk (R, I'|W) is monotone decreasing for — (I = Eg- [e(X)]) = Gpg (R, T|W). (72)
L>0. Step (a) follows from[{7Z0). Step (b) follows frof{71). Stey (
b) GDK(R,F|W) is a convex function of R, I). follows from the choice of” = E,.[¢(X)]. It follows from
c) ForR,R'>0 (72) that forT" > 0, ®9) holds for some, > 0. This completes
, , the proof. [ |
|Gok (R, W) = Gox (R, T|W)| < |R — R, Proof of (I4) in Lemmal[ll Since[a]™ > Aa for anya and
Property[B part a) is obvious. Proof of the part b) is foundany)‘ € [0,1], it is obvious that
in Appendix[D. Proof of part c) is quite similar to that of the GW (R, TIW) > max GUN (R, T|W).
case without input cost given by Dueck and Korrér [3]. We DA™ To<a<1 PKOVT
omit the detail. Hence it suffices to prove that fdt > 0, there exists\ € [0, 1]

We can show thaGg‘I)((R,ﬂW) satisfies the following ., thatG](D"})((R W) < G(“ >\)(R T|IW). By Property(#

roperty. ;
PIOPELY . part b) G(“) x (R, T|W) is a monotone increasing and convex
Property 4: . .
] ) () ) function ofR Then, by Propert{/13 part c), there exists<
a) For every fixedl’ > 0, the functlonG[ﬁ‘K(R,HW) is A < 1 such that for any®’ > 0, we have
monotone increasing fak > 0. For every fixedk > 0,

the functionG\%).(R, T'|I¥') is monotone decreasing for GRL(R,TIW) > GYL(R,T|W) + MR — R).  (73)

I'>0. 1,A)
) . . Let ¢* € P(X x V) be a joint distribution that attainSp) F
b) For every fixedu > 0, the funct|onG](3“})<(R,F|W) isa  p F(TW) S(etR’ —)I(q Jq }. Then we have the foIIOW|(ng
convex function of( R, T"). X HAY|X
chaln of inequalities:

c) ForR,R' >0

—~

a

g

G (R, TIW) — GYL (R, T|W)| < |R— R/|. GUX(R,T|W) < GIL(R,T|W) = MR - R)
=min {[R" - I(gqx, +D w
Property[# part a) is obvious. Proof of the part b) is found q { (2x,av1x W (@ ixlWlax)
in Appendix[E. Proof of part c) is quite similar to that of the —p(T = Eg [e(X)])} — MR — R)
case without input cost given by Dueck and Korrier [3]. We <[R — I(Q}v‘];\x)] T D(qY\X||W|qX)

omit the detail.

/
Proof of (I3) in Lemma[l From its formula, it is obvious = p(I' = Egy [e(X)]) = AR = R)

> (b)
that for anyy: = 0 = D(ay x|IWlak) + AR = I(ak. 47,x)]
Gox (R.T|W) = GR (R, T[W). = T = By [e(X)]) = G (R.T|W).
Hence it suffices to prove that for arly > 0, there exists Step (a) follows from[(73). Step (b) follows from the choice
u > 0 such that of R' = I(q%, dyx)- u
Gpk (R, T|W) < G¥(R,T|W). (69) D. Proof of Property @ part b)

By Property part by#oi (R, T|1) is a monotone decreasing Proof of Property @ part b): We first observe that

and convex function of’. Then, there existy > 0 such that Gpk(R,T|W)
for anyT” > 0, we have . {n(i)?)]q{[R — I{gx,av|x)]" + Dlgy x||Wlgx)}
q:LglC =
GDK (Ra F/|W) > GDK (R7 F|W) - M(FI - 1—‘) (70) — min @(R7 q|VV)7 (74)
¢:Bq[e(X)]<T

Fix the above.. Let¢* € P(X x)) be a joint distribution that
attainng‘I)((R,ﬂW). SetI” = E,-[¢(X)]. By the definition
of Gpk (R, I'|W), we have O(R,q|W)
A
Gox (R, T'|W) = [R—I(gx,qvix)]" + Dlgyx||Wlax)

N . . = max{ R — I(qx, qy|x) + D(qv|x||[Wlgx),
< [R— I(dx,ayx)| + Dlayx[[Wlax).  (71) D(gyix||W]gx

where we set



For eachi = 0,1, let q v be a probability distribution that
attalnsGDK(Rl,l“ [W). By definition we have
GDK(Riu 1—‘1|W) = @(Rl, q(z)|W) for i = 0, 1.
For ag € [0,1], we setqg& = aoq() + alq%/, where
a; =1 —ap. The quantltleng() and qg/‘) are probability
and conditional probability distributions induced b&?} Set

T, = aopl'o 4+ a1 'y. By the linearity ofE,[c(X)] with respect
to ¢, we have that
Z az q(%)

1=0,1

(75)

] < T.. (76)

Ej e

By the convex property of-I(qx, qy|x) +D(qy|x|[Wlgx)
and D(qy | x||W|qx ) with respect tag, we have that

I<q§?>,q§ﬁ;>+D<qY|X||W|q )
< Z Q; {_ qX anZ‘)X) +D(qy\xl|W|q )} )

i=0,1

((a)
1=0,1

(77)

qY\X||W|q ) > (qY|X||W|q )

Set R,, 2 agRy + a1 R1. We have the following two chains
of inequalities:

(g5, ay) + Diay s W)

&Y o [Ri= 162 .4l + Dl WIa)
1=0,1

® S a6

i=0,1

Ro —

Ri7 q(Z) |W)7

D

i=0,1

(78)

—

<)

D W g) < D] [IW1a%)

(d) )
< Z a;O(R;, ¢ |W).
i—0.1

(79)

Steps (a) and (c) follow from (T7). Steps (b) and (d) follow

from the definition of©(R;, ¢'”|W),i = 0, 1. From [78) and
(79), we have that

6 (Rayq® (80)

W) < Z @ O(R;, ¢V |W).

i=0,1
Thus we have the following chain of inequalities

Gok(Re, To|W) = i O(Ra, q|W
k(Ao CalW) = i O(FesaW)
(a) ) (b) i)

< O(Ra,qV|W) < 37 aiO(Ri. W)

i=0,1

(:C) Z OZZ'GDK(R“F”W).
i=0,1
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E. Proof of Property[d part b)
Proof of Property [ part b): We set

0 (R,T,q[W) £ O(R, g|W) — u(T — Eg[e(X))).

Then we have

GW (R, T|W) = min @™ (R, T, q|W).
q

For eachi = 0,1, let qg?y be a probability distribution that
attainsGpk (R;, I';|WW). By definition we have

Gk (R, Ti|W) = 0W(R;, Ty, ¢ |W) for i = 0, 1.

For ag € [0,1], we setqg?,)/ = aoqg& + alqgg/, where

a; = 1 — ag. The quantltleng() and q§,|)X are probability

and conditional probability distributions induced bS?; By
the convex property of

—I(gx,qv|x) + D(av x|[Wlgx) + pEq[e(X)]
and D(qy | x [|Wgx) + pEq[c(X)]

(81)

with respect tog, we have that

~1(g%” iy +D<qY‘X||W|q )+ BB o [e(X)]
< Z @i [_ qX ’qYZ\)X) + D(qY|X||W|qg?)

B e(X)]].

D(ay )y [IW )+qu<a>[ (X)]
< 3 i [P V1) + sy [e(X)]]
i=0,1

(82)
Then we have the following two chains of inequalities:

Ro = 1%, ay75) + D@ W g

—p (T = Ey [e(X)])

(a) (i (i

< 3 i [Ri = 160 ) + Dial ] IW )
1=0,1

(T~ By (X))

(b)
< > a®W(R, T qW), (83)
1=0,1
D [W1g5) = p(Ta = B [e(X)])

()

< Zo‘l{ qY|X||W|q )y — u(Fi—Eqm[C(X)])}
1=0,1

(d) )
< > @®W(R, T, ¢ W)
i=0,1

(84)

Step (a) follows from[{76). Step (b) follows frorh {80). Step Steps (a) and (c) follow fron{(82). Steps (b) and (d) follow

(c) follows from [75). [

from the definition of©(R;, Ty, ¢ |W),i = 0,1. From [83)



and [84), we have that

oK ( Ro T, g

< OW(R, T, ¢@ )
W) = i;1 a1@ (R’LaFZaq |W)

(85)

Thus we have the following chain of inequalities

IN

—

b)

G (Ra,To|W) = min @ (R, T, q|W)
q

(a) .
O (Ra,Ta, ¢ W) < > ;0" (R;, Ty, ¢W W)
i=0,1

1=0,1

Step (a) follows from[(85). Step (b) follows frorh (81). m

(1]
(2]

(31

(4

(5]

(6]

(7]

(8]
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