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Exponent Function for Stationary Memoryless
Channels with Input Cost at Rates above the

Capacity
Yasutada Oohama

Abstract—We consider the stationary memoryless channels
with input cost. We prove that for transmission rates above
the capacity the correct probability of decoding tends to zero
exponentially as the block lengthn of codes tends to infinity. In
the case where both of channel input and output sets are finite, we
determine the optimal exponent function on the above exponential
decay of the correct probability. To derive this result we use
a new technique called the recursive method, which is based
on the information spectrum approach. The recursive method
utilizes a certain recursive structure on the information spectrum
quantities.

Keywords—Stationary memoryless channels, Strong converse
theorem, Information spectrum approach

I. I NTRODUCTION

A certain class of noisy channels has a property that the
error probability of decoding goes to one as the block length
n of transmitted codes tends to infinity at rates above the
channel capacity. This property is called the strong converse
property. In the case of DMCs without cost Arimoto [2]
proved that the error probability of decoding goes to one
exponentially and derived a lower bound of the exponent
function. Subsequently, Dueck and Körner [3] determined the
optimal exponent function for the error probability of decoding
to go to one. They derived the result by using a combinatorial
method base on the type of sequences [1]. The equality of
the lower bound of Arimoto [2] to that of the optimal bound
of Dueck and Körner [3] was proved by the author [4]. A
simple derivation of the exponent function in the problem set
up of quantum channel coding was given by Nagaoka [5],
Hayashi and Nagaoka [6]. In the derivation they used the
information spectrum method introduced by Han [7] and a
min-max expression of the channel capacity.

In this paper, we determine the optimal exponent function on
the correct probability of decoding at rates above capacityfor
DMCs with input cost. This result can be obtained by a method
quite parallel with the method Dueck and Körner [3] used to
obtain the optimal exponent function in the case without input
cost. Instead of using their method, we use a new method based
on the information spectrum method. A main contribution of
this paper is that we establish a new powerful method to derive
a tight exponent function at rates above the capacity for DMCs.

Y. Oohama is with Dept. of Communication Engineering and Informatics,
University of Electro-Communications, 1-5-1 Chofugaoka Chofu-shi, Tokyo
182-8585, Japan.

As we mentioned previously, there have been three different
methods by Arimoto [2], Dueck and Körner [3] and Nagaoka
[5], Hayashi and Nagaoka [6] to derive the result. Our method
can be regarded as the fourth new method, having the following
two merits:

1. Our method and the method of Nagaoka [5], Hayashi
and Nagaoka [6] are based on the information spectrum
method. Those two methods have a common advantage
that they also work for the derivation of the expo-
nent function for general memoryless channels(GMCs),
where the channel input and outputs are real lines. On
the other hand, the method of type used by Dueck and
Körner [3] only works for DMCs where channel input
and output sets are finite.

2. The recursive method is a general powerful tool to prove
strong converse theorems for several coding problems in
information theory. In fact, this method played important
roles in deriving exponential strong converse exponent
for communication systems treated in [8]-[12].

By the first merit, we derive a lower bound of the optimal
exponent function for GMCs. This lower bound is thought to
be useful for deriving explicit lower bounds of the optimal
exponent functions for several examples of GMCs.

II. CAPACITY RESULTS FOR THEDISCRETE
MEMORYLESSCHANNELS WITH INPUT COST

We consider a stationary discrete memoryless chan-
nel(DMC) with the input setX and the output setY. We
assume thatX andY are finite sets. A case whereX andY
are real lines will be treated in Section VI.

The SDMC is specified by the following stochastic matrix:

W
△
= {W (y|x)}(x,y)∈X×Y. (1)

Let Xn be a random variable taking values inXn. We write
an element ofXn as xn = x1x2· · ·xn. Suppose thatXn

has a probability distribution onXn denoted bypXn =
{pXn(xn)}xn∈Xn. Similar notations are adopted for other
random variables. LetY n ∈ Yn be a random variable obtained
as the channel output by connectingXn to the input of
channel. We write a conditional distribution ofY n on given
Xn as

Wn = {Wn(yn|xn)}(xn,yn)∈Xn×Yn .

Since the channel is memoryless, we have

Wn(yn|xn) =
n∏

t=1

W (yt|xt). (2)
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Let Kn be uniformly distributed random variables taking
values in message setsKn.

The random variableKn is a message sent to the receiver.
A sender transformsKn into a transmitted sequenceXn using
an encoder function and sends it to the receiver. In this paper
we assume that the encoder functionϕ(n) is a deterministic
encoder. In this case,ϕ(n) is a one-to-one mapping fromKn
into Xn. The joint probability mass function onXn ×Yn is
given by

Pr{(Xn, Y n) = (xn, yn)} =
1

|Kn|

n∏

t=1

W (yt |xt(k) ) ,

where xt(k) = [ϕ(n)(k)]t, t = 1, 2, · · · , n are the t-th
components ofxn = xn(k) = ϕ(n)(k) and|Kn| is a cardinality
of the setKn. The decoding function at the receiver is denoted
byψ(n). This function is formally defined byψ(n) : Yn → Kn.
Let c : X → [0,∞) be a cost function. The average cost on
output ofϕ(n) must not exceedΓ. This condition is given by
ϕ(n)(Kn) ∈ S(n)

Γ , where

S(n)
Γ

△
=

{
xn ∈ Xn :

1

n

n∑

t=1

c(xt) ≤ Γ

}
.

The average error probabilities of decoding at the receiveris
defined by

P(n)
e = P(n)

e (ϕ(n), ψ(n)|W )
△
= Pr{ψ(n)(Y n) 6= Kn}

= 1− Pr{ψ(n)(Y n) = Kn}.

For k ∈ Kn, setD(k)
△
= {yn : ψ(n)(yn) = k}. The families

of sets{D(k)}k∈Kn
is called the decoding regions. Using the

decoding region,P(n)
e can be written as

P(n)
e = 1− 1

|Kn|
∑

k∈Kn

Pr{Y n ∈ D(k)|Xn = ϕ(n)(k))}

= 1− 1

|Kn|
∑

k∈Kn

∑

yn∈D(k)

Wn
(
yn
∣∣∣ϕ(n)(k)

)

= 1− 1

|Kn|
∑

k∈Kn

Wn
(
D(k)

∣∣∣ϕ(n)(k)
)
.

Set

P(n)
c = P(n)

c (ϕ(n), ψ(n)|W )
△
= 1− P(n)

e (ϕ(n), ψ(n)|W ).

The quantityP(n)
c is called the average correct probability of

decoding. This quantity has the following form

P(n)
c =

1

|Kn|
∑

k∈Kn

Wn
(
D(k)

∣∣∣ϕ(n)(k)
)
.

For given ε ∈ (0, 1), R is ε-achievable underΓ if for any
δ > 0, there exist a positive integern0 = n0(ε, δ) and a
sequence of pairs{(ϕ(n), ψ(n)) : ϕ(n)(Kn) ∈ S(n)

Γ }∞n=1 such
that for anyn ≥ n0(ε, δ),

P(n)
e (ϕ(n), ψ(n)|W ) ≤ ε,

1

n
log |Kn| ≥ R− δ. (3)

The supremum of allε-achievableR underΓ is denoted by
CDMC(ε,Γ|W ). We set

CDMC(Γ|W )
△
= inf

ε∈(0,1)
CDMC(ε,Γ|W ),

which is called the channel capacity. The maximum error
probability of decoding is defined by as follows:

P(n)
e,m = P(n)

e,m(ϕ
(n), ψ(n)|W )

△
= max

k∈Kn

Pr{ψ(n)(Y n) 6= k|Kn = k}.

Based on this quantity, we define the maximum capacity as
follows. For a givenε ∈ (0, 1), R is ε-achievable underΓ,
if for any δ > 0, there exist a positive integern0 = n0(ε, δ)

and a sequence of pairs{(ϕ(n), ψ(n)) : ϕ(n)(Kn) ∈ S(n)
Γ }∞n=1

such that for anyn ≥ n0(ε, δ),

P(n)
e,m(ϕ

(n), ψ(n)|W ) ≤ ε,
1

n
log |Kn| ≥ R− δ. (4)

The supremum of allε-achievable rates underΓ is denoted by
Cm,DMC(ε,Γ|W ). We set

Cm,DMC(Γ|W ) = inf
ε∈(0,1)

Cm,DMC(ε,Γ|W )

which is called the maximum capacity of the DMC. Set

C(Γ|W ) = max
pX∈P(X ):
EpX

c(X)≤Γ

I(pX ,W ), (5)

where P(X ) is a set of probability distribution onX and
I(pX ,W ) stands for a mutual information betweenX and
Y when input distribution ofX is pX . The following is a well
known result.

Theorem 1: For any DMCW , we have

Cm,DMC(Γ|W ) = CDMC(Γ|W ) = C(Γ|W ).

Han [7] established the strong converse theorem for DMCs
with input cost. His result is as follows.

Theorem 2 (Han [7]): If R > C(Γ|W ), then for any
{(ϕ(n), ψ(n)) : ϕ(n)(Kn) ∈ S(n)

Γ }∞n=1 satisfying

1

n
lim inf
n→∞

Mn ≥ R,

we have

lim
n→∞

P(n)
e (ϕ(n), ψ(n)|W ) = 1.

The following corollary immediately follows from this the-
orem.

Corollary 1: For each fixedε ∈ (0, 1) and any DMCW ,
we have

Cm,DMC(ε,Γ|W ) = CDMC(ε,Γ|W ) = C(Γ|W ).
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To examine an asymptotic behavior ofP
(n)
c (ϕ(n), ψ(n)) for

largen at R > C(Γ|W ), we define the following quantities:

G(n)(R,Γ|W )

△
= min

(ϕ(n),ψ(n)):

ϕ(n)(Kn)∈S
(n)
Γ ,

(1/n) logMn≥R

(
− 1

n

)
log P(n)

c (ϕ(n), ψ(n)|W ),

G∗(R,Γ|W )
△
= lim

n→∞
G(n)(R,Γ|W ).

On the above exponent functions, we have the following
property.

Property 1:
a) By definition we have that for each fixedn ≥ 1,

G(n)(R,Γ|W ) is a monotone increasing function of
R ≥ 0 and satisfiesG(n)(R,Γ|W ) ≤ R.

b) The sequence{G(n)(R,Γ|W ) }n≥1 of exponent func-
tions satisfies the following subadditivity property:

G(n+m)(R,Γ|W )

≤ nG(n)(R,Γ|W ) +mG(m)(R,Γ|W )

n+m
, (6)

from which we have thatG∗(R,Γ|W ) exists and is equal
to infn≥1G

(n)(R,Γ|W ).
c) For fixedR > 0, the functionG∗(R,Γ|W ) is a mono-

tone decreasing function ofΓ. For fixed Γ > Γ0 =
minx∈X c(x), the functionG∗(R,Γ|W ) a monotone
increasing function ofR and satisfies

G∗(R,Γ|W ) ≤ R. (7)

d) The function G∗(R,Γ|W ) is a convex function of
(R,Γ).

Proof of Property 1 is given in Appendix A.

III. M AIN RESULT

In this section we state our main result. Define

GDK(R,Γ|W )
△
= min

qXY ∈P(X×Y):
EqX

[c(X)]≤Γ

{
[R− I(qX , qY |X)]+

+D(qY |X ||W |qX)
}
,

whereP(X × Y) is the set of joint probability distributions
on X × Y, [t]+ = max{0, t}, and

I(qX , qY |X) = Eq

[
log

qY |X(Y |X)

qY (Y )

]
,

D(qY |X ||W |qX) = Eq

[
log

qY |X(Y |X)

W (Y |X)

]
.

Using the standard method developed by Csiszár and Körner
[1], we can prove the following theorem.

Theorem 3: For anyR > 0,

G∗(R,Γ|W ) ≤ GDK(R,Γ|W ).

Proof of this theorem is given in Appendix B. LetΓmax
△
=

maxx∈X c(x).The caseΓ ≥ Γmax corresponds to the case
without cost. In this case Dueck and Körner [3] show that

G∗(R,Γ|W ) = GDK(R,Γ|W ).

They derived the boundG∗(R,Γ|W ) ≤ GDK(R,Γ|W ) by
using a combinatorial method based on the type of sequences.
Our method to prove Theorem 3 is different from their method
since we do not use a particular structure of types.

We next derive a lower bound ofG∗(R,Γ|W ). To this end
we define several quantities. Define

Ω(µ,λ)(qX , Q|W )

△
= log




∑

(x,y)∈X×Y

qX(x)W (y|x)W
λ(y|x)e−µλc(x)
Qλ(y)


 ,

Ω(µ,λ)(W )
△
= max

qX∈P(X )
min

Q∈P(Y)
Ω(µ,λ)(qX , Q|W ),

G(µ,λ)(R,Γ|W )
△
=
λ(R − µΓ)− Ω(µ,λ)(W )

1 + λ
,

G(R,Γ|W )
△
= sup

µ,λ≥0
G(µ,λ)(R,Γ|W ).

Our main result is the following.
Theorem 4: For any DMCW , we have

G∗(R,Γ|W ) ≥ G(R,Γ|W ). (8)

Proof of this theorem will be given in Section IV. Arimoto
[2] derived a lower bound ofG∗(R,Γ|W ), which we denote by
GAR(R,Γ|W ). To describe this exponent function we define
some functions. Forλ ∈ [0, 1), define

J (µ,λ)(qX |W )

△
= log

∑

y∈Y

[
∑

x∈X

qX(x)
{
W (y|x)e−µλc(x)

} 1
1−λ

]1−λ
,

G
(µ,λ)
AR (R,Γ, qX |W )

△
= λ(R − µΓ)− J (µ,λ)(qX |W ),

G
(µ,λ)
AR (R,Γ|W )

△
= min

qX∈P(X )
G

(µ,λ)
AR (R,Γ, qX |W ).

Furthermore, set

GAR(R,Γ|W )
△
= sup

µ≥0,
λ∈[0,1)

G
(µ,λ)
AR (R,Γ|W )

= sup
µ≥0,
λ∈[0,1)

min
qX∈P(X )

G
(λ)
AR(R,Γ, qX |W )

= sup
µ≥0,
λ∈[0,1)

[
λ(R − µΓ)− max

qX∈P(X )
J (µ,λ)(qX |W )

]
.

Then we have the following proposition.
Proposition 1: For any DMCW and for anyµ, λ ≥ 0, we

have the following:

G(µ,λ)(R,Γ|W ) = G
(µ, λ

1+λ
)

AR (R,Γ|W ). (9)
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In particular, we have

G(R,Γ|W ) = GAR(R,Γ|W ). (10)

Proof of this proposition is given in Section V. We next
state a relation betweenGAR(R,Γ|W ) andGDK( R,Γ|W ).
To this end we present a lemma stating thatGDK( R,Γ|W )
has two parametric expressions. Forµ > 0, we define

G
(µ)
DK(R,Γ|W )

△
= min

q

{ [
R− I(qX , qY |X)

]+
+D(qY |X ||W |qX)

− µ (Γ− EqX [c(X)])
}
. (11)

For µ, λ ≥ 0, we define

G
(µ,λ)
DK (R,Γ|W )

△
= min

q

{
λ
[
R− I(qX , qY |X)

]
− µΓ + µEqX [c(X)]

+D(qY |X ||W |qX)
}
. (12)

Then we have the following lemma.
Lemma 1: For anyR > 0, we have

GDK(R,Γ|W ) = max
µ≥0

G
(µ)
DK(R,Γ|W ). (13)

For anyµ ≥ 0, anyR > 0, we have

G
(µ)
DK(R,Γ|W ) = max

0≤λ≤1
G

(µ,λ)
DK (R,Γ|W ). (14)

The two equalities (13) and (14) imply that

GDK(R,Γ|W ) = max
µ≥0,
λ∈[0,1]

G
(µ,λ)
DK (R,Γ|W ). (15)

Proof of this lemma will be given in Appendix C. The fol-
lowing proposition states that the two quantitiesGAR(R,Γ|W )
andGDK(R,Γ|W ) match.

Proposition 2: For anyµ, λ ≥ 0, we have the following:

G
(µ,λ)
AR (R,Γ|W ) = G

(µλ,λ)
DK (R,Γ|W ). (16)

In particular, we have

GAR(R,Γ|W ) = GDK(R,Γ|W ). (17)

Proof of this proposition is given in Section V. From
Theorems 3, 4 and Propositions 1, 2, we immediately obtain
the following theorem.

Theorem 5: For any DMCW , we have

G∗(R,Γ|W )

= G(R,Γ|W ) = GAR(R,Γ|W ) = GDK(R,Γ|W ). (18)

IV. PROOF OF THERESULTS

We first prove the following lemma.
Lemma 2: For anyη > 0 and for any(ϕ(n), ψ(n)) satisfying

(1/n) log |Kn| ≥ R, we have

P(n)
c (ϕ(n), ψ(n)|W ) ≤ pXnY n

{

R ≤ 1

n
log

Wn(Y n|Xn)

QY n(Y n)
+ η, Γ ≥ 1

n
c(Xn)

}
+ e−nη. (19)

In (19) we can choose any probability distributionQY n on
Yn.

Proof : For xn inXn, set

A(xn)
△
= {yn :Wn(yn|xn) ≥ |Kn|e−nηQY n(yn)}.

Let A(xn) stand forYn−A(xn). Then we have the following:

P(n)
c =

1

|Kn|
∑

k∈Kn

Wn
(
D(k) ∩ A(ϕ(n)(k))

∣∣∣ϕ(n)(k)
)

+
1

|Kn|
∑

k∈Kn

Wn
(
D(k) ∩A(ϕ(n)(k))

∣∣∣ϕ(n)(k)
)

≤ ∆0 +∆1,

where

∆0
△
=

1

|Kn|
∑

k∈Kn

Wn
(
A(ϕ(n)(k))

∣∣∣ϕ(n)(k)
)
,

∆1
△
=

1

|Kn|
∑

k∈Kn

Wn
(
D(k) ∩ A(ϕ(n)(k))

∣∣∣ϕ(n)(k)
)
.

On the quantity∆0, we have

∆0
(a)
= pXnY n

{
1

n
log |Kn| ≤

1

n
log

Wn(Y n|Xn)

QY n(Y n)
+ η

}

(b)
= pXnY n

{
1

n
log |Kn| ≤

1

n
log

Wn(Y n|Xn)

QY n(Y n)
+ η,

Γ ≥ 1

n
c(Xn)

}

(c)

≤ pXnY n

{
R ≤ 1

n
log

Wn(Y n|Xn)

QY n(Y n)
+ η,

Γ ≥ 1

n
c(Xn)

}
. (20)

Step (a) follows from the definition of∆. Step (b) follows
from Xn = ϕ(n)(Kn) ∈ S(n)

Γ . Step (c) follows from(1/n)
log |Kn| ≥ R. Hence it suffices to show∆1 ≤ e−nη to prove
Lemma 2. We have the following chain of inequalities:

∆1

(a)

≤ 1

|Kn|
∑

k∈Kn

|Kn|e−nηQY n

(
D(k) ∩ A(ϕ(n)(k))

)

≤ e−nη
∑

k∈Kn

QY n (D(k)) = e−nηQY n

(
⋃

k∈Kn

D(k)

)

≤ e−nη.
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Step (a) follows from that for everyyn ∈ D(k)∩A(ϕ(n)(k)),
we haveWn(yn|ϕ(n)(k)) < e−nη|Kn|QY n(yn).

From Lemma 2, we have the following lemma
Lemma 3: For anyη > 0 and for any(ϕ(n), ψ(n)) satisfying

(1/n) log |Kn| ≥ R, we have

P(n)
c (ϕ(n), ψ(n)|W ) ≤ pXnY n

{

R ≤ 1

n

n∑

t=1

log
W (Yt|Xt)

Qt(Yt)
+ η, Γ ≥ 1

n

n∑

t=1

c(Xt)

}
+ e−nη.

Proof: In (19) in Lemma 2, we chooseQY n having the form

QY n(Y n) =
n∏

t=1

Qt(Yt).

Then from the bound (19) in Lemma 2, we obtain

P(n)
c (ϕ(n), ψ(n)|W ) ≤ pXnY n

{

R ≤ 1

n

n∑

t=1

log
W (Yt|Xt)

Qt(Yt)
+ η,Γ ≥ 1

n

n∑

t=1

c(Xt)

}
+ e−nη,

completing the proof.
We use the following lemma, which is well known as the

Cramèr’s bound in the large deviation principle.
Lemma 4: For any real valued random variableZ and any

θ > 0, we have

Pr{Z ≥ a} ≤ exp [− (θa− log E[exp(θZ)])] .

Here we define a quantity which serves as an exponential
upper bound ofP(n)

c (ϕ(n), ψ(n)|W ). Let P(n)(W ) be a set
of all probability distributionspXnY n on Xn ×Yn having the
form:

pXnY n(xn, yn)

=
n∏

t=1

pXt|Xt−1(xt|xt−1)W (yt|xt).

For simplicity of notation we use the notationp(n) for pXnY n

∈ P(n) (W ). For p(n) ∈ P(n)(W ) and Qn = {Qt}nt=1 ∈
Pn(Y), we define

Ω(µ,λ)(p(n), Qn)
△
= logEp(n)

[
n∏

t=1

Wλ(Yt|Xt)e
−µλc(Xt)

Qλt (Yt)

]
.

By Lemmas 3 and 4, we have the following proposition.
Proposition 3: For anyλ > 0, anyQn ∈ Pn(Y), and any

(ϕ(n), ψ(n)) satisfying(1/n) log |Kn| ≥ R, we have

P(n)
c (ϕ(n), ψ(n)|W )

≤ 2 exp




−n

λ(R− µΓ)− 1

n
Ω(µ,λ)(p(n), Qn)

1 + λ




,

for somep(n) ∈ P(n)(W ) and for anyQn ∈ Pn(Y).

Proof: Under the condition(1/n) log |Kn| ≥ R, we have
the following chain of inequalities:

P(n)
c (ϕ(n), ψ|W )

(a)

≤ pXnY n

{

R ≤ 1

n

n∑

t=1

log
W (Yt|Xt)

Qt(Yt)
+ η,Γ ≥ 1

n

n∑

t=1

c(Xt)

}

+e−nη

≤ pXnY n

{
(R− µΓ)− η ≤ 1

n

n∑

t=1

log

[
W (Yt|Xt)

Qt(Yt)

]

−µ
n

n∑

t=1

c(Xt)

}
+ e−nη

(b)

≤ exp
[
n
{
−λ(R− µΓ) + λη +

1

n
Ω(µ,λ)(p(n), Qn)

}]

+e−nη. (21)

Step (a) follows from Lemma 3. Step (b) follows from Lemma
4. We chooseη so that

− η = −λ(R− µΓ) + λη +
1

n
Ω(µ,λ)(p(n), Qn). (22)

Solving (22) with respect toη, we have

η =
λ(R − µΓ)− 1

n
Ω(µ,λ)(p(n), Qn)

1 + λ
.

For this choice ofη and (21), we have

P(n)
c (ϕ(n), ψ(n)|W ) ≤ 2e−nη

= 2 exp




−n

λ(R− µΓ)− 1

n
Ω(µ,λ)(p(n), Qn)

1 + λ




,

completing the proof.
Set

Ω
(µ,λ)

(W )
△
= sup

n≥1
max

p(n)∈P(n)(W )
min

Qn∈Pn(Y)

1

n
Ω(µ,λ)(p(n), Qn).

By the above definition ofΩ
(µ,λ)

(W ) and Proposition 3, we
have

G(n)(R,Γ|W ) ≥ λ(R − µΓ)− Ω
(µ,λ)

(W )

1 + λ
− 1

n
log 2. (23)

Then from (23), we obtain the following corollary.
Corollary 2: For anyµ, λ > 0, we have

G∗(R,Γ|W ) ≥ λ(R− µΓ)− Ω
(µ,λ)

(W )

1 + λ
.

We shall callΩ
(µ,λ)

(W ) the communication potential. The

above corollary implies that the analysis ofΩ
(µ,λ)

(W ) leads
to an establishment of a strong converse theorem for the DMC.
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In the following argument we drive an explicit upper bound
of Ω

(µ,λ)
(W ). For eacht = 1, 2, · · · , n, define the function

of (xt, yt) ∈ X ×Y by

f
(µ,λ)
Qt

(xt, yt)
△
=
Wλ(yt|xt)e−µλc(xt)

Qλt (yt)
.

For eacht = 1, 2, · · · , n, we define the probability distribution

p
(µ,λ)
XtY t;Qt

△
=
{
p
(µ,λ)
XtY t;Qt(x

t, yt)
}
(xt,yt)∈X t×Yt

.

by

p
(µ,λ)
XtY t;Qt(x

t, yt)

△
= C−1

t pXtY t(xt, yt)

t∏

i=1

f
(µ,λ)
Qi

(xi, yi)

= C−1
t pXt(xt)

t∏

i=1

{W (yi|xi)f (µ,λ)
Qi

(xi, yi)},

where

Ct
△
= EpXtY t

[
t∏

i=1

f
(µ,λ)
Qi

(Xi, Yi)

]

are constants for normalization. For eacht = 1, 2, · · · , n, set

Φ
(µ,λ)
t,Qt

△
= CtC

−1
t−1, (24)

where we defineC0 = 1. Then we have the following lemma.

Lemma 5:

Ω(µ,λ)(p(n), Qn) =

n∑

t=1

logΦ
(µ,λ)
t,Qt . (25)

Proof: From (24) we have

logΦ
(µ,λ)
t,Qt = logCt − logCt−1. (26)

Furthermore, by definition we have

Ω(µ,λ)(p(n), Qn) = logCn, C0 = 1. (27)

From (26) and (27), (25) is obvious.
The following lemma is useful for the computation ofΦ

(µ,λ)
t,Qt

for t = 1, 2, · · · , n.
Lemma 6: For eacht = 1, 2, · · · , n, and for any( xt, yt) ∈

X t ×Yt we have

p
(µ,λ)
XtY t;Qt(x

t, yt)

= (Φ
(µ,λ)
t,Qt )−1p

(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt). (28)

Furthermore, we have

Φ
(µ,λ)
t,Qt =

∑

xt,yt

p
(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt). (29)

Proof: By the definition of p(µ,λ)XtY t;Qt(xt, yt), t = 1, 2,
· · · , n, we have

p
(µ,λ)
XtY t;Qt(x

t, yt)

= C−1
t pXt(xt)

t∏

i=1

{W (yi|xi)f (µ,λ)
Qi

(xi, yi)}. (30)

Then we have the following chain of equalities:

p
(µ,λ)
XtY t;Qt(x

t, yt)

(a)
= C−1

t pXt(xt)

t∏

i=1

{W (yi|xi)f (µ,θ)
Qi

(xi, yi)}

= C−1
t pXt−1(xt−1)

t−1∏

i=1

{W (yi|xi)f (µ,λ)
Qi

(xi, yi)}

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt)

(b)
= C−1

t Ct−1p
(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt)

= (Φ
(µ,λ)
t,Qt )−1p

(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt). (31)

Steps (a) and (b) follow from (30). From (31), we have

Φ
(µ,λ)
t,Qt p

(µ,λ)
XtY t;Qt(x

t, yt) (32)

= p
(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt). (33)

Taking summations of (32) and (33) with respect toxt, yt, we
obtain

Φ
(µ,λ)
t,Qt =

∑

xt,yt

p
(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)

×pXt|Xt−1(xt|xt−1)W (yt|xt)f (µ,λ)
Qt

(xt, yt),

completing the proof.
We set

p
(µ,λ)
Xt;Qt−1(xt)

=
∑

xt−1,yt−1

p
(µ,λ)
Xt−1Y t−1;Qt−1(x

t−1, yt−1)pXt|Xt−1(xt|xt−1).

Then by (29) in Lemma 6 and the definition off (µ,λ)
Qt

(xt, yt),
we have

Φ
(µ,λ)
t,Qt =

∑

xt,yt

p
(µ,λ)
Xt;Qt−1(xt)W (yt|xt)

×W
λ(yt|xt)e−µλc(xt)

Qλt (yt)
. (34)

The following proposition is a mathematical core to prove our
main result.

Proposition 4: For anyλ > 0, we have

Ω
(µ,λ)

(W ) ≤ Ω(µ,λ)(W ).
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Proof: We first observe that by (25) in Lemma 5 and (34),
we have

Ω(µ,λ)(p(n), Qn) =

n∑

t=1

logΦ
(µ,λ)
t,Qt , (35)

Φ
(µ,λ)
t,Qt =

∑

xt,yt

p
(µ,λ)
Xt;Qt−1(xt)W (yt|xt)

×W
λ(yt|xt)e−µλc(xt)

Qλt (yt)
. (36)

In (36), we setqXt
(xt) = p

(µ,λ)
Xt;Qt−1(xt). Note thatqXt

is a
function ofQt−1. We define a joint distributionqt = qXtYt

on
X × Y by

qt(xt, yt) = qXtYt
(xt, yt) = qXt

(xt)W (yt|xt).

Then we have

Φ
(µ,λ)
t,Qt = Eqt

[
Wλ(Yt|Xt)e

−µλc(Xt)

Qλt (Yt)

]
.

We define Qn = {Qt}nt=1 recursively. For eacht =

1, 2, · · · , n, we chooseQt so that it minimizesΦ(µ,λ)
t,Qt . Let

Qopt,t be one of the minimizes on the above optimization

problem. We setQtopt
△
= {Qopt,i}ti=1. Note thatQopt,t can

be determined recursively depending on thet − 1 previous
minizersQt−1

opt . Then we have the following:

logΦ
(µ,λ)

t,Qt
opt

= logEqt

[
Wλ(Yt|Xt)e

−µλc(Xt)

Qλopt,t(Yt)

]

= min
Q∈P(Y)

Ω(µ,λ)(qXt
, Q|W )

≤ max
qXt

min
Q∈P(Y)

Ω(µ,λ)(qXt
, Q|W ) = Ω(µ,λ)(W ). (37)

Hence we have the following:

min
Qn∈Pn(Y)

1

n
Ω(µ,λ)(p(n), Qn) ≤ 1

n
Ω(µ,λ)(p(n), Qnopt)

(a)
=

1

n

n∑

t=1

logΦ
(µ,λ)

t,Qt
opt

(b)

≤ Ω(µ,λ)(W ). (38)

Step (a) follows from (35). Step (b) follows from (37). Since
(38) holds for anyn ≥ 1 and for anyp(n) ∈ P(n)(W ), we
have

Ω
(µ,λ)

(W )

= sup
n≥1

max
p(n)∈P(n)(W )

min
Qn∈Pn(Y)

1

n
Ω(µ,λ)(p(n), Qn)

≤ Ω(µ,λ)(W ),

completing the proof.
Proof of Theorem 4: From Corollary 2 and Proposition 4,

we haveG∗(R,Γ|W ) ≥G(µ,λ)(R,Γ|W ) for any µ, λ ≥ 0.
Hence we have the boundG∗(R,Γ|W )≥G(R,Γ|W ).

V. EQUIVALENCE OF THREE EXPONENT FUNCTIONS

In this section we prove Propositions 1 and 2 stated in
Section III. We first prove Proposition 1. The following is a
key lemma to prove this proposition.

Lemma 7: For anyqX ∈ P(X )

min
Q∈P(Y)

Ω(µ,λ)(qX , Q|W ) = (1 + λ)J (µ, λ
1+λ

)(qX |W ).

The distributionQ ∈ P(Y) attaining(1 + λ)J (µ, λ
1+λ

)(qX |W )
is given by

Q(y) = κ

[
∑

x∈X

qX(x)W 1+λ(y|x)e−µλc(x)
] 1

1+λ

,

whereκ is a constant for normalization, having the form

κ−1 =
∑

y∈Y

[
∑

x∈X

qX(x)W 1+λ(y|x)e−µλc(x)
] 1

1+λ

= exp
[
J (µ, λ

1+λ
)(qX |W )

]
. (39)

Proof: We observe that

Ω(µ,λ)(W ) = max
qX∈P(X )

log

{
min

Q∈P(Y)

∑

x,y

qX(x)W (y|x)

×
[
W (y|x)e−µc(x)

Q(y)

]λ}
. (40)

On the objective function of the minimization problem inside
the logarithm function in (40), we have the following chain of
inequalities:

∑

x,y

qX(x)W (y|x)
[
W (y|x)e−µc(x)

Q(y)

]λ

=
∑

y

[
∑

x

qX(x)W 1+λ(y|x)e−µλc(x)
]
Q−λ(y)

(a)

≥




∑

y

[
∑

x

qX(x)W 1+λ(y|x)e−µλc(x)
] 1

1+λ





1+λ

×
{
∑

y

Q(y)

}−λ

=




∑

y

[
∑

x

qX(x)W 1+λ(y|x)e−µλc(x)
] 1

1+λ





1+λ

= exp
{
(1 + λ)J (µ, λ

1+λ
)(qX |W )

}
. (41)

In (a), we have used the reverse Hölder inequality

∑

i

aibi ≥
(
∑

i

a
1
α

i

)α(∑

i

b
1
β

i

)β
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which holds for nonegativeai, bi and for α + β = 1 such
that eitherα > 1 or β > 1. In our case we have applied the
inequality to

i → y,

ai →
∑

x

qX(x)W 1+λ(y|x)e−µλc(x),

bi → Q−λ(y),

(α, β) → (1 + λ,−λ).





In the reverse Hölder inequality the equality holds if and only

if a
1
α

i = κb
1
β

i for some constantκ. In (41), the equality holds
for

Q(y) = κ

[
∑

x

qX(x)W 1+λ(y|x)e−µλc(x)
] 1

1+λ

,

whereκ is a normalized constant. From (41), we have

Ω(µ,λ)(W ) = (1 + λ) max
qX∈P(X )

J (µ, λ
1+λ

)(qX |W ),

completing the proof.
Proof of Proposition 1: The equality (9) in Proposition 1

immediately follows from Lemma 7. Using (9), we prove
G(R,Γ| W ) = GDK(R,Γ|W ). We have the following chain
of inequalities:

G(R,Γ|W ) = max
µ≥0,λ≥0

G(µ,λ)(R,Γ|W )

(a)
= max

µ≥0
max

ρ= λ
1+λ

∈[0,1)
G

(µ,ρ)
AR (R,Γ|W ) = GAR(R,Γ|W ).

Step (a) followns from (9) in Proposition 1.
We next prove Proposition 2. We can show thatGAR(R,

Γ|W ) andG(µ,λ)
AR (R,Γ|W ) satisfies the following property.

Property 2:
a) The functionGAR(R,Γ|W ) is monotone increasing

function of R and is positive if and only ifR >
C(Γ|W ).

b) For y ∈ Y, set

Λ(y)
△
=
∑

x∈X

qX(x)
{
W (y|x)e−µλc(x)

} 1
1−λ

.

Then, forλ ∈ (0, 1], necessary and sufficient conditions
on the probability distributionqX ∈ P(X ) that mini-
mizesJ (µ,λ)(qX |W ) is

∑

y∈Y

{
W (y|x)e−µλc(x)

} 1
1−λ

Λ(y)−λ ≤
∑

y∈Y

Λ(y)1−λ

for any x ∈ X with equality if qX(x) 6= 0.
We now proceed to the proof of Proposition 2.
Proof of (16) in Proposition 2: We proveG(µλ,λ)

DK ( R,Γ|W )

= G
(µ,λ)
AR (R,Γ|W ). For a given joint distribution

(qX , qY |X) =
{
qX(x)qY |X(y|x)

}
(x,y)∈X×Y

,

we introduce the stochastic matrixqX|Y =
{
qX|Y (x|y)

}

(x,y)∈X×Y and the probability distributionqY = {qY (y)} y∈Y

by

qX(x)qY |X(y|x) = qY (y)qX|Y (x|y), (x, y) ∈ X × Y.
The aboveqX|Y is called a backward channel. Using(qY ,
qX|Y ), we obtain the following chain of equalities:

−λ
{
I(qX , qY |X)− µEqX [c(X)]

}

+D(qY |X ||W |qX)

= λD(qX|Y ||qX |qY ) +D(qY , qX|Y ||qX ,W )

+µλE(qY ,qX|Y )[c(X)]

=
∑

y∈Y

∑

x∈X

qY (y)qX|Y (x|y) log
{
q−λX|Y (x|y)
q−λX (x)

}

+
∑

y∈Y

∑

x∈X

qY (y)qX|Y (x|y)

× log

{
qX|Y (x|y)qY (y)

qX(x)W (y|x)e−µλc(x)
}

=
∑

y∈Y

∑

x∈X

qY (y)qX|Y (x|y)

× log

{
q1−λX|Y (x|y)

q1−λX (x)W (y|x)e−µλc(x)

}

+
∑

y∈Y

qY (y) log qY (y)

= (1 − λ)
∑

y∈Y

∑

x∈X

qY (y)qX|Y (x|y)

× log





qX|Y (x|y)
qX(x)

{
W (y|x)e−µλc(x)

} 1
1−λ





+
∑

y∈Y

qY (y) log qY (y)

= (1 − λ)D(qX|Y ||q̂X|Y |qY ) +D(qY ||q̂Y )
−J (µ,λ)(qX |W ). (42)

whereq̂X|Y =
{
q̂X|Y (x|y)

}
(x,y)∈X×Y is a stochastic matrix

whose components are

q̂X|Y (x|y) =
1

Λ(y)
qX(x)

{
W (y|x)e−µλc(x)

}

(x, y) ∈ X × Y (43)

and q̂Y = {q̂Y (y)}y∈Y is a probability distribution whose
components are

q̂Y (y) =
Λ(y)1−λ∑
y∈Y Λ(y)1−λ

, y ∈ Y. (44)

Hence, by (42) and the non-negativity of divergence, we obtain

G
(µλ,λ)
DK (R,Γ, qX |W ) ≥ G

(µ,λ)
AR (R,Γ, qX |W )

for any qX ∈ P(X ). Next, we prove

G
(µλ,λ)
DK (R,Γ|W ) = G

(µ,λ)
AR (R,Γ|W ).
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To this end it suffices to show that for anyλ ≥ 0,

G
(µλ,λ)
DK (R,Γ|W ) ≤ G

(µ,λ)
AR (R,Γ|W ).

Let qX be a probability distribution that attains the minimum
of G(µ,λ)

AR (R,Γ, qX |W ). Then, by Property 2, we have

∑

y∈Y

{
W (y|x)e−µλc(x)

} 1
1−λ

Λ(y)
−λ ≤

∑

y∈Y

Λ(y)1−λ (45)

for any x ∈ X with equality if qX(x) 6= 0. For x ∈ X with
qX(x) > 0 and y ∈ Y, define the matrixV = {V (y|x)}
(x,y)∈X×Y by

V (y|x) = q̂Y (y)q̂X|Y (x|y)
qX(x)

, (x, y) ∈ X × Y. (46)

By (43) and (44), eachV (y|x) has the following form:

V (y|x) = Λ(y)1−λ∑
y∈Y Λ(y)1−λ

× 1

Λ(y)
qX(x)

{
W (y|x)e−µλc(x)

} 1
1−λ · 1

qX(x)

=

{
W (y|x)e−µλc(x)

} 1
1−λ Λ(y)−λ∑

y∈Y Λ(y)1−λ
. (47)

Taking summation of both sides of (47) with respect toy ∈ Y
and taking (45) into account, we obtain

∑

y∈Y

V (y|x) =

∑

y∈Y

{
W (y|x)e−µλc(x)

}1+λ

Λ(y)−λ

∑

y∈Y

Λ(y)1−λ
= 1.

The above equality implies thatV is a stochastic matrix.
Furthermore, note that from (46),

qX(x)V (y|x) = q̂Y (y)q̂X|Y (x|y), (x, y) ∈ X × Y.
Then, choosingqY = q̂Y , qX|Y = q̂X|Y in (42), we have, for
λ ≥ 0,

G
(µλ,λ)
DK (R,Γ|W )

≤ λ {(R − µΓ)− I(qX , V ) + µEqX [c(X)]}
+D(V ||W |qX)

= λ(R− µΓ)− J (µ,λ)(qX |W ) = G
(µ,λ)
AR (R,Γ|W ),

completing the proof.
We prove (17) in Proposition 2 by (16).
Proof of (17) in Proposition 2: We prove GAR(R,Γ|

W ) = GDK(R,Γ|W ). Let q∗X be an input distribution attaining
C(Γ|W ). Then, by the definition ofG(µ,0)

DK (R,Γ|W ), we have

G
(µ,0)
DK (R,Γ|W ) ≤ −µ(Γ− Eq∗

X
[c(X)]) ≤ 0 (48)

for anyµ ≥ 0. Hence we have

max
µ≥0

G
(µ,0)
DK (R,Γ|W ) = 0.

Then we have the following chain of inequalities:

GDK(R,Γ|W ) = max
µ≥0,λ>0

G
(µ,λ)
DK (R,Γ|W )

= max
µ≥0,λ>0,
α=µ

λ
≥0

G
(µ,λ)
DK (R,Γ|W ) = max

α≥0,λ>0,
µ=αλ

G
(µ,λ)
DK (R,Γ|W )

= max
α≥0,λ>0

G
(αλ,λ)
DK (R,Γ|W )

(a)
= max

α≥0,λ>0
G

(α,λ)
AR (R,Γ|W )

(b)
= max

α≥0,λ≥0
G

(α,λ)
AR (R,Γ|W ) = GAR(R,Γ|W ).

Step (a) followns from (16) in Proposition 2. Step (b) follows
from G

(α,0)
AR (R,Γ|W ) = 0 for anyα ≥ 0.

VI. EXTENTION TO GENARAL MEMORYLESSCHANNELS

In this section we consider a stationary general memoryless
channel(GMC), whereX andY are real lines. The GMC is
specified with a noisy channelW . We assume that for each
X = x∈ X , W has a conditonal density functionW (dy|x).
Except for Theorem 3, Property 2 part b), and Proposition
2, the results we have presented so far also hold for this
general case. LetqX be a probability measure onX having
the densityqX(dx). Let Q be a probability measure onY
having the densityQ(dy). In the case of GMC, the definitions
of Ω(µ,λ)(qX , Q|W ) andΩ(µ,λ)(W ) are

Ω(µ,λ)(qX , Q|W )

△
= log

[∫ ∫
dxdyqX(x)

W 1+λ(y|x)e−µλc(x)
Qλ(y)

]
,

Ω(µ,λ)(W )
△
= max

qX
min
Q

Ω(µ,λ)(qX , Q|W ).

For GMC W , we define the exponent functionsG(µ,λ)(
R,Γ|W ) andG(R,Γ|W ) in a manner similar to the definitions
of those exponent functions in the case of DMC. The following
theorem is a generalization of Theorem 4 to the case of GMC.

Theorem 6: For any GMCW , we have

G∗(R,Γ|W ) ≥ G(R,Γ|W ) (49)

We next describe a lemma which is a generalization of
Lemma 7 to the case of GMC. Forλ ∈ [0, 1), define

J (µ,λ)(qX |W )

△
= log

∫
dy

[∫
dxqX(x)

{
W (y|x)e−µλc(x)

} 1
1−λ

]1−λ
.

Then we have the following lemma.
Lemma 8: For any probability densitity functionqX =

q(dx) on X , we have

min
Q

Ω(µ,λ)(qX , Q|W ) = (1 + λ)J (µ, λ
1+λ

)(qX |W ).

The probability density functionQ attaining(1+λ) J (µ, λ
1+λ

)(
qX |W ) is given by

Q(y) = κ

[∫
dxqX(x)W 1+λ(y|x)e−µλc(x)

] 1
1+λ

,
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whereκ is a constant for normalization, having the form

κ−1 =

∫
dy

[∫
dxqX(x)W 1+λ(y|x)e−µλc(x)

] 1
1+λ

= exp
[
J (µ, λ

1+λ
)(qX |W )

]
. (50)

For GMC W , we define the exponent functionsG(µ,λ)
AR (

R,Γ|W ) andGAR(R,Γ|W ) in a manner similar to the def-
initions of those exponent functions in the case of DMC.
From Lemma 8, we have the following proposition, which is
a generalization of Proposition 1 to the case of GMC.

Proposition 5: For any GMCW and for anyµ, λ ≥ 0, we
have the following:

G(µ,λ)(R,Γ|W ) = G
(µ, λ

1+λ
)

AR (R,Γ|W ). (51)

In particular, we have

G(R,Γ|W ) = GAR(R,Γ|W ). (52)

From Theorem 6 and Proposition 5, we immediately obtain
the following result.

Theorem 7: For any GMCW , we have

G∗(R,Γ|W ) ≥ G(R,Γ|W ) = GAR(R,Γ|W ). (53)

Theorem 3 is related to the upper bound ofG∗(R,Γ|W ).
Proof of this theorem depends heavily on a finiteness ofX .
We have no result on the upper bound ofG∗(R,Γ|W ) and
the tightness of the boundG(R,Γ|W ). In the case of GMC,
G(R,Γ|W ) andGAR(R,Γ|W ) are not computable since those
are variational problems. On the other hand,G(R,Γ|W ) has a
min-max expression. In [13], the author succeeded in obtaining
an explicit form ofG(R,Γ|W ) for additive white Gaussian
noise channels(AWGNs) by utilizing the min-max property of
G(R,Γ|W ).

APPENDIX

A. General Properties on G∗(R,Γ|W )

In this appendix we prove Property 1 describing general
properties onG∗(R,Γ|W ).

Proof of Property 1: By definition it is obvious that for fixed
Γ > 0, G(n)(R,Γ|W ) is a monotone increasing function of
R > 0 and that for fixedR > 0, G(n)(R,Γ|W ) is a monotone
increasing function ofΓ > 0. We prove the part b). By time
sharing we have that

G(n+m)

(
nR+mR′

n+m
,
nΓ +mΓ′

n+m

∣∣∣∣W
)

≤ nG(n)(R,Γ|W ) +mG(m)(R′,Γ′|W )

n+m
. (54)

The part b) follows by lettingR = R′ andΓ = Γ′ in (54).
We next prove the part c). By definition it is obvious that for
fixed Γ > 0, G∗(R,Γ|W ) is a monotone decreasing function
of R > 0 and that for fixedR > 0,G∗(R,Γ|W ) is a monotone
increasing function ofΓ > 0. It is obvious that the worst pair

of (ϕ(n), ψ(n)) is that for Mn = ⌊enR⌋, the decoderψ(n)

always outputs a constant messagem0 ∈ Mn. In this case we
have

lim
n→∞

(
− 1

n

)
log P(n)

c (ϕ(n), ψ(n)|W )

= lim
n→∞

(
− 1

n

)
logMn = R.

Hence we have(7) in the part c). We finally prove the part
d). Let ⌊a⌋ be an integer part ofa. Fix any α ∈ [0, 1]. Let
ᾱ = 1− α. We choose(n,m) so that

n = kα
△
= ⌊kα⌋, m = kᾱ

△
= ⌊kᾱ⌋.

For this choice ofn andm, we have
(
1− 1

k

)
α ≤ n

n+m
≤ k

k − 1
α

(
1− 1

k

)
ᾱ ≤ m

n+m
≤ k

k − 1
ᾱ





(55)

Fix small positiveτ arbitrary. Then, for any

k > max{(αR+ ᾱR′)/τ, (αΓ + ᾱΓ′)/τ},

we have the following chain of inequalities:

G(kα+kᾱ) (αR+ ᾱR′ − τ, αΓ + ᾱΓ′ − τ |W )
(a)

≤ G(kα+kᾱ)

((
1− 1

k

)
(αR+ ᾱR′) ,

(
1− 1

k

)
(αΓ + ᾱΓ′)

∣∣∣∣W
)

(b)

≤ G(n+m)

(
nR+mR′

n+m
,
nΓ +mΓ′

n+m

∣∣∣∣W
)

(c)

≤ nG(n)(R,Γ|W ) +mG(m)(R′,Γ′|W )

n+m
(d)

≤
(

k

k − 1

)[
αG(kα)(R,Γ|W ) + ᾱG(kᾱ)(R′,Γ′|W )

]
. (56)

Step (a) follows from the part a) and

k > max{(αR+ ᾱR′)/τ, (αΓ + ᾱΓ′)/τ}.

Step (b) follows from the part a). Step (c) follows from (54).
Step (d) follows from (55). Lettingk → ∞ in (56), we have

G∗ (αR + ᾱR′ − τ, αΓ + ᾱΓ′ − τ |W )

≤ αG∗(R,Γ|W ) + ᾱG∗(R′,Γ′|W ), (57)

whereτ can be taken arbitrary small. We chooseR′, Γ′, and
α, as

R′ = R+ 2
√
τ , Γ′ = Γ+ 2

√
τ,

α = 1−√
τ .

}
(58)

For the above choice ofR′, Γ′, andα, we have

αR+ ᾱR′ = R+ 2τ, αΓ + ᾱΓ′ = Γ+ 2τ. (59)
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Then we have the following chain of inequalities:

G∗ (R+ τ,Γ + τ |W )
(a)
= G∗ (αR + ᾱR′ − τ, αΓ + ᾱΓ′ − τ |W )
(b)

≤ αG∗(R,Γ|W ) + ᾱG∗(R′,Γ′|W )
(c)

≤ αG∗(R,Γ|W ) + ᾱR′

(d)
= (1−

√
τ )G∗(R,Γ|W ) +

√
τR+ 2τ

≤ G∗(R,Γ|W ) +
√
τR+ 2τ. (60)

Step (a) follows from (59). Step (b) follows from (57). Step (c)
follows from (7). Step (d) follows from (58). For any positive
τ , we have the following chain of inequalities:

G∗ (αR+ ᾱR′, αΓ + ᾱΓ′|W )

= G∗ (αR+ ᾱR′ − τ + τ, αΓ + ᾱΓ′ − τ + τ |W )
(a)

≤ G∗(αR + ᾱR′ − τ, αΓ + ᾱΓ′ − τ |W )

+
√
τ (αR + ᾱR′ − τ) + 2τ

(b)

≤ αG∗(R,Γ|W ) + ᾱG∗(R′,Γ′|W )

+
√
τ (αR + ᾱR′) + τ(2 −

√
τ ). (61)

Step (a) follows from (60). Step (b) follows from (57). Since
τ > 0 can be taken arbitrary small in (61), we have

G∗ (αR + ᾱR′, αΓ + ᾱΓ′|W )

≤ αG∗(R,Γ|W ) + ᾱG∗(R′,Γ′|W ),

which implies the convexity ofG∗(R,Γ|W ) on (R,Γ).

B. Proof of Theorem 3

In this appendix we prove Theorem 3. We first describe
some definitions necessary for the proof. Forxn ∈ Xn, set

pxn(x)
△
=

|{t : xt = x}|
n

, x ∈ X ,

The probability distributionpxn
△
= {pxn(x)}x∈X on X is

called the type of sequences inXn. Let Pn(X ) be a set
of all types of sequences inXn. Let P(Y|X ) be a set of
all conditional distributionsqY |X on Y for given X ∈ X .
We fix δ ∈ [0, 1/2). We consider any pair(qX , qY |X) ∈
Pn(X ) × P(Y|X ) satisfying EqX c(X) ≤ Γ. For such pair
of (qX , qY |X), we can construct ann-length block code
(φ(n), ψ(n)) with message setKn satisfying:

a) P
(n)
c (φ(n), ψ(n)|qY |X) ≥ 1− δ.

b) all codewordsφ(n)(k), k ∈ Kn have the identical type
qX .

c) 1
n log |Kn| ≥ min{R, I(qX , qY |X)− δ}.

By the condition b), we havec(φ(n)(k)) = EqX c(X) ≤ Γ.
Hence then-length block code(φ(n), ψ(n)) satisfies the cost
constraint. Furthermore, by this condition we can obtain the
following result.

Lemma 9: For everyk ∈ Kn, we have

∑

yn∈Yn

qnY |X(yn|φ(n)(k)) log
qnY |X(yn|φ(n)(k))
Wn(yn|φ(n)(k))

= nD(qY |X ||W |qX). (62)

Proof: For eachk ∈ Kn, we set

φ(n)(k) = xn(k) = x1(k)x2(k) · · ·xn(k).
For eachk ∈ Kn, we have the following chain of equalities:

∑

yn∈Yn

qnY |X(yn|φ(n)(k)) log
qnY |X(y

n|φ(n)(k))
Wn(yn|φ(n)(k))

(a)
=

n∑

t=1

∑

yt∈Y

qY |X(yt|xt(k)) log
qY |X(yt|xt(k))
W (yt|xt(k))

=
∑

a∈X

∑

y∈Y

|{t : xt(k) = a}|qY |X(y|a) log qY |X(y|a)
W (y|a)

= n
∑

a∈X

∑

y∈Y

pxn(k)(a)qY |X(y|a) log qY |X(y|a)
W (y|a)

(b)
= n

∑

a∈X

∑

y∈Y

qX(a)qY |X(y|a) log
qY |X(y|a)
W (y|a)

= nD(qY |X ||W |qX).

Step (a) follows from the memoryless property of the noisy
channel. Step (b) follows from thatpxn(k) = qX ∈ Pn(X ).

For k ∈ Kn, we set

αn(k)
△
=Wn(D(k)|φ(n)(k)) =

∑

yn∈D(k)

Wn(yn|φ(n)(k)),

βn(k)
△
= qnY |X(D(k)|φ(n)(k)) =

∑

yn∈D(k)

qnY |X(yn|φ(n)(k)),

αn(k)
△
= 1− αn(k) = qnY |X(D(k)|φ(n)(k)),

βn(k)
△
= 1− βn(k) = qnY |X(D(k)|φ(n)(k)).

Furthermore, set

αn
△
=
∑

k∈Kn

1

|Kn|
αn(k) = P(n)

c (φ(n), ψ(n)|W ),

βn
△
=
∑

k∈Kn

1

|Kn|
βn(k) = P(n)

c (φ(n), ψ(n)|qY |X).

The quantityP(n)
c (φ(n), ψ(n)|W ) has a lower bound given by

the following Lemma.
Lemma 10: For anyδ ∈ [0, 1/2), we have

P(n)
c (φ(n), ψ(n)|W ) =

1

|Kn|
∑

k∈Kn

Wn(D(k)|φ(n)(k))

≥ exp{−n[(1− δ)−1D(qY |X ||W |qX) + ηn(δ)]}. (63)

Here we setηn(δ)
△
= 1

n (1− δ)−1h(1− δ) andh(·) stands for
a binary entropy function.
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Proof: We have the following chain of inequalities:

nD(qY |X ||W |qX)

(a)
=

1

|Kn|
∑

k∈Kn

∑

yn∈Yn

qnY |X(yn|φ(n)(k)) log
qnY |X(yn|φ(n)(k))
Wn(yn|φ(n)(k))

(b)

≥ 1

|Kn|
∑

k∈Kn

[
βn(k) log

βn(k)

αn(k)
+ βn(k) log

βn(k)

αn(k)

]

=
∑

k∈Kn


βn(k)

|Kn|
log

βn(k)
|Kn|

αn(k)
|Kn|

+
βn(k)

|Kn|
log

βn(k)
|Kn|

αn(k)
|Kn|




(c)

≥ βn log
βn
αn

+ βn log
βn
αn

≥ −h(βn)− βn logαn

(d)

≥ −h(1− δ)− (1 − δ) logαn. (64)

Step (a) follows from Lemma 9. Steps (b) and (c) follow from
the log-sum inequality. Step (d) follows from that

βn = P(n)
c (φ(n), ψ(n)|qY |X) ≥ 1− δ

andδ ∈ (0, 1/2]. From (64), we obtain

αn = P(n)
c (φ(n), ψ(n)|W )

≥ exp

(
−nD(qY |X ||W |qX) + h(1− δ)

1− δ

)

= exp{−n[(1− δ)−1D(qY |X ||W |qX) + ηn(δ)]},

completing the proof.
Proof of Theorem 3: We first consider the case whereR ≤

I(qX , qY |X) − δ. In this case we chooseϕ(n) = φ(n). Then
we have

P(n)
c (ϕ(n), ψ(n)|W ) = P(n)

c (φ(n), ψ(n)|W )
(a)
= exp{−n[R+ δ − I(qX , qY |X)]

+

− n[(1− δ)−1D(qY |X ||W |qX) + ηn(δ)]}
(b)

≥ exp{−n[R− I(qX , qY |X)]+

− n[(1− δ)−1D(qY |X ||W |qX) + δ + ηn(δ)]}. (65)

Step (a) follows from the conditionR+ δ− I(qX , qY |X) ≤ 0.
Step (b) follows from that

[R+ δ − I(qX , qY |X)]
+ ≤ [R− I(qX , qY |X)]

+ + δ.

We next consider the case whereR > I(qX , qY |X) − δ.
Consider the new message setK̂n satisfying|K̂n| = e⌊nR⌋. For
new message set̂Kn, we defineϕ(n)(k) such thatϕ(n)(k) =
φ(n)(k) if k ∈ Kn. For k ∈ K̂n − Kn, we defineϕ(n)(k)
arbitrary sequence ofXn having the typeqX . We use the
same decoderψ(n) as that of the message setKn. Then we

have the following:

P(n)
c (ϕ(n), ψ(n)|W )

=
1

|K̂n|

[
∑

k∈Kn

Wn(D(k)|ϕ(n)(k))

+
∑

k∈K̂n−Kn

Wn(D(k)|ϕ(n)(k))




≥ 1

|K̂n|
∑

k∈Kn

Wn(D(k)|ϕ(n)(k))

(a)

≥ |Kn|
enR

exp{−n[(1− δ)−1D(qY |X ||W |qX) + ηn(δ)]}
(b)

≥ exp
[
−n
{
R− (I(qX , qY |X)− δ)

+(1− δ)−1D(qY |X ||W |qX) + ηn(δ)
}]

(c)

≥ exp
[
−n
{
[R− I(qX , qY |X)]+

+(1− δ)−1D(qY |X ||W |qX) + δ + ηn(δ)
}]
. (66)

Step (a) follows from (63) in Lemma 10. Step (b) follows from
|Kn| ≥ en[(I(qX ,qY |X )−δ]. Step (c) follows from[a] ≤ [a]+.
Combining (65) and (66), we have

P(n)
c (ϕ(n), ψ(n)|W )

≥ exp
[
−n
{
[R− I(qX , qY |X)]+

+(1− δ)−1D(qY |X ||W |qX) + δ + ηn(δ)
}]

(67)

for any qX ∈ Pn(X ) with EqX c(X) ≤ Γ and qY |X ∈ P(
Y|X ). Hence from (67), we have

− 1

n
log P(n)

c (ϕ(n), ψ(n)|W )

≤ min
qX∈Pn(X ),
EqX

c(X)≤Γ,
qY |X∈P(Y|X )

{[R− I(qX , qY |X)]
+

+ (1− δ)−1D(qY |X ||W |qX) + δ + ηn(δ)}
≤ (1− δ)−1 min

qX∈Pn(X ),
EqX

c(X)≤Γ,
qY |X∈P(Y|X )

{[R− I(qX , qY |X)]+

+D(qY |X ||W |qX)} + δ + ηn(δ)

≤ (1− δ)−1GDK(R,Γ|W ) + δ + ηn(δ) + εn. (68)

The quantity{εn}n≥1 appearing in the last inequality is an
error bound coming from an approximation of the marginal
distributionq∗X of q∗ achievingGDK(R,Γ|W ) by some suit-
able typeqX ∈ Pn(X ). Since qX ∈ Pn(X ) can be made
arbitrary close toq∗X by letting n sufficiently large, we can
chooseεn so thatεn → 0 as n → ∞. We further note that
ηn(δ) → 0 asn → ∞. Hence by lettingn → ∞ in (68), we
obtain

G∗(R,Γ|W ) ≤ (1 − δ)−1GDK(R,Γ|W ) + δ.

Sinceδ can be made arbitrary small, we conclude thatG∗(R
,Γ|W ) ≤ GDK(R,Γ|W ).
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C. Proof of Lemma 1

In this appendix we prove Lemma 1. We can show that
GDK(R,Γ|W ) satisfies the following property.

Property 3:

a) For every fixedΓ > 0, the functionGDK(R,Γ|W ) is
monotone increasing forR ≥ 0 and takes positive value
if and only if R > C(Γ|W ). For every fixedR ≥ 0,
the functionGDK(R,Γ|W ) is monotone decreasing for
Γ > 0.

b) GDK(R,Γ|W ) is a convex function of(R,Γ).
c) ForR,R′ ≥ 0

|GDK(R,Γ|W )−GDK(R
′,Γ|W )| ≤ |R−R′|.

Property 3 part a) is obvious. Proof of the part b) is found
in Appendix D. Proof of part c) is quite similar to that of the
case without input cost given by Dueck and Körner [3]. We
omit the detail.

We can show thatG(µ)
DK(R,Γ|W ) satisfies the following

property.
Property 4:

a) For every fixedΓ > 0, the functionG(µ)
DK(R,Γ|W ) is

monotone increasing forR ≥ 0. For every fixedR ≥ 0,
the functionG(µ)

DK(R,Γ|W ) is monotone decreasing for
Γ > 0.

b) For every fixedµ ≥ 0, the functionG(µ)
DK(R,Γ|W ) is a

convex function of(R,Γ).
c) ForR,R′ ≥ 0

|G(µ)
DK(R,Γ|W )−G

(µ)
DK(R

′,Γ|W )| ≤ |R−R′|.

Property 4 part a) is obvious. Proof of the part b) is found
in Appendix E. Proof of part c) is quite similar to that of the
case without input cost given by Dueck and Körner [3]. We
omit the detail.

Proof of (13) in Lemma 1: From its formula, it is obvious
that for anyµ ≥ 0

GDK(R,Γ|W ) ≥ G
(µ)
DK(R,Γ|W ).

Hence it suffices to prove that for anyΓ > 0, there exists
µ ≥ 0 such that

GDK(R,Γ|W ) ≤ G
(µ)
DK(R,Γ|W ). (69)

By Property 3 part b),GDK(R,Γ|W ) is a monotone decreasing
and convex function ofΓ. Then, there existsµ ≥ 0 such that
for anyΓ′ ≥ 0, we have

GDK(R,Γ
′|W ) ≥ GDK(R,Γ|W )− µ(Γ′ − Γ). (70)

Fix the aboveµ. Let q∗ ∈ P(X×Y) be a joint distribution that
attainsG(µ)

DK(R,Γ|W ). SetΓ′ = Eq∗ [c(X)]. By the definition
of GDK(R,Γ

′|W ), we have

GDK(R,Γ
′|W )

≤
[
R− I(q∗X , q

∗
Y |X)

]+
+D(q∗Y |X ||W |q∗X). (71)

Then, we the following chain of inequalities:

GDK(R,Γ|W )
(a)

≤ GDK(R,Γ
′|W ) + µ(Γ′ − Γ)

(b)

≤ [R− I(q∗X , q
∗
Y |X)]+ +D(q∗Y |X ||W |q∗X) + µ(Γ′ − Γ)

(c)
=[R− I(q∗X , q

∗
Y |X)]+ +D(q∗Y |X ||W |q∗X)

− µ(Γ− Eq∗ [c(X)]) = G
(µ)
DK(R,Γ|W ). (72)

Step (a) follows from (70). Step (b) follows from (71). Step (c)
follows from the choice ofΓ′ = Eq∗ [c(X)]. It follows from
(72) that forΓ > 0, (69) holds for someµ ≥ 0. This completes
the proof.

Proof of (14) in Lemma 1: Since[a]+ ≥ λa for any a and
anyλ ∈ [0, 1], it is obvious that

G
(µ)
DK(R,Γ|W ) ≥ max

0≤λ≤1
G

(µ,λ)
DK (R,Γ|W ).

Hence it suffices to prove that forR ≥ 0, there existsλ ∈ [0, 1]

such thatG(µ)
DK(R,Γ|W ) ≤ G

(µ,λ)
DK (R,Γ|W ). By Property 4

part b)G(µ)
DK(R,Γ|W ) is a monotone increasing and convex

function ofR. Then, by Property 3 part c), there exists0 ≤
λ ≤ 1 such that for anyR′ ≥ 0, we have

G
(µ)
DK(R

′,Γ|W ) ≥ G
(µ)
DK(R,Γ|W ) + λ(R′ −R). (73)

Let q∗ ∈ P(X ×Y) be a joint distribution that attainsG(µ,λ)
DK (

R,Γ|W ). SetR′ = I(q∗X , q
∗
Y |X). Then we have the following

chain of inequalities:

G
(µ)
DK(R,Γ|W )

(a)

≤ G
(µ)
DK(R

′,Γ|W )− λ(R′ −R)

=min
q

{
[R′ − I(qX , qY |X)]+ +D(qY |X ||W |qX)

−µ(Γ− EqX [c(X)])} − λ(R′ −R)

≤[R′ − I(q∗X , q
∗
Y |X)]

+ +D(q∗Y |X ||W |q∗X)

− µ(Γ− Eq∗
X
[c(X)])− λ(R′ −R)

(b)
=D(q∗Y |X ||W |q∗X) + λ[R − I(q∗X , q

∗
Y |X)]

− µ(Γ− Eq∗
X
[c(X)]) = G

(µ,λ)
DK (R,Γ|W ).

Step (a) follows from (73). Step (b) follows from the choice
of R′ = I(q∗X , q

∗
Y |X).

D. Proof of Property 3 part b)

Proof of Property 3 part b): We first observe that

GDK(R,Γ|W )

= min
q:Eq [c(X)]≤Γ

{
[R− I(qX , qY |X)]

+ +D(qY |X ||W |qX)
}

= min
q:Eq [c(X)]≤Γ

Θ(R, q|W ), (74)

where we set

Θ(R, q|W )
△
= [R− I(qX , qY |X)]+ +D(qY |X ||W |qX)

= max{R− I(qX , qY |X) +D(qY |X ||W |qX),
D(qY |X ||W |qX)}.
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For eachi = 0, 1, let q(i)XY be a probability distribution that
attainsGDK(Ri,Γi|W ). By definition we have

GDK(Ri,Γi|W ) = Θ(Ri, q
(i)|W ) for i = 0, 1. (75)

For α0 ∈ [0, 1], we set q(α)XY = α0q
(0)
XY + α1q

(1)
XY , where

α1 = 1 − α0. The quantitiesq(α)X and q(α)Y |X are probability

and conditional probability distributions induced byq(α)XY . Set

Γα
△
= α0Γ0+α1Γ1. By the linearity ofEq[c(X)] with respect

to q, we have that

Eq(α) [c(X)] =
∑

i=0,1

αiEq(i) [c(X)] ≤ Γα. (76)

By the convex property of−I(qX , qY |X) +D(qY |X ||W |qX)
andD(qY |X ||W |qX) with respect toq, we have that

−I(q(α)X , q
(α)
Y |X) +D(q

(α)
Y |X ||W |q(α)X )

≤
∑

i=0,1

αi

[
−I(q(i)X , q

(i)
Y |X) +D(q

(i)
Y |X ||W |q(i)X )

]
,

D(q
(α)
Y |X ||W |q(α)X ) ≤

∑

i=0,1

αiD(q
(i)
Y |X ||W |q(i)X ).





(77)

SetRα
△
= α0R0 + α1R1. We have the following two chains

of inequalities:

Rα − I(q
(α)
X , q

(α)
Y |X) +D(q

(α)
Y |X ||W |q(α)X )

(a)

≤
∑

i=0,1

αi

[
Ri − I(q

(i)
X , q

(i)
Y |X) +D(q

(i)
Y |X ||W |q(i)X )

]

(b)

≤
∑

i=0,1

αiΘ(Ri, q
(i)|W ), (78)

D(q
(α)
Y |X ||W |q(α)X )

(c)

≤
∑

i=0,1

αiD(q
(i)
Y |X ||W |q(i)X )

(d)

≤
∑

i=0,1

αiΘ(Ri, q
(i)|W ). (79)

Steps (a) and (c) follow from (77). Steps (b) and (d) follow
from the definition ofΘ(Ri, q

(i)|W ), i = 0, 1. From (78) and
(79), we have that

Θ
(
Rα, q

(α)
∣∣∣W

)
≤
∑

i=0,1

αiΘ(Ri, q
(i)|W ). (80)

Thus we have the following chain of inequalities

GDK(Rα,Γα|W ) = min
q:Eq [c(X)]≤Γα

Θ(Rα, q|W )

(a)

≤ Θ(Rα, q
(α)|W )

(b)

≤
∑

i=0,1

αiΘ(Ri, q
(i)|W )

(c)
=
∑

i=0,1

αiGDK(Ri,Γi|W ).

Step (a) follows from (76). Step (b) follows from (80). Step
(c) follows from (75).

E. Proof of Property 4 part b)

Proof of Property 4 part b): We set

Θ(µ)(R,Γ, q|W )
△
= Θ(R, q|W )− µ(Γ− Eq[c(X)]).

Then we have

G
(µ)
DK(R,Γ|W ) = min

q
Θ(µ)(R,Γ, q|W ).

For eachi = 0, 1, let q(i)XY be a probability distribution that
attainsGDK(Ri,Γi|W ). By definition we have

GDK(Ri,Γi|W ) = Θ(µ)(Ri,Γi, q
(i)|W ) for i = 0, 1. (81)

For α0 ∈ [0, 1], we set q(α)XY = α0q
(0)
XY + α1q

(1)
XY , where

α1 = 1 − α0. The quantitiesq(α)X and q(α)Y |X are probability

and conditional probability distributions induced byq(α)XY . By
the convex property of

−I(qX , qY |X) +D(qY |X ||W |qX) + µEq[c(X)]

andD(qY |X ||W |qX) + µEq[c(X)]

with respect toq, we have that

−I(q(α)X , q
(α)
Y |X) +D(q

(α)
Y |X ||W |q(α)X ) + µEq(α) [c(X)]

≤
∑

i=0,1

αi

[
−I(q(i)X , q

(i)
Y |X) +D(q

(i)
Y |X ||W |q(i)X )

+µEq(i) [c(X)]
]
,

D(q
(α)
Y |X ||W |q(α)X ) + µEq(α) [c(X)]

≤
∑

i=0,1

αi

[
D(q

(i)
Y |X ||W |q(i)X ) + µEq(i) [c(X)]

]
.




(82)

Then we have the following two chains of inequalities:

Rα − I(q
(α)
X , q

(α)
Y |X) +D(q

(α)
Y |X ||W |q(α)X )

−µ
(
Γα − Eq(α) [c(X)]

)

(a)

≤
∑

i=0,1

αi

[
Ri − I(q

(i)
X , q

(i)
Y |X) +D(q

(i)
Y |X ||W |q(i)X )

−µ(Γi − Eq(i) [c(X)])
]

(b)

≤
∑

i=0,1

αiΘ
(µ)(Ri,Γi, q|W ), (83)

D(q
(α)
Y |X ||W |q(α)X )− µ(Γα − Eq(α) [c(X)])

(c)

≤
∑

i=0,1

αi

[
D(q

(i)
Y |X ||W |q(i)X )− µ(Γi − Eq(i) [c(X)])

]

(d)

≤
∑

i=0,1

αiΘ
(µ)(Ri,Γi, q

(i)|W ). (84)

Steps (a) and (c) follow from (82). Steps (b) and (d) follow
from the definition ofΘ(Ri,Γi, q

(i)|W ), i = 0, 1. From (83)
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and (84), we have that

Θ(µ)
(
Rα,Γα, q

(α)
∣∣∣W
)
≤
∑

i=0,1

αiΘ
(µ)(Ri,Γi, q

(i)|W ).

(85)
Thus we have the following chain of inequalities

G
(µ)
DK(Rα,Γα|W ) = min

q
Θ(µ)(Rα,Γα, q|W )

≤ Θ(µ)(Rα,Γα, q
(α)|W )

(a)

≤
∑

i=0,1

αiΘ
(µ)(Ri,Γi, q

(i)|W )

(b)
=
∑

i=0,1

αiG
(µ)
DK(Ri,Γi|W ).

Step (a) follows from (85). Step (b) follows from (81).
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