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Explicit Relation between Low-Dimensional LLL-Reduced Bases
and Shortest Vectors
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SUMMARY The Shortest Vector Problem (SVP) is one of the most im-
portant lattice problems in computer science and cryptography. The LLL
lattice basis reduction algorithm runs in polynomial time and can compute
an LLL-reduced basis that provably contains an approximate solution to
the SVP. On the other hand, the LLL algorithm in practice tends to solve
low-dimensional exact SVPs with high probability, i.e., > 99.9%. Filling
this theoretical-practical gap would lead to an understanding of the com-
putational hardness of the SVP. In this paper, we try to fill the gap in 3, 4
and 5 dimensions and obtain two results. First, we prove that given a 3, 4
or 5-dimensional LLL-reduced basis, the shortest vector is one of the basis
vectors or it is a limited integer linear combination of the basis vectors. In
particular, we construct explicit representations of the shortest vector by
using the LLL-reduced basis. Our analysis yields a necessary and sufficient
condition for checking whether the output of the LLL algorithm contains
the shortest vector or not. Second, we estimate the failure probability that
a 3-dimensional random LLL-reduced basis does not contain the shortest
vector. The upper bound seems rather tight by comparison with a Monte
Carlo simulation.
key words: lattice, shortest vector problem, LLL algorithm, lattice-based
cryptography

1. Introduction

1.1 Background

Public key cryptography is a fundamental technique for en-
suring security in today’s information society. The RSA
cryptosystem [37] and elliptic curve cryptosystem [19], [29]
are widely used, as exemplified by the SSL/TLS protocol.
Since the level of security relates to the hardness of the
integer factorization and discrete logarithm problems that
are believed to be computationally hard, the schemes are
believed to be currently secure. However, due to Shor’s
breakthrough work [42], these schemes can be broken in
polynomial time by using a quantum algorithm. Therefore,
constructing alternative cryptosystems that are secure in the
post-quantum era has become the main stream of cryptog-
raphy research. Lattice-based cryptography is one of the
most promising candidates to resolve this issue. Its security
relates to the hardness of the shortest vector problem (SVP).
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Given a lattice basis, the goal of SVP is to find the shortest
non-zero lattice vector. SVP is NP-hard under randomized
reductions [1] and is believed to be computationally hard
even against quantum adversaries.

Although several lattice-based schemes, e.g., [15], [16],
[36], have been proposed thus far, this does not suggest that
they can be efficiently and securely used in practice. More
concretely, we do not know the most suitable lattice dimen-
sions for the best efficiency/security trade-off. To find them,
we should examine the behavior of lattice basis reduction
algorithms that are frequently used to estimate the hardness
of SVPs. There are two types of SVP algorithm; one for
solving exact SVPs, the other for solving α-SVPs. Given a
lattice basis, the goal of an α-SVP for α > 1 is to find a lat-
tice vector whose norm is at most α times more than that of
the shortest non-zero vector. In the context of the security of
lattice-based cryptography, we want to estimate the running
times of α-SVPs for a small constant α, e.g., α = 1.05. In
this paper, we focus on the LLL algorithm [23]. The LLL
algorithm runs in polynomial time, but solves the α-SVP for
only large α that is exponential in the lattice dimensions.
There are several (super-)exponential time algorithms for
solving exact SVPs, e.g., enumeration [10], [20], sieve algo-
rithms [2], [27], random sampling reductions [40], Voronoi
cell computations [26], and so on, and all of them utilize the
LLL algorithm as preprocessing. In addition, several reduc-
tion algorithms e.g., BKZ reduction [38], [40], transference
reduction [12], slide reduction [13], and so on, have been
proposed for solving α-SVPs for smaller α than the LLL
algorithm. All the algorithms are generalizations of the LLL
algorithm and utilize it as a subroutine. Therefore, the LLL
algorithm is a fundamental tool for solving (α-)SVPs and
understanding the behavior of the LLL algorithm should be
a crucial goal in the study of (α-)SVP algorithms.

The main stream of SVP is widely studied by many
researchers especially in cryptography community. There
are mainly two directions for studying the hardness of SVP,
i.e., (1) practical analysis based on several heuristics, (2)
theoretical analysis based on as strict discussion as possi-
ble. The first approach (1) is the current main stream of
this research area and has recently provided several fantas-
tic results. Indeed, based on several heuristics such as the
Gaussian heuristic, the geometric series assumption [39],
and the randomness assumption [5], [11], [43], several faster
SVP algorithms have been proposed. To solve the ex-
act SVP, faster variants of enumeration [14], sieve algo-
rithms [7], [9], [21], [22], [34], and random sampling re-
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ductions [5], [11], [24], [44] have been proposed. Sim-
ilarly, faster variants of the LLL [30], [32], [35] and the
BKZ [6], [8], [17], [28], [45] have been proposed.

What we study in this paper is differs from these works
since we focus on the second approach (2). Since several
substantial results have recently been proposed in the first
approach (1), many readers tend to forget importance of the
other approach (2). However, the second approach (2) is an
arguably essential research topic for studying the hardness
of SVP. In particular, we study theoretical behaviors of the
LLL reduction in low dimensions. One may feel that LLL
in low dimensions looks a weak target since we finally want
to know practical behaviors of LLL in high dimensions or
possibly BKZ-reduced bases. However, it is a much harder
problem than onemay expect. Indeed, aswewill claimbelow
there still exists fundamental problem regarding a behavior
of LLL even in low dimensions. Furthermore, all papers
which try to analyze high dimensional LLL-reduced bases or
BKZ-reduced bases rely on experimental analysis or several
heuristics. Therefore, low-dimensional LLL-reduced bases
have to be a good target to put the research direction forward.

As we claimed above, the LLL algorithm has been
proven to solve an α-SVP of exponentially large α. How-
ever, it is actually much more effective in practice; it can
solve exact SVPs with high probability in low dimensions.
Alsayigh et al. [4] found special classes of 3-dimensional lat-
tice bases in which the LLL algorithm always/never solves
the exact SVP. Moreover, low-dimensional SVPs have been
studied by Semaév [41] and Nguyen and Stehlé [33]; they
constructed efficient lattice reduction algorithms specific to
3 or 4 dimensions, but they did not analyze the relation to
the LLL algorithm. Our motivation is rather similar to Al-
sayigh et al.’s work [4]. Inspired by it, we decided to study
the relationship between outputs of the LLL algorithm and
shortest vectors in low dimensions.

1.2 Our Contributions

In this paper, we show an explicit relation between LLL-
reduced bases and the shortest vectors in three, four and five
dimensions. We prove that at least one of a few fixed linear
integer combinations of the LLL-reduced basis vectors is
the shortest non-zero vector in the lattice if the LLL-reduced
basis does not contain the shortest non-zero vector in three,
four and five dimensions. From this, we obtain a necessary
and sufficient condition that an LLL-reduced basis does not
contain the shortest vector. For example, if a 3-dimensional
LLL-reduced basis (b1, b2, b3) does not contain the shortest
non-zero vector in the lattice L(b1, b2, b3), then either b2±b3
or b1 ± b2 ± b3 is the shortest non-zero vector in the lattice
L(b1, b2, b3). Thus, we can easily find one of the shortest
non-zero vectors in the lattice by changing the LLL algorithm
slightly. Moreover, by using this condition, we estimate the
failure probability that a random LLL-reduced basis does
not contain the shortest vector in three dimensions. To be
more precise, we consider 6-dimensional space where each
point is corresponded to a 3-dimensional basis, and then we

estimate the ratio of the volume of the region corresponded
to LLL-reduced bases not containing the shortest vector over
that of the region corresponded to LLL-reduced bases. We
calculate its upper bound by numerical integration. We also
show that the upper bound we obtain is about twice the value
obtained in a Monte Carlo simulation.

1.3 Organization

In Sect. 2, we recall the basic notions of lattices, SVP, and
LLL algorithm. In Sect. 3, we show the explicit relation
between LLL-reduced bases and the shortest vectors in three,
four and five dimensions. In Sect. 4, we estimate the failure
probability that a 3-dimensional random LLL-reduced basis
does not contain the shortest vector. In addition, we compare
the upper bound with the value obtained by the Monte Carlo
method.

2. Preliminaries

In this section, we recall the basic definitions of lattices and
the (α-)shortest vector problem (SVP). Then, we explain the
LLL algorithm and its behavior in low dimensions.

2.1 Notation

Let R and Z denote a set of real numbers and integers, re-
spectively. Let a lowercase bold letter b denote a vector
whose transpose is denoted by b>. The Euclidean norm
of a vector b is denoted by ‖b‖. The inner product of b1
and b2 is denoted by 〈b1, b2〉. Let (b1, ..., bn) be a set of
linearly independent vectors. The Gram-Schmidt orthog-
onal basis (b∗1, ..., b

∗
n) is defined as follows: b∗1 = b1 and

b∗i = bi −
∑i−1

j=1 µi j b
∗
j for 2 ≤ i ≤ n, where µi j =

〈bi,b
∗
j 〉

‖b∗j ‖
2

are called Gram-Schmidt orthogonal coefficients. We will
sometimes write µi j as µi, j in this paper.

2.2 Lattices

A lattice is an additive discrete subgroup of Rm. Let
(b1, ..., bn) ∈ Rn×m be a set of linearly independent vec-
tors. A lattice spanned by a basis (b1, ..., bn) is defined as
L(b1, ..., bn) = {

∑n
i=1 xibi |xi ∈ Z}. For simplicity through-

out the paper, we will study only full-rank lattices, i.e.,
n = m.

Let λ1(L(b1, ..., bn)) denote the Euclidean norm of the
shortest non-zero vector in L(b1, ..., bn). We define the SVP
as follows.

Definition 1 (SVP): Given a basis (b1, ..., bn), the goal of
the SVP is to find a vector b′ in a lattice L(b1, ..., bn) such
that ‖b′‖ = λ1(L(b1, ..., bn)) holds.

Ajtai proved that the SVP is NP-hard under randomized re-
duction [1].

There is also an approximate version parameterized by
α > 1.



MATSUDA et al.: EXPLICIT RELATION BETWEEN LOW-DIMENSIONAL LLL-REDUCED BASES AND SHORTEST VECTORS
1093

Definition 2 (α-SVP): Given a basis (b1, ..., bn) and a real
number α > 1, the goal of the α-SVP is to find a vector b′ in
a lattice L(b1, ..., bn) such that ‖b′‖ ≤ αλ1(L(b1, ..., bn))
holds.

Khot proved that the α-SVP is NP-hard if α is a constant
under randomized reductions [18].

2.3 LLL Algorithm

Here, we recall the LLL algorithm, which is a fundamental
tool for solving the (α-)SVP.

Lattices do not have unique bases. There exist infinitely
many bases for the same lattice under unimodular transfor-
mations. Given a lattice basis, the LLL algorithm outputs an
LLL-reduced basis defined as follows.

Definition 3 (LLL-reduced Basis): Let δ be a real number
with δ ∈ (1/4, 1]. If a basis (b1, ..., bn) ∈ Rn×n satisfies the
following two conditions, it is called an LLL-reduced basis
with a Lovász factor δ:

• Size reduction: |µi j | ≤ 1/2 holds for all i, j with
1 ≤ j < i ≤ n,

• Lovász condition: ‖b∗i + µi,i−1b
∗
i−1‖

2 ≥ δ‖b∗i−1‖
2 hold

for all i with 2 ≤ i ≤ n.

The LLL algorithm runs in O(n6 log3(max(‖b1‖, ..., ‖bn‖)))
time for δ < 1 (it has been proven for δ = 1 in a fixed
number of dimensions that it runs in polynomial time of
input size [3]) and outputs LLL-reduced bases. In using
the LLL algorithm, δ is usually strictly smaller than 1. In
this paper, we also consider the case of δ = 1, which is
called “ideal” or “optimal”. The first vector b1 of an LLL-

reduced basis is a solution of an α-SVP for α =
(

4
4δ−1

) n−1
2 ,

i.e., ‖b1‖ ≤
(

4
4δ−1

) n−1
2 λ1(L(B)) holds. Hence, a smaller

Lovász factor enables us to solve α-SVP for a larger α. In
the special case n = 2, LLL for δ = 1 is the same as the
Lagrange-Gauss reduction algorithm (see e.g. [31]). Hence,
LLL runs in polynomial time and outputs the shortest vectors.
It is well known that LLL outputs much shorter vectors in
practice. Specifically, in three to ten dimensions, it can solve
an SVP with a probability of more than 99.9% by taking a
factor δ close to 1 (δ > 0.999) [4].

In this paper, we say that a basis (b1, .., bn) does not con-
tain the shortest non-zero vector if ‖bi ‖ , λ1(L(b1, ..., bn))
holds for 1 ≤ i ≤ n. In addition, we say the failure condition
is when an LLL-reduced basis does not contain the shortest
non-zero vector.

3. Failure Condition of LLL-Reduced Bases

Here, we discuss the necessary and sufficient condition that
an LLL-reduced basis does not contain the shortest vector.
Indeed, we show how the shortest vector can be represented
by an integer linear combination of an LLL-reduced basis
vectors.

3.1 Case of Three Dimensions and δ = 1

First, we discuss the case of n = 3 dimensions and a Lovász
factor δ = 1 in Definition 3. In this case, we can prove the
following theorem.

Theorem 1: Suppose a 3-dimensional LLL-reduced ba-
sis (b1, b2, b3) for a Lovász factor δ = 1 does not con-
tain the shortest non-zero vector in the lattice L(b1, b2, b3).
If b′ =

∑3
i=1 xibi for some integers x1, x2, x3 is the

shortest non-zero vector in the lattice L(b1, b2, b3), then
(|x1 |, |x2 |, |x3 |) = (1, 1, 1) or (0, 1, 1) holds. In addi-
tion, there exist LLL-reduced bases (b1, b2, b3) such that
b′ =

∑3
i=1 xibi is the shortest vector in L(b1, b2, b3) for each

(|x1 |, |x2 |, |x3 |) = (1, 1, 1) or (0, 1, 1).

Proof 1: The Gram-Schmidt orthogonal basis (b∗1, b
∗
2, b
∗
3)

satisfies b1 = b∗1, b2 = µ21b
∗
1 + b

∗
2, b3 = µ31b

∗
1 + µ32b

∗
2 + b

∗
3.

Hence, (b1, b2, b3) can be represented as linear combinations
of orthogonal basis vectors

(
b∗1
‖b∗1 ‖

,
b∗2
‖b∗2 ‖

,
b∗3
‖b∗3 ‖

)
as follows:

*.
,

b>1
b>2
b>3

+/
-
=
*.
,

‖b∗1‖ 0 0
µ21‖b

∗
1‖ ‖b∗2‖ 0

µ31‖b
∗
1‖ µ32‖b

∗
2‖ ‖b∗3‖

+/
-

*...
,

1
‖b∗1 ‖

b∗1
>

1
‖b∗2 ‖

b∗2
>

1
‖b∗3 ‖

b∗3
>

+///
-

.

(1)

Since (b1, b2, b3) is LLL-reduced, we have the following
inequalities:

‖b∗2‖
2 ≥ (1 − µ2

21)‖b∗1‖
2 ≥

3
4
‖b∗1‖

2, (2)

‖b∗3‖
2 ≥ (1 − µ2

32)‖b∗2‖
2 ≥

3
4
‖b∗2‖

2 ≥
9
16
‖b∗1‖

2. (3)

If x3 satisfies |x3 | ≥ 2, the vector b′ =
∑3

i=1 xibi fulfills the
following inequality:

‖b′‖2 ≥ (2‖b∗3‖)
2 = 4‖b∗3‖

2 ≥
9
4
‖b∗1‖

2 > ‖b1‖
2. (4)

Therefore, if b′ is the shortest non-zero vector, |x3 | ≤ 1
holds.

If x3 = 0 holds, b′ is in L(b1, b2). The 2-dimensional
LLL algorithm for δ = 1 is equivalent to the Lagrange-Gauss
reduction algorithm. Therefore, ‖b1‖ = λ1(L(b1, b2)) or
‖b2‖ = λ1(L(b1, b2)). Consequently, if the LLL-reduced
basis (b1, b2, b3) does not contain the shortest non-zero vec-
tor and b′ is the shortest vector, |x3 | = 1.

Next, if x2 satisfies |x2 | ≥ 2,

‖b′‖2 ≥ |x3 |
2‖b∗3‖

2 + (x3µ32 + x2)2‖b∗2‖
2

≥
9
4
‖b∗2‖

2 ≥
27
16
‖b∗1‖

2 > ‖b1‖
2

holds in accordance with the size reduction, equations (1),
(3) and |x3 | = 1. This contradicts the shortest property of b′
and thus |x2 | ≤ 1 holds.
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Finally we prove |x1 | ≤ 1. From b′ =
∑3

i=1 xibi , we
have the equality ‖b′‖2 = (x1 + µ21x2 + µ31x3)2‖b∗1‖

2 +

(x2 + µ32x3)2‖b∗2‖
2 + x2

3‖b
∗
3‖

2. From |x2 | ≤ 1, |x3 | ≤ 1 and
the size reduction, |µ21x2 + µ31x3 | ≤ 1 holds. Therefore, if
b′ is the shortest non-zero vector, |x1 | ≤ 1.

Moreover, if ( |x1 |, |x2 |, |x3 |) = (1, 0, 1), ‖b′‖ ≥ ‖b3‖
holds by the size reduction. From the above, if b′ =∑3

i=1 xibi is the shortest vector, (|x1 |, |x2 |, |x3 |) = (1, 1, 1) or
(0, 1, 1) holds. This means we find LLL-reduced bases that
do not contain the shortest vector for each occasion (this is
shown in Appendix A). �

This theorem leads to the following corollary.

Corollary 1: For a Lovász factor δ = 1, the following is a
necessary and sufficient condition that an LLL-reduced basis
(b1, b2, b3) does not contain the shortest vector: One of the
vectors b2 ± b3 or b1 ± b2 ± b3 (the signs are exclusively
alternating) is shorter than b1, b2, and b3.

From this corollary, we can obtain one of the shortest
non-zero vectors using the output of the LLL algorithm and
comparing the norm of b1, b2, b3 with those of linear com-
binations b2 ± b3 and b1 ± b2 ± b3. We note that the result is
derived for analyzing theoretical behaviors of LLL-reduced
bases. Specifically, even when we obtain analogous results
for high dimensions, they do not seem useful to speed-up
practical enumeration. In particular, although we do not
use any heuristics during the analysis, practical enumeration
based on several heuristics has to be faster than the above
analysis.

The representation of the shortest vectors by limited
number of integer linear combinations may look similar to
natural number representation/tag in the context of enumer-
ation and random sampling reduction [5], [11], [24], [44].
However, unfortunately we cannot find close relation with
these notions. Furthermore, unlike ours the researchs [5],
[11], [24], [44] are heavily based on several heuristics, e.g.,
randomness assumption [43].

3.2 Case of Three Dimensions and δ < 1

Next, we extend Theorem 1 to the case of a Lovász factor
δ < 1. Note that the LLL algorithm often uses 3

4 ≤ δ, but
we prove the following theorem for the case of 7

12 ≤ δ ≤ 1.

Theorem 2: Theorem 1 holds for a Lovász factor 7
12 ≤ δ ≤

1.

Proof 2: From the size reduction, the Lovász condition and
7
12 ≤ δ ≤ 1, we have

‖b∗2‖
2 ≥

(
δ −

1
4

)
‖b∗1‖

2 ≥
1
3
‖b∗1‖

2 and

‖b∗3‖
2 ≥

(
δ −

1
4

)
‖b∗2‖

2 ≥
1
3
‖b∗2‖

2.

Suppose x3 ≥ 2, then we obtain the following inequality:

‖b′‖2 ≥ 4‖b∗3‖
2 ≥ ‖b∗3‖

2 + ‖b∗2‖
2

≥ ‖b∗3‖
2 +

1
4
‖b∗2‖

2 +
1
4
‖b∗1‖

2 ≥ ‖b3‖
2.

This implies |x3 | ≤ 1.
Now, let us prove x3 , 0. ‖b′‖2 ≥ 4‖b∗2‖

2 ≥ 4
3 ‖b

∗
1‖

2 >

‖b1‖
2 holds for x3 = 0 and |x2 | ≥ 2. ‖b′‖2 ≥ ‖b∗2‖

2 +

(x1 + µ12)2‖b∗1‖
2 ≥ ‖b2‖

2 holds for x3 = 0 and |x2 | = 1.
‖b′‖ ≥ ‖b1‖ holds for x3 = 0 and x2 = 0. This contradicts
the shortest property of b′. Therefore x3 , 0, i.e., |x3 | = 1.

If |x2 | ≥ 2,

‖b′‖2 ≥
9
4
‖b∗2‖

2 + ‖b∗3‖
2

≥
2
3
‖b∗1‖

2 +
1
4
‖b∗2‖

2 + ‖b∗3‖
2 > ‖b3‖

2

holds by the size reduction and ‖b∗2‖ ≥
1
3 ‖b

∗
1‖. Therefore

|x2 | ≤ 1 holds. A discussion similar to the proof in the case
of δ = 1 leads to |x1 | ≤ 1.

Thus, Theorem 2 is proved. �

A corollary similar to Corollary 1 holds for 7
12 ≤ δ ≤ 1.

3.3 Case of Four and Five Dimensions and δ = 1

An ideal goal of our approach has to be an extension for
the asymptotic case. However, to avoid using any heuristics,
the computations during the analyses take huge amount of
times. For example, we list all the possible linear combi-
nations to find the shortest vector and the listing is at least
harder than solving SVP. Therefore, providing the analogous
analysis in high dimensions without any heuristics has to be
an intractable problem. In this paper, to observe analogous
behaviors for higher dimensions, we prove theorems in the
case of n = 4 or 5 dimensions and a Lovász factor δ = 1.
The proofs are similar to that of Theorem 1 (Summaries are
in Appendix B).

Theorem 3: Suppose a 4-dimensional LLL-reduced ba-
sis (b1, b2, b3, b4) for a Lovász factor δ = 1 does
not contain the shortest non-zero vector in the lattice
L(b1, b2, b3, b4). Then one of the vectors

∑4
i=1 xibi satisfy-

ing (|x1 |, |x2 |, |x3 |, |x4 |) = (0, 1, 1, 0), (1, 1, 1, 0), (0, 0, 1, 1),
(1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 0, 1), (0, 1, 1, 1) or (1, 1, 1, 1) is the
shortest vector in L(b1, b2, b3, b4). In addition, there exist
LLL-reduced bases (b1, b2, b3, b4) such that b′ =

∑4
i=1 xibi

for each (|x1 |, |x2 |, |x3 |, |x4 |) of the above equation is the
shortest vector in L(b1, b2, b3, b4).

Theorem 4: Suppose a 5-dimensional LLL-reduced ba-
sis (b1, b2, b3, b4, b5) for a Lovász factor δ = 1
does not contain the shortest non-zero vector in the
lattice L(b1, b2, b3, b4, b5). Then one of the vec-
tors

∑5
i=1 xibi satisfying (|x1 |, |x2 |, |x3 |, |x4 |, |x5 |) =

(0, 1, 1, 0, 0), (1, 1, 1, 0, 0), (0, 0, 1, 1, 0), (1, 0, 1, 1, 0),
(0, 1, 0, 1, 0), (1, 1, 0, 1, 0), (0, 1, 1, 1, 0), (1, 1, 1, 1, 0),
(0, 1, 0, 0, 1), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1), (1, 1, 0, 0, 1),
(1, 0, 1, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 0, 1, 1),
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(0, 0, 1, 1, 1), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 0, 1, 1, 1),
(0, 1, 1, 1, 1), (1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (0, 2, 1, 1, 1),
(1, 2, 1, 1, 1) or (2, 2, 1, 1, 1) is the shortest vector in
L(b1, b2, b3, b4, b5). In addition, there exist LLL-reduced
bases (b1, b2, b3, b4, b5) for each (|x1 |, |x2 |, |x3 |, |x4 |, |x5 |) of
the above equation such that b′ =

∑5
i=1 xibi is the shortest

vector in L(b1, b2, b3, b4, b5).

From these theorems, we can easily find one of the
shortest non-zero vectors in a four or five-dimensional lat-
tice by changing the LLL algorithm slightly. Namely, if a
4 or 5-dimensional LLL-reduced basis does not contain the
shortest non-zero vector in the lattice, then one of the vec-
tors appearing in Theorems 3 and 4 is the shortest non-zero
vector.

4. Estimating the Failure Probability in Three Dimen-
sions

In this section, we estimate the failure probability that a
3-dimensional random LLL-reduced basis does not con-
tain the shortest vector. We consider six-dimensional space
parameterized by six variables (‖b∗1‖, ‖b

∗
2‖, ‖b

∗
3‖, µ21‖b

∗
1‖,

µ31‖b
∗
1‖, µ32‖b

∗
2‖). In the space, each point is correspond

one-to-one with a basis (b1, b2, b3) since (b1, b2, b3) is de-
termined by (‖b∗1‖, ‖b

∗
2‖, ‖b

∗
3‖, µ21‖b

∗
1‖, µ31‖b

∗
1‖, µ32‖b

∗
2‖).

We estimate the ratio of the volume of the region corre-
sponded to LLL-reduced bases not containing the shortest
vector over that of the region corresponded to LLL-reduced
bases. We obtain its upper bound by numerical integration
and compare it with the value obtained by the Monte Carlo
method.

4.1 Projection Region

Here, in order to estimate the failure probability by inte-
gration, we first describe the condition for an LLL-reduced
basis (b1, b2, b3) by projecting b3 on the plane H spanned by
(b1, b2). For a fixed (b1, b2) satisfying ‖b2‖

2 ≥ δ‖b1‖
2, the

blue rectangular region in Fig. 1 shows the condition for the
possible projection of b3 on H such that (b1, b2, b3) is LLL-
reduced. For simplicity we show the region that satisfies
µ21 ≥ 0 and µ32 ≥ 0. The width of the rectangle is deter-
mined by the size reduction of |µ31 | ≤

1
2 appearing in the

LLL-reduced basis. The heights of the upper and lower parts
of the rectangle are decided by the size reduction |µ32 | ≤

1
2 ,

and the Lovász condition, ‖b∗3‖
2 + µ2

32‖b
∗
2‖

2 ≥ δ‖b∗2‖, re-
spectively.

Next, we explain the condition for anLLL-reduced basis
(b1, b2, b3) not containing the shortest vector. By Theorem
2, if a 3-dimensional LLL-reduced basis does not contain
the shortest vector, b2 ± b3 or b1 ± b2 ± b3 (the signs are
exclusively alternating) is the shortest vector. Therefore,
‖b2 ± b3‖ < min(‖b1‖, ‖b2‖, ‖b3‖) or ‖b1 ± b2 ± b3‖ <
min(‖b1‖, ‖b2‖, ‖b3‖) holds in this case. Thus, for fixed
b1, b2 and b∗3, the region of the projection of b3 onto H is
the red region in Fig. 2 if the LLL-reduced basis (b1, b2, b3)

Fig. 1 Region of the projection of b3 onto a plane H = span(b1, b2)
(blue region : (b1, b2, b3) is an LLL-reduced basis).

Fig. 2 Region of the projection of b3 onto a plane H = span(b1, b2)
(red region : (b1, b2, b3) is an LLL-reduced basis not containing the short-
est vector).

Fig. 3 Region of the projection of b3 onto a plane H = span(b1, b2).

does not contain the shortest vector.

4.2 Upper Bound of the Failure Probability in Three Di-
mensions

In three dimensions, we estimate the failure probability that a
3-dimensional random LLL-reduced basis does not contain
the shortest vector. This failure probability can be calculated
as the ratio of the volume of the red region in Fig. 2 over that
of the blue region in Fig. 1. However, the calculation of the
volume of the red region is relatively hard, and thus we eval-
uate the volume of the green region in Fig. 3, which contains
the red region. To calculate the volumes of the blue and green
regions, we use numerical integration over six variables
(‖b∗1‖, ‖b

∗
2‖, ‖b

∗
3‖, µ21‖b

∗
1‖, µ31‖b

∗
1‖, µ32‖b

∗
2‖). In particu-

lar, the calculation can be used to estimate the volume of the
hypersurface in six-dimensional space parameterized by the
above variables.
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Here, we prove the following theorem for estimating the
upper bound of the failure probability.

Theorem 5: Let S be six dimensional space (‖b∗1‖, ‖b
∗
2‖,

‖b∗3‖, µ21‖b
∗
1‖, µ31‖b

∗
1‖, µ32‖b

∗
2‖). Let D ⊂ S be the region

corresponded LLL-reduced bases (b1, b2, b3). Let E ⊂ S
be the region corresponded LLL-reduced bases (b1, b2, b3)
not containing the shortest vector in the lattice L(b1, b2, b3).
Let P be the failure probability calculated as the ratio of the
volume of E over that of D. Then P < 2.94 × 10−4 holds by
taking Lovász factor δ = 1.

If we fix ‖b∗1‖, ‖b
∗
2‖, ‖b

∗
3‖, and µ21‖b

∗
1‖, the region D and E

is shown as the blue region in Fig. 1 and the red one in Fig. 2,
respectively. Therefore, we try to integrate their volume.

Proof 3: If the value ‖b∗1‖‖b
∗
2‖‖b

∗
3‖ is fixed, the ratio of

volume of the region E over that of the region D is constant
independently of the value ‖b∗1‖‖b

∗
2‖‖b

∗
3‖. Therefore, we

estimate P under the scaling ‖b∗1‖‖b
∗
2‖‖b

∗
3‖ = 1. Let V

be the volume of the region D under ‖b∗1‖‖b
∗
2‖‖b

∗
3‖ = 1.

Since the green region in Fig. 3 contains the red region in
Fig. 2 corresponding to E in Theorem 5, the failure proba-
bility P is less than U/V where U is the volume of the green
region in Fig. 3 under ‖b∗1‖‖b

∗
2‖‖b

∗
3‖ = 1. We can calcu-

late U and V by using numerical integration over six vari-
ables (‖b∗1‖, ‖b

∗
2‖, ‖b

∗
3‖, µ21‖b

∗
1‖, µ31‖b

∗
1‖, µ32‖b

∗
2‖) under

the scaling ‖b∗1‖‖b
∗
2‖‖b

∗
3‖ = 1.

First, we discuss the possible ranges of the six variables
(‖b∗1‖, ‖b

∗
2‖, ‖b

∗
3‖, µ21‖b

∗
1‖, µ31‖b

∗
1‖, µ32‖b

∗
2‖). We may as-

sume µ21 ≥ 0 by symmetry of the conditions for an LLL-
reduced basis. From the size reduction and the Lovász con-
dition of the LLL-reduced basis (b1, b2, b3), we have

0 ≤ ‖b∗1‖ ≤
‖b∗2‖√
δ − 1

4

,

0 ≤ ‖b∗2‖ ≤
‖b∗3‖√
δ − 1

4

=
1√

δ − 1
4 ‖b

∗
1‖‖b

∗
2‖

.

Therefore,

0 ≤ ‖b∗1‖ ≤ min
*..
,

‖b∗2‖√
δ − 1

4

,
1√

δ − 1
4 ‖b

∗
2‖

2

+//
-

(5)

holds. In addition, from the size reduction and the Lovász
condition, 0 ≤ µ21‖b

∗
1‖ ≤

1
2 ‖b

∗
1‖ and µ

2
21‖b

∗
1‖

2 + ‖b∗2‖
2 ≤

δ‖b∗1‖
2. Thus,√
max(0, δ‖b∗1‖2 − ‖b

∗
2‖

2) ≤ µ21‖b
∗
1‖ ≤

‖b∗1‖

2
. (6)

Therefore, the area of the blue domain in Fig. 1 is
‖b∗1‖(

‖b∗1 ‖

2 −

√
max(0, δ‖b∗1‖2 − ‖b

∗
2‖

2)).
From the above discussion, V can be calculated by in-

tegration, as follows:

V =
∫ ∞

0

(∫ min*
,

y√
δ− 1

4
, 1√

δ− 1
4 y

2
+
-

0
x
(

x
2
−

√
max(0, δx2 − y2)

)
·

*.
,

y

2
−

√√
max *

,
0, δ y2 −

(
1

x y

)2
+
-
+/
-

√
x4 y4 + x2 + y2

x2 y2 dx
)
dy,

where x = ‖b∗1‖, y = ‖b
∗
2‖. (Note that

√
x4y4+x2+y2

x2y2 is the
Jacobian under ‖b∗1‖‖b

∗
2‖‖b

∗
3‖ = 1.)

Next, we evaluate the upper bound ofU. If b1, b2 and b∗3
are fixed, the area of the green region in Fig. 2 is ‖b

∗
1 ‖

4 ·
µ12 ‖b

∗
1 ‖

‖b∗2 ‖
·(

‖b∗1 ‖

2 −
µ12 ‖b

∗
1 ‖

2

)
. When the LLL-reduced basis (b1, b2, b3)

does not contain the shortest vector, λ1(L(b1, b2, b3))2 ≥
‖b∗3‖

2 + 1
4 ‖b

∗
2‖

2 holds by Theorem 1. Therefore, from
‖b∗1‖‖b

∗
2‖‖b

∗
3‖ = 1 and ‖b1‖ ≥ λ1(L(b1, b2, b3)), we have

‖b1‖
2 ≥

(
1

‖b∗1‖‖b
∗
2‖

)2
+

1
4
‖b∗2‖

2.

This inequality implies

‖b∗1‖ ≥

√√√√
‖b∗2‖

3 +
√
‖b∗2‖

6 + 64

8‖b∗2‖
. (7)

From (5) and (7), if ‖b∗2‖ ≤ 1 holds,
(

(δ− 1
4 )2

1− 1
4 (δ− 1

4 )

) 1
6
≤ ‖b∗2‖ ≤

1, otherwise 1 ≤ ‖b∗2‖ ≤
(

1
δ(δ− 1

4 )

) 1
6
holds.

From the above discussion, U can be estimated as fol-
lows:

U =
∫ 1(

(δ− 1
4 )2

1− 1
4 (δ− 1

4 )

) 1
6

(∫ y√
δ− 1

4√
y3+
√
y6+64

8y

x
4
*
,

∫ x
2

0

t
y

( x
2
−

t
2

)
dt+
-√

x4 y4 + x2 + y2

x2 y2 dx
)
dy

+

∫ (
1

δ (δ− 1
4 )

) 1
6

1

(∫ 1√
δ− 1

4 y
2√

y3+
√
y6+64

8y

x
4
*
,

∫ x
2

0

t
y

( x
2
−

t
2

)
dt+
-√

x4 y4 + x2 + y2

x2 y2 dx
)
dy

=

∫ 1(
(δ− 1

4 )2

1− 1
4 (δ− 1

4 )

) 1
6

*..
,

∫ y√
δ− 1

4√
y3+
√
y6+64

8y

x3
√

x4 y4 + x2 + y2

96y3 dx
+//
-

dy

+

∫ (
1

δ (δ− 1
4 )

) 1
6

1

*..
,

∫ 1√
δ− 1

4 y
2√

y3+
√
y6+64

8y

x3
√

x4 y4 + x2 + y2

96y3 dx
+//
-

dy,

where x = ‖b∗1‖, y = ‖b
∗
2‖ and t = µ21‖b

∗
1‖. By taking

δ = 1, we can calculate V and U by numerical integration to
be V ; 0.439 andU ; 0.000129. Therefore, the probability
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P satisfies

P <
U
V
;

0.000129
0.439

; 2.94 × 10−4.

�

According to this proof, we have theoretically obtained that a
random LLL-reduced basis contains the shortest vector with
high probability, i.e. more than 99.9%, by taking a factor δ
close to 1.

4.3 Monte Carlo Simulation

We estimate the failure probability P in Theorem 5 by using
a Monte Carlo simulation. Under ‖b∗1‖‖b

∗
2‖‖b

∗
3‖ = 1, the

LLL-reduced basis (b1, b2, b3) is represented as follows:

b1 =
*.
,

‖b∗1‖
0
0

+/
-
, b2 =

*.
,

µ21‖b
∗
1‖

‖b∗2‖
0

+/
-
, b3 =

*..
,

µ31‖b
∗
1‖

µ32‖b
∗
2‖

1
‖b∗1 ‖ ‖b

∗
2 ‖

+//
-
.

Since it is too difficult to sample an LLL-reduced ba-
sis uniformly at random, we use the sampling which is not
uniformly at random in reality. Therefore, we merely cal-
culate the approximate value of the failure probability by
Monte Carlo simulation. In our experiment, in order to
sample LLL-reduced bases as uniformly random as possible
under ‖b∗1‖‖b

∗
2‖‖b

∗
3‖ = 1, we first sample lattice bases as

uniformly random as possible so that the sampling domain
contains almost all LLL-reduced bases. Then we check
whether the sampled bases are LLL-reduced or not. Finally
we check whether the sampled LLL-reduced bases contain
the shortest vector or not. For the purpose, we first sample
‖b∗1‖ in a range [0.0, 1.3], ‖b∗2‖ in [0.0, 10.0], µ21‖b

∗
1‖ and

µ31‖b
∗
1‖ in [−0.65, 0.65], and µ32‖b

∗
2‖ in [−5.0, 5.0] byusing

Mersenne twister [25]. We set the upper bounds of µ21‖b
∗
1‖,

µ31‖b
∗
1‖, and µ32‖b

∗
2‖ due to the size reduction |µ21 | ≤

1
2 ,

|µ31 | ≤
1
2 , and |µ32 | ≤

1
2 . The range of ‖b∗1‖ is adequate

because ‖b∗1‖ ≤
2√
3
< 1.3 if (b1, b2, b3) is LLL-reduced and

‖b∗1‖‖b
∗
2‖‖b

∗
3‖ = 1. Although ‖b∗2‖ is not bounded above by

a constant which is independent of ‖b∗1‖, we need to bound
the range of ‖b∗2‖ to demonstrate our experiment. To be
precise, we also tried the experiment with a larger bound
of ‖b∗2‖; however, in this case sampled lattice bases are not
LLL-reduced with high probability. In our experiment with
the upper bound ‖b∗2‖ ≤ 10.0, we sampled 76,429,270,520
bases and there were 60,000,000 LLL-reduced bases, of
which 8,736 contained no shortest vector. This approximate
failure probability is 8,736

60,000,000 ' 1.46 × 10−4. In addition,
in the case the upper bound of ‖b∗2‖ ≤ 40.0, we sampled
12,236,665,172 bases and there were 600,000 LLL-reduced
bases, of which 77 contained no shortest vector. This ap-
proximate failure probability is 77

600,000 ' 1.28 × 10−4. The
approximate failure probabilities in both experiments are al-
most the same. Therefore, we consider 10.0 is sufficient
for the upper bound of ‖b∗2‖ and we used 10.0 as the up-
per bound. From above, the approximate value of P is

8,736
60,000,000 ' 1.46 × 10−4. The upper bound of P in Theo-
rem 5 is of the same magnitude as the above value. More
precisely, the upper bound of the failure probability in Theo-
rem 5 is about twice as large as the value obtained by Monte
Carlo simulation.

5. Conclusion

We studied the explicit relation between LLL-reduced bases
and the shortest vectors in three, four and five dimensions.
We presented a necessary and sufficient condition that the
output of the LLL algorithm does not contain the shortest
vector in three dimensions for 7

12 ≤ δ ≤ 1. From this con-
dition, we can construct the reduction algorithm for solving
SVP with probability 1 by slightly modifying the LLL al-
gorithm (by checking a few integer linear combinations of
the output). Moreover, we analyzed the probability that a
basis does not contain the shortest vector in three dimen-
sions. We proved the upper bound of the failure probability
is 2.94 × 10−4 for δ = 1 by evaluating the volume of space
that satisfies the above necessary and sufficient conditions.
In the case of four and five dimensions, we presented the
necessary and sufficient conditions for δ = 1 similar to the
one in three dimensions.

It is interesting open problem that investigate the ex-
plicit relation of LLL-reduced bases in more than five di-
mensions and possibly an asymptotic case. As we claimed
in Section 3.3, the extension in an asymptotic case should
rely on some heuristic assumptions. If we obtain such ex-
tensions under mild assumptions, the result should be inter-
esting. Furthermore, analogous analysis for BKZ-reduced
bases is also an interesting open problem.
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Appendix A: Examples of 3-DimensionalLLL-Reduced
Bases Not Containing the Shortest Vector

Here, we show examples of 3-dimensional LLL-reduced
bases not containing the shortest vector. If the shortest
vector is b′ =

∑3
i=1 xibi , there are two types of LLL-

reduced bases not containing the shortest vector. One
satisfies ( |x1 |, |x2 |, |x3 |) = (1, 1, 1); the other satisfies
(|x1 |, |x2 |, |x3 |) = (0, 1, 1).

A.1 Example for ( |x1 |, |x2 |, |x3 |) = (0, 1, 1)

The following LLL-reduced basis (b1, b2, b3) ensures that
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b2 + b3 is the shortest in the lattice L(b1, b2, b3).
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A.2 Example for (|x1 |, |x2 |, |x3 |) = (1, 1, 1)

The following LLL-reduced basis (b1, b2, b3) ensures that
b1 + b2 + b3 is the shortest in the lattice L(b1, b2, b3).
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Appendix B: Summary of theProofs ofTheorems 3 and
4

In this section, we show the proofs of Theorems 3 and 4.
The strategy is similar to Theorem 1 in three dimensions.

B.1 Proof of Theorem 3

Suppose a 4-dimensional LLL-reduced basis (b1, b2, b3, b4)
does not contain the shortest non-zero vector and one of
the shortest non-zero vector is b′ =

∑4
i=1 xibi . From the

size reduction, the Lovász condition, and λ1(L) < ‖b1‖, if
b′ =

∑4
i=1 xibi is the shortest (non-zero), we can reduce the

canditates of the possible integer coefficients (x1, x2, x3, x4).
If x4 = 0 holds, this case resolves itself into Theorem 1 in
three dimensions. Therefore, we consider x4 , 0.

By using the size reduction and the Lovász condition,
we have

‖

4∑
i=1

xibi ‖2 ≥ max(0, |x1 | −
1
2

4∑
i=2
|xi |)2‖b∗1‖

2

+max(0, |x2 | −
1
2

4∑
i=3
|xi |)2‖b∗2‖

2

+max(0, |x3 | −
1
2

4∑
i=4
|xi |)2‖b∗3‖

2

+ |x4 |
2‖b∗4‖

2.

In addition, ‖b∗2‖
2 ≥ 3

4 ‖b
∗
1‖

2, ‖b∗3‖
2 ≥ 9

16 ‖b
∗
1‖

2, and
‖b∗4‖

2 ≥ 27
64 ‖b

∗
1‖

2 hold from the size reduction and the
Lovász condition. These inequalities and ‖b′‖ < ‖b1‖ =
‖b∗1‖ give

(|x1 |, |x2 |, |x3 |, |x4 |) = (1, 0, 0, 1), (0, 0, 1, 1), (1, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 1), (2, 1, 1, 1).

If (|x1 |, |x2 |, |x3 |, |x4 |) = (1, 0, 0, 1), |x1 + µ41x4 | ≥
|µ41x4 | by size reduction. Therefore, in this case, |x1b1 +

x4b4 | ≥ ‖b4‖ holds. We can eliminate the case of
(|x1 |, |x2 |, |x3 |, |x4 |) = (1, 0, 0, 1).

Moreover, if (|x1 |, |x2 |, |x3 |, |x4 |) = (2, 1, 1, 1) is satis-
fied, |x1+µ21x2+µ31x3+µ41x4 | ≥ min( |1+µ21x2+µ31x3+
µ41x4 |, |−1+µ21x2+µ31x3+µ41x4 |) holds by size reduction.
Since ‖

∑4
i=1 xibi ‖2 = (x1+ µ21x2+ µ31x3+ µ41x4)2‖b∗1‖

2+

(x2+ µ32x3+ µ42x4)2‖b∗2‖
2+ (x3+ µ43x4)2‖b∗3‖

2+ x2
4‖b

∗
4‖

2,
there exists (y1, y2, y3, y4) such that ( | y1 |, | y2 |, | y3 |, | y4 |) =
(1, 1, 1, 1) and ‖

∑4
i=1 xibi ‖ ≥ ‖

∑4
i=1 yibi ‖.

From the above, one of the vectors
∑4

i=1 xibi satisfy-
ing ( |x1 |, |x2 |, |x3 |, |x4 |) = (0, 1, 1, 0), (1, 1, 1, 0), (0, 0, 1, 1),
(1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 0, 1), (0, 1, 1, 1) or (1, 1, 1, 1) is the
shortest vector in L(b1, b2, b3, b4) if the LLL-reduced basis
(b1, b2, b3, b4) does not contain the shortest vector.

In addition, we can construct an LLL-reduced basis
(b1, b2, b3, b4) such that

∑4
i=1 xibi is the shortest non-zero

vector (x1, x2, x3, x4) satisfying the above equation (the de-
tails are available from the first author).

B.2 Proof of Theorem 4

Suppose a 5-dimensional LLL-reduced basis (b1, b2, b3, b4,
b5) does not contain the shortest non-zero vector, and one
of the shortest non-zero vector is b′ =

∑5
i=1 xibi . If x5 =

0 holds, this case resolves itself into Theorem 3 in four
dimensions. Therefore, we consider x5 , 0. By using a
similar strategy to the one taken in the proof of Theorem3, we
can reduce the canditates of the possible integer coefficients
(x1, x2, x3, x4, x5) as follows:

( |x1 |, |x2 |, |x3 |, |x4 |, |x5 |) =
(1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1),
(1, 1, 0, 0, 1), (1, 0, 1, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1),
(0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1),
(1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1), (2, 1, 1, 1, 1),
(0, 2, 1, 1, 1), (1, 2, 1, 1, 1), (2, 2, 1, 1, 1), (2, 1, 1, 0, 1),
(2, 1, 0, 1, 1), (2, 0, 1, 1, 1), (3, 2, 1, 1, 1), (∗, ∗, 2, 1, 1).

By using a similar method as the proof of Theorem
3, we eliminate the cases of (|x1 |, |x2 |, |x3 |, |x4 |, |x5 |) =
(1, 0, 0, 0, 1), (2, 1, 1, 0, 1), (2, 1, 0, 1, 1), (2, 0, 1, 1, 1),
(3, 2, 1, 1, 1).

Next, we prove that
∑5

i=1 xibi is not the shortest non-
zero vector if (|x1 |, |x2 |, |x3 |, |x4 |, |x5 |) = (∗, ∗, 2, 1, 1) holds.
We prove it by contradiction.

Assume that
∑5

i=1 xibi is the shortest non-zero vector
and ( |x1 |, |x2 |, |x3 |, |x4 |, |x5 |) = (∗, ∗, 2, 1, 1) holds. From the
size reduction and the Lovász condition, ‖b∗4‖

2 ≥ 3
4 ‖b

∗
3‖

2 ≥
27
64 ‖b

∗
1‖

2, and ‖b∗5‖
2 ≥ 9

16 ‖b
∗
3‖

2 ≥ 81
256 ‖b

∗
1‖

2 hold. Here,
from the size reduction and (|x1 |, |x2 |, |x3 |, |x4 |, |x5 |) =
(∗, ∗, 2, 1, 1), ‖

∑5
i=1 xibi ‖2 ≥ ‖b∗3‖

2+ 1
4 ‖b

∗
4‖

2+ ‖b∗5‖
2 holds.

Therefore, ‖
∑5

i=1 xibi ‖2 ≥ 7
4 ‖b

∗
3‖

2 ≥ 63
64 ‖b

∗
1‖

2.
Moreover, since

∑5
i=1 xibi is the shortest non-zero vec-

tor, ‖
∑5

i=1 xibi ‖ < ‖b1‖ holds. Thus, 7
4 ‖b

∗
3‖

2 < ‖b∗1‖
2 ⇔

‖b∗3‖
2 < 4

7 ‖b
∗
1‖

2. In addition, since ‖b∗3‖
2 ≥ 3

4 ‖b
∗
2‖

2,
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‖b∗2‖
2 < 16

21 ‖b
∗
1‖

2 holds. Moreover, from the size reduc-
tion and the Lovász condition, 9

16 ‖b
∗
1‖

2 ≤ ‖b∗3‖
2 < 4

7 ‖b
∗
1‖

2

and 3
4 ‖b

∗
1‖

2 ≤ ‖b∗2‖
2 < 16

21 ‖b
∗
1‖

2.
Since ‖

∑5
i=1 xibi ‖2 < ‖b3‖

2 = |µ31 |
2‖b∗1‖

2 +

|µ32 |
2‖b∗2‖

2 + ‖b∗3‖
2 holds, |µ31 |

2‖b∗1‖
2 + |µ32 |

2‖b∗2‖
2 +

‖b∗3‖
2 > 7

4 ‖b
∗
3‖

2. Thus, |µ31 |
2‖b∗1‖

2 > 7
4 ‖b

∗
3‖

2 − 1
4 ‖b

∗
2‖

2 >
311
1344 ‖b

∗
1‖

2 holds. From the size condition, |µ31 |
2‖b∗1‖

2 ≤
1
4 ‖b

∗
1‖

2 holds.
From the size reduction and the Lovász condition,

we have ‖b∗1‖
2 − ‖b∗2‖

2 ≤ |µ21 |
2‖b∗1‖

2 ≤ 1
4 ‖b

∗
1‖

2 ⇔
5
21 ‖b

∗
1‖

2 ≤ |µ21 |
2‖b∗1‖

2 ≤ 1
4 ‖b

∗
1‖

2. Similarly, 5
28 ‖b

∗
1‖

2 ≤

|µ32 |
2‖b∗2‖

2 ≤ 4
21 ‖b

∗
1‖

2 holds.
From the above, we have√

3
4
‖b∗1‖ ≤ ‖b

∗
2‖ <

√
16
21
‖b∗1‖,

3
4
‖b∗1‖ ≤ ‖b

∗
3‖ <

√
4
7
‖b∗1‖,√

5
21
‖b∗1‖ < |µ21 |‖b

∗
1‖ ≤

1
2
‖b∗1‖,√

311
1344

‖b∗1‖ < |µ31 |‖b
∗
1‖ ≤

1
2
‖b∗1‖,√

5
28
‖b∗1‖ < |µ32 |‖b

∗
2‖ <

√
4
21
‖b∗1‖.

Here, a simple calculation obtains

min(‖b1 ± b2 ± b3‖
2, ‖b2 ± b3‖

2) <
63
64
‖b∗1‖

2.

However, this equation contradicts that
∑5

i=1 xibi is the short-
est since ‖

∑5
i=1 xibi ‖2 ≥ 63

64 ‖b
∗
1‖

2.
From the above,

∑5
i=1 xibi is not the shortest non-zero

vector if (|x1 |, |x2 |, |x3 |, |x4 |, |x5 |) = (∗, ∗, 2, 1, 1) holds.
Therefore, if

∑5
i=1 xibi is the shortest non-zero

vector and x5 , 0, (x1, x2, x3, x4, x5) satisfies that
( |x1 |, |x2 |, |x3 |, |x4 |, |x5 |) = (0, 1, 0, 0, 1), (0, 0, 1, 0, 1),
(0, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 0, 1, 0, 1), (1, 0, 0, 1, 1),
(0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (1, 1, 1, 0, 1),
(1, 1, 0, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1),
(2, 1, 1, 1, 1), (0, 2, 1, 1, 1), (1, 2, 1, 1, 1), (2, 2, 1, 1, 1).

For each case, we can construct an LLL-reduced ba-
sis (b1, b2, b3, b4, b5) that

∑5
i=1 xibi is the shortest non-zero

vector (the details are available from the first author).
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