
498
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.3 MARCH 2019

PAPER Special Section on Analog Circuit Techniques and Related Topics

Delta-Sigma ADC Based on Switched-Capacitor Integrator with
FIR Filter Structure

Satoshi SAIKATSU†a), Student Member and Akira YASUDA†b), Member

SUMMARY This paper presents a novel delta-sigma modulator that
uses a switched-capacitor (SC) integrator with the structure of a finite
impulse response (FIR) filter in a loop filter configuration. The delta-sigma
analog-to-digital converter (∆ΣADC) is used in various conversion systems
to enable low-power, high-accuracy conversion using oversampling and
noise shaping. Increasing the gain coefficient of the integrator in the loop
filter configuration of the ∆ΣADC suppresses the quantization noise that
occurs in the signal band. However, there is a trade-off relationship between
the integrator gain coefficient and system stability. The SC integrator, which
contains an FIR filter, can suppress quantization noise in the signal band
without requiring an additional operational amplifier. Additionally, it can
realize a higher signal-to-quantization noise ratio. In addition, the poles that
are added by the FIR filter structure can improve the system’s stability. It is
also possible to improve the flexibility of the pole placement in the system.
Therefore, a noise transfer function that does not contain a large gain peak
is realized. This results in a stable system operation. This paper presents
the essential design aspects of a ∆ΣADC with an FIR filter. Two types of
simulation results are examined for the proposed first- and second-order,
and these results confirm the effectiveness of the proposed architecture.
key words: analog-to-digital converter, delta-sigma modulator, finite-
impulse response filter, switched-capacitor integrator

1. Introduction

Recent rapid improvements in complementary metal-oxide-
semiconductor (CMOS) device processing technologies
have resulted in CMOS devices that provide higher perfor-
mance with reduced device sizes. The CMOS data con-
verter is an important circuit. An analog-to-digital converter
(ADC) can attain several possible architectures, including
pipelines, successive approximation registers (SAR), and
flash.

A delta-sigma ADC (∆ΣADC) is used in various con-
version systems to achieve low-power, high-accuracy con-
version using oversampling and noise shaping for audio,
sensor, and wireless applications. The ∆ΣADC has been
implemented using two types of circuit architectures, based
on discrete time (DT), and continuous time (CT), for which
different integrator architectures are required. The CT type
uses a resistor-capacitor (RC) integrator, which allows con-
tinuous operation and high-speed processing. The CT-type
modulator is therefore often used in communication appli-
cations [1]. Commonly, the RC integrator uses a first-order,
low-pass filter as an anti-aliasing filter. Therefore, the system
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can reduce the order of the anti-aliasing filter implemented
in the previous stage. However, high-accuracy conversion is
difficult when using CT architectures because of the variabil-
ity of manufacturing errors in the RC filter, excessive loop
delays, and characteristic jitter degradation. In contrast, the
DT-type modulator can provide conversion with higher pre-
cision compared to the CT type. When using a DT-type
modulator, it is possible to use an integrator with a switched
capacitor (SC), which results in better coefficient matching,
and excellent jitter tolerance.

The DT-type modulator is generally used in audio and
sensor applications. ∆ΣADC performance improvements
are being sought in two areas, namely, high precision within
awide operating band, and low-power consumption. Higher-
order, higher-oversampling ratios (OSRs), and multibit tech-
niques, have been mainly proposed for the high-precision
and broadband improvements. For example, double sam-
pling and a time-interleaved structure have been used alter-
nately in the integral operation of an operational amplifier
(OPAMP), where each path is operated in parallel to increase
the operating frequency [2], [3]. However, as the numbers
of OPAMPs and routes increase, both the circuit area and
the power consumption also increase. Additionally, it is nec-
essary to use a compensation circuit to guarantee the level
of accuracy pertaining to degradation owing to path mis-
matches, which ultimately leads to an increased circuit area
[4], [5].

The use of higher-order andmultibit methods also tends
to increase both the circuit size and power consumption.
Therefore, there is a trade-off relationship between increased
precision and increased circuit speed in regard to power con-
sumption, although various techniques have been proposed
to allow reduced power consumption while performance lev-
els aremaintained [6], [7]. In addition, second- or third-order
modulators are preferred methods in terms of power con-
sumption reduction and maintenance of stability. However,
these modulators are less able to modify coefficients, and
thus their design flexibility is low. In order to improve SNR
and/or signal bandwidth, there is a method that increases an
integrator gain. However, this method cannot improve the
performance because of stability issue [8]. This method is
needed to adjust coefficients for pole placements to stabilize
a ∆Σ loop, which degrades noise performance.

In this paper, we propose a SC integrator with the struc-
ture of a finite impulse response (FIR) filter in a loop fil-
ter configuration. This structure can realize broadband and
high-precision performance, a high signal-to-quantization
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noise ratio, and increased integrator gain in the signal band.
In addition, it is possible to maintain circuit stability using
the degrees-of-freedom of the pole placement in the case
of the loop filter configuration with the implementation of
the FIR filter. This structure can be implemented using the
SCs, and an existing integrator topology. The structure can
also be easily verified using system simulations implemented
in MATLAB/Simulink. The proposed method also uses a
feed-forward delta-sigma ADC (FF∆ΣADC) to improve cir-
cuit stability that is expected to simplify the feedback path
[9].

Section 2 outlines the circuit performance achieved
when using the conventional, increased-integrator-gain coef-
ficient, the stability issue caused bymoving the poles, and the
nonlinearity effect owing to the amplitude limitation of the
quantizer. Section 3 presents the structure and characteristics
of the proposed method. A stability of proposed system with
FIR filter to increase an integrator coefficient is discussed.
And a novel design methodology to realize improving SNR
and stability without increasing an order of ∆Σmodulator is
explained in this section. Section 4 presents the simulation
results for the proposed system and exemplifies the problems
encountered in the actual circuit implementation as a com-
bination of an offset effect and capacitor mismatch errors.
Finally, we present our conclusions.

2. Increased Integrator Gain Coefficient and Stability

2.1 SNR Impact for Increased Integrator Gain and Issue of
Pole Root Locus

An increased integrator gain coefficient is desirable to sup-
press quantization noise in the signal band [8]. The effects of
an increased integrator gain coefficient on the typical second-
order FF∆ΣADC are described herein as an example, as
shown in Fig. 1.

The transfer function of the second-order FF∆ΣADC is
as follows,

STF(z) = 1 (1)

NTF(z) =
(1 − z−1)2

1 − 2(1 − a)z−1 + (1 + ab − 2a)z−2 (2)

The noise transfer function (NTF) equation shows that it is
possible to increase the coefficients a and b, and to reduce
the noise floor in the signal band. Figure 2 compares the fast
Fourier transform (FFT) spectra obtained from the normal-
and high-gain systems. The simulation uses −6 dB of input
and a 4-bit quantizer, not includes amplitude limitation of
quantizer.

This figure shows that the quantization noise is reduced
at low frequencies when the integrator gain coefficient is
increased, in the case where a = 1.8 and b = 1.8. Figure 3
elicits an almost linear characteristic for the response of the
signal-to-noise ratio (SNR) of a conventional second-order
FF∆ΣADC and the integrator’s gain as the product of a and
b. An improved SNR is elicited that is almost equivalent to

Fig. 1 Conventional second-order FF∆ΣADC structure.

Fig. 2 Comparison of FFT spectra of normal- and high-gain systems.

Fig. 3 SNR response as a function of integrator gain for the system de-
picted in Fig. 1.

the increased integrator gain coefficient.
However, there is an unstable peak near the Nyquist

frequency, as shown in Fig. 2. Therefore, the system may
become unstable when the integrator gain coefficient is too
high. Figure 4 shows the pole root loci when the coefficients
a and b of the integrator gain increase. The poles move
towards −1 when the coefficients a and b of the integrators
increase. We can see that the system remains stable until
both a and b become equal to 2 on the pole plot.

2.2 Influence of Nonlinearity owing to Amplitude Limita-
tion of Quantizer

However, we cannot assess the system’s stability based on
pole placement alone. Figure 5 shows the distributions of
the input and output of the two integrators and the quantizer
without saturation, shown in Fig. 1, when coefficients a and
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Fig. 4 Zero-pole plot of second-order FF∆ΣADC with high gain.

Fig. 5 Comparison of output distributions for both integrators and input
of quantizer shown in Fig. 1.

b are both equal to 1.8. The maximum output amplitude is
greater than 3.5. The simulation condition is same as Fig. 2.
In case of the full-scale (FS) amplitude is defined in the
range of 1 to −1, output signal amplitudes larger than ±1 are
clipped at the integrator output. Clipping also occurs at the
quantizer input when the signal amplitude exceeds the supply
voltage range of the specific circuit’s architecture. When it’s
added a saturator of 1 to −1 on each of the input and output
of the two integrators and the quantizer, the system becomes
unstable caused by a reduction of clipped feedback signal as
shown in Fig. 6. The simulation condition is same as Fig. 2.

The system stability thus requires consideration of the
pole placement, and consideration of the amplitude ranges
of the integrator and the quantizer. This prevents system
oscillation that is induced by the nonlinearity of the quan-
tizer. The results show that reducing the noise floor in the
signal band owing to the increased integrator gain coefficient
imposes a trade-off relationship with stability.

Fig. 6 Comparison of waveform for both integrators and input of quan-
tizer with amplitude saturation for the system depicted in Fig. 1.

Fig. 7 Block diagram of the FIR filter structure.

3. Proposed Modulator Structure with FIR Filter Inte-
grator

In this section, we propose amethod to improve the integrator
gain in the signal band, while maintaining stability using a
SC integrator with the FIR filter structure.

3.1 Integrator using SCCircuits for Implementation of FIR
Filter Structure

The architecture of the FIR filter system is shown in Fig. 7.
The FIR filter is a discrete type of filter that consists of N −1
delay units, gain paths, and an adder at each integrator. The
N − 1 delay and gain are easily constructed using a parallel
SC circuit. An adder circuit is used in the same way as a
normal integrator [10].

The transfer function of the system block is defined in
accordance to

y (n)
x(n)

=
(
a1 + a2z−1 + · · · + aN z−(N−1)

) z−1

1 − z−1 (3)

The FIR filter structure increases the number of zeros of the
loop filter configuration, and its coefficient gain as the sum
of a1, a2 and a3 around direct current (DC). The upper part
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Fig. 8 Frequency characteristics of the FIR filter, the integrator, and their
combinations.

of Fig. 8 shows the frequency characteristics of the three-tap,
FIR filter structure.

Integrators containing this FIR filter can achieve any
pole arrangement required by a modulator to adjust the gain
coefficients for each path. In the case where a filter has
been inserted into the system, several poles can be used to
maintain stability by adjusting the pole placement of the ∆Σ
modulator loop, thereby changing the gain coefficient.

The lower part of Fig. 8 shows the frequency character-
istics of the integrator, and the corresponding characteristics
of the combination of the FIR and the integrator. We can re-
alize increased gains in the signal band until around 0.25 fs,
and a stability that reduces the high-frequency and increases
the low-frequency gains of the FIR filter. The integrator
that uses the FIR filter can thus realize improved gain in the
signal band.

Next, we show the implementation of the FIR filter
circuit structure using a SC circuit. Figure 9(a) and (b) show
the circuit structure and the clock timing, respectively, for a
three-tap FIR filter, and an integrator.

An N-delay block is realized using 2(N + 1) clocks and
(N + 1) SC circuits. One delay is realized using two SC
circuits to charge their timings simultaneously. This delay is
applied immediately to the integrator, in association with the
temporal responses from each of the SC circuits. In this way,
an FIR filter structure circuit is achieved without increasing
additional OPAMP.

3.2 Design Essentials for Pole Placements

In this section, we introduce the design method for
FF∆ΣADC using the FIR filter-based SC integrator struc-
ture.

1. To increase the integrator gain coefficient in the signal
band and reduce the noise floor to achieve the target

Fig. 9 (a) Circuit structure, and (b) clock timing of a three-tap FIR filter
implemented with SC circuits.

SNR, the gain of the FIR filter in the signal band is
determined as shown in Fig. 3. The gain of the FIR
filter of signal band Gb = Gsnr, where Gsnr is the value
of required SNR improvement

2. As the number of taps increases, the number of poles of
the modulator also increases. The number of taps of the
FIR filter will determine the target signal bandwidth. If
the poles nearest to the signal band approach the outer
edge of the unit circle, a steep noise floor curve may
narrow the signal bandwidth. For example, a five-tap
FIR filter reduces the noise floor to approximately for
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Fig. 10 Example of pole placement for five-tap FIR filters.

the bandwidth of one-tenth sampling frequency (0.1 fs).
The nearest pole is placed on the inner side of the unit
circle, thereby maintaining the signal bandwidth

3. The taps of the FIR filter should be set to maintain
a distance between each of the poles for the system
shown in Fig. 10. Blue mark and line are Example
of pole placement without the FIR filter, Red one are
with the FIR filter. This is because it is essential to
prevent the increased amplitudes caused by the cluster
of the modulator’s poles. When the pole of the system
made by the FIR filter is relocated to adjust the gain
coefficient, both the pole placement and the amplitude
of the output integrator and input quantizer should be
confirmed using MATLAB/Simulink simulations

In summary, the FF∆ΣADC that uses an FIR filter
should be designed with the following three points in mind:

• The poles near the outer edge of the modulator need to
be allocated to maintain a distance between each of the
poles

• Increasing the integrator’s gain using an FIR filter
should be implemented with care both in terms of the
pole placement, and the amplitude of the output inte-
grator and input quantizer

• The pole of the system introduced by the FIR filter
should be located so that it keeps the poles of the mod-
ulator outside the signal band

The next section shows first and second-order FF∆ΣADCs
using the FIR filter structure with MATLAB/Simulink mod-
els. These systemswere designed in accordance to the design
principles listed above.

4. Simulations

In this section, we describe the results of simulations of the
proposed circuit performed using MATLAB/Simulink.

4.1 First-Order FF∆ΣADC with a Three-Tap FIR Filter

Figure 11 shows a first-order FF∆ΣADC with the inserted
FIR filter structure. The transfer function of the system
shown in Fig. 11 is as follows:

STF(z) = 1 (4)

NTF(z) =
1 − z−1

1 − (1 − a1) z−1 + a2z−2 + a3z−3 (5)

Fig. 11 Structure of first-order FF∆ΣADC with FIR filter.

Table 1 FIR filter coefficients for second-order FFDSM.

Fig. 12 Comparison of Bode plots of proposed first-order FF∆ΣADC
and conventional systems.

There are several terms on the denominator of (5), in-
dicating that the poles of the modulator can be moved from
their initial locations near half of sampling frequency (fs/2)
to any desired frequency as shown in Fig. 10. The system
is more stable in the first-order case than in the case where
higher gain modulators are used. We can also set high-
gain integrator values. The simulations used the coefficients
listed in Table 1.

Figure 12 shows a comparison of the NTF bode plot
of the first-order FF∆ΣADC with the FIR filter and a con-
ventional system, while Fig. 13 shows a zero-pole plot of the
proposed FF∆ΣADC. The figures indicate that the proposed
system has a lower noise floor than the conventional system,
and that all the poles are contained in a unit circle. The
proposed system’s noise floor curve defined in the vicinity
of the signal bandwidth is lower than that of the conventional
system. Thus, the system achieves a high SNR.

Figure 14 shows the FFT spectra of the proposed and
conventional structures. The simulation conditions are listed
in Table 2. Table 3 shows an SNR comparison of for the
conventional and the proposed first-order FF∆ΣADCs. The
noise floor is not clear caused by tones, but the proposed
system achieves an SNR increase of 7.8 dB that is almost
equal to the gain increase of this system compared to the
gain of the conventional system.
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Fig. 13 Zero-pole plot of first-order FF∆ΣADC with FIR filter.

Fig. 14 Comparison of FFT spectra of proposed first-order FF∆ΣADC
and conventional system.

Table 2 Simulation conditions.

Table 3 Comparison of SNR of first-order FF∆ΣADC systems.

4.2 Second-Order FF∆ΣADC with Two Three-Tap FIR
Filters

Figure 15 shows the second-order FF∆ΣADC with the two
FIR filter structures inserted into each of the integrators. The
transfer function of the system is,

STF(z) = 1 (6)
NTF(z) =

Fig. 15 Structure of second-order FF∆ΣADC with FIR filter.

Fig. 16 Comparison of Bode plots of proposed and conventional second-
order FF∆ΣADC systems.

Fig. 17 Zero-pole plot of second-order FF∆ΣADC using two FIR filters.

(
1 − z−1

)2
1 − 2 (1 − F1(z)) z−1 + (1 + F1(z)F2(z) − 2F1(z))z−2

(7)
F1(z) = a1 + a2z−1 + a3z−2 (8)
F2(z) = b1 + b2z−1 + b3z−2 (9)

The frequency responses and the zero-pole arrangement are
obtained as respectively shown in Figs. 16 and 17, based on
the coefficients that are listed in Table 4. Note that the added
poles are far from other poles. The nearest pole for the signal
band is placed on the inner side of the unit circle.
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Table 4 FIR filter coefficients for second-order FFDSM.

Fig. 18 Comparison of FFT spectra of proposed and conventional sys-
tems.

Table 5 Comparison of SNR responses of second-order FF∆ΣADC sys-
tems.

Figure 18 shows the FFT spectra of the proposed and
conventional structures obtained using the simulation condi-
tions listed in Table 2. Table 5 shows a comparison of the
SNR responses of the conventional and proposed second-
order FF∆ΣADCs. When the FIR filter is used, the quanti-
zation noise in the signal band is reduced, and the SNR is
improved by 12.2 dB. This improvement is considered to be
almost equivalent to the increased integrator gain coefficient
shown in the signal band.

4.3 Stability of FIR Filter Structure

Next, we confirm the influence of amplitude limitations of
the proposed second-order FF∆ΣADC systems. The output
amplitude ranges of the integrator and the quantizer at an
input of −6 dBFS are shown in Fig. 19. The full-scale ampli-
tude is defined in the range of 1 to −1 as Fig. 5. The output
amplitude of the proposed system increases slightly over that
of the conventional system, but maintains the stability of the
system.

As seen from the quantizer’s amplitude in Fig. 19, this
system is limited owing to the degradation in SNR that de-
pends on the offset of the quantizer’s input. The SNR re-
sponse as a function of the quantizer offset for the modulator
of the proposed system on MATLAB/Simulink simulation
is shown in Fig. 20. The proposed system achieves to main-
tain ±2 dB SNDR performance for quantizer offsets in the

Fig. 19 Comparison of output distributions for both integrators and input
of ADC shown in Fig. 15.

Fig. 20 SNDR response of proposed system as a function of the quantizer
offset.

range of −0.5 and 0.5. Because quantizer offset influence is
suppressed by the second integrator in the closed loop. The
second integrator is acceptable the influence because it has
±0.7 margin for the range of output signal amplitude. These
results justify the robustness of the proposed system for these
influences.

Next, we discuss the stability of the proposed archi-
tecture using a linear model assuming that the gain of the
internal ADC (quantizer) is k. It is a common method to
confirm the nonlinearity effects of the quantizer using linear
models [11]. If the input of the ADC exceeds the maximum
range of ADC, the gain of ADC, k, looks like decreased.
Herein, the inner parts of the ADC in Figure 1 and 15 are
modeled using quantization and a gain value that is equal to
k.

Therefore, v = k y + q, where v , y , and q, are the input
of the ADC, the output of the ADC, and the quantization
noise, respectively. By drawing the loci of these roots for
0 < k < 1, the stability of the system can be predicted. If
the input amplitude of the ADC is higher than the maximum
amplitude of the ADC, k effectively decreases from 1 to 0.
Figure 21(a) and (b) show the loci of the roots for NTF (2)
and (7), respectively. The values of a and b of (2) are 2.5
and 1.7, which are the same DC gains as those for the FIR
filter shown in Table 4. The root is already outside the unit
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Fig. 21 (a)Root loci of conventionalNTF, and (b) proposedNTF systems.

circle, even when k = 1, as shown in Fig. 21(a). By contrast,
the root is kept inside the unit circle but moves outside for
k < 0.6, as shown in Fig. 21(b). Thus, the proposed system
improves the stability of the overall system, compared to
systems without the use of FIR filter structures, even if the
integrator gain coefficients are increased.

4.4 Effects of Capacitor Mismatch Error on Transfer Func-
tion

The coefficients of the FIR filter consisted of SC circuits de-
pend on capacitor mismatch errors. The effects of the mis-
matches related to manufacturing variations can cause seri-
ous problems in the case of a wideband∆ΣADC, such as the
type that uses double sampling and a time-interleaved func-
tion [4], [5]. Figure 22 shows the zero-pole diagram elicited
from theMonte Carlo simulations obtained by adding a path-
gain mismatch within the range of ±5% to the FIR filter.

Commonly, the relative mismatch of the capacitor is
estimated to be approximately less than 1%. However, all

Fig. 22 Monte Carlo simulation results obtained by adding a path-gain
mismatch within the range of ±5% to the FIR filter.

poles of the proposed architecture fell within the unit circle in
the simulation. The proposed circuit is thus barely affected.

5. Conclusion

We proposed a design method for a ∆ΣADC based on the
use of an FIR filter into the integrator in the loop filter con-
figuration. The system has an improved SNR that is al-
most equivalent to the increased integrator gain coefficient,
yet maintains system stability. The proposed circuit can be
adapted for both wideband and high-precision performance
by varying the pole assignments. The stability of the pro-
posed systemwas discussed on pole plot locus and limitation
amplitude. The effects of the proposed design method were
demonstrated using MATLAB/Simulink simulations. Man-
ufacturing variations, which represent a problem in actual
circuit implementation, did not significantly affect the per-
formance. This was confirmed by the simulation results.
Specific mismatch compensations, such as those described
in [2] and [5], are not required in this case. The proposed
method can be implemented by adding a simple circuit to
the conventional SC circuit of the ∆ΣADC.
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