
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.3 MARCH 2019
553

PAPER
Sparse DP Quantization Algorithm

Yukihiro BANDOH†a), Seishi TAKAMURA†, and Atsushi SHIMIZU†, Senior Members

SUMMARY We formulate the design of an optimal quantizer as an op-
timization problem that finds the quantization indices that minimize quanti-
zation error. As a solution of the optimization problem, an approach based
on dynamic programming, which is called DP quantization, is proposed. It
is observed that quantized signals do not always contain all kinds of sig-
nal values which can be represented with given bit-depth. This property
is called amplitude sparseness. Because quantization is the amplitude dis-
cretization of signal value, amplitude sparseness is closely related to quan-
tizer design. Signal values with zero frequency do not impact quantization
error, so there is the potential to reduce the complexity of the optimal quan-
tizer by not computing signal values that have zero frequency. However,
conventional methods for DP quantization were not designed to consider
amplitude sparseness, and so fail to reduce complexity. The proposed algo-
rithm offers a reduced complexity optimal quantizer that minimizes quan-
tization error while addressing amplitude sparseness. Experimental results
show that the proposed algorithm can achieve complexity reduction over
conventional DP quantization by 82.9 to 84.2% on average.
key words: quantization, sparseness, dynamic programming

1. Introduction

The purpose of quantization [1] is to generate codewords
(quantization indices) based on a given metric. The design
of the optimal quantizer leads to a kind of minimization
problem, that is, how to generate the quantization indices
that can minimize a distortion (quantization error) caused by
a quantization process. A typical form of quantization error
is summation of square error (SSE). Quantization schemes
are classified into two types: conversion from continuous
signal to discrete one, and conversion from fine discrete sig-
nal to coarse discrete one. This manuscript focuses on the
latter type. The latter type is a kind of bit depth conversion,
and is required for display adaptation [2], [3], bit-depth scal-
able coding [4], [5] and HDR video coding [6].

The approaches proposed to solve the above-mentioned
minimization problem fall into two types: analytical op-
timization (which calculates the optimal solution analyti-
cally) and numerical optimization (which uses numerical
computation). If the probability density function (PDF) of
quantized data can be represented in particular parametric-
form, for example, a uniform distribution, Gauss distribu-
tion or Laplace distribution, analytical optimization can be
adopted where the codewords for symbols generated from
these PDFs are analytically optimizes. However, the PDF
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of real quantized data generally can not be represented in
the desired parametric forms. Therefore, such analytical
optimization approaches generally cannot generate optimal
quantizers for real data.

Consequently, numerical optimization approaches,
which do not require any particular parametric form of PDF
are more common. Typical of this result is the Lloyd-
Max quantization algorithm (hereafter LM quantization)
[7], [8], which generates quantization indices and bound-
aries of quantization bins iteratively, until a given conver-
gence condition is satisfied.

However, two problems with this algorithm have been
pointed out. First, LM quantization can not guarantee the
optimal solution. This is because the algorithm is designed
based on a necessary condition for optimal quantization.
LM quantization can generate the optimal solution, only if
the logarithm function of the PDF for quantized data of-
fers convexity. For example, the above convexity condi-
tion is satisfied if the PDF follows a uniform distribution,
Gauss distribution or Laplace distribution. On the other
hand, when the quantized data does not satisfy the convexity
condition, the most common case, LM quantization may fall
into local minimum. It depends on the initial codewords as
to whether LM quantization yields the optimal solution or
not. Note that no specific strategy has been adopted for op-
timizing initial codewords. Second, the computation com-
plexity of LM quantization can not be evaluated. This is
because the algorithm is based on an iterative process and
its convergence depends on the initial codewords.

In order to design optimal quantizers, adaptive quanti-
zation algorithms based on dynamic programming (hence-
forth, abbreviated to DP quantization) have been studied.
Bruce [9] applied the principle of optimality in dynamic
programming to optimizing quantizer, and showed that the
complexity associated with designing an optimizing quan-
tizer can be reduced from exponential time to polynomial
time. Sharma [10] proposed a low complexity algorithm for
designing a DP quantizer that minimizes the quantization
error subject to convexity constraint. Wu [11] proposed an
algorithm to reduce the complexity of optimal path finding
in DP quantization using matrix search.

As a kind of the above-mentioned quantization, bit-
depth conversion (BDC) is used in image processing. BDC
transforms the bit-depth of input signal and generates signal
with lower bit-depth. For example, BDC is used to adjust
high bit-depth signal to legacy displays which do not support
high bit-depth signal. Furthermore, BDC plays an impor-
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tant role in bit-depth scalable codec [4], [5], [12], [13] as a
key process for generating a layer-structured data that con-
sists of a base layer and enhancement layers. BDC separates
an input signal of the encoder into signal for the base layer
and those for enhancement layers. The base layer is con-
structed to have backward compatibility to a decoder that
does not support high bit-depth signal.

When designing optimal quantizers for image signals,
it is important to note that most image signals feature am-
plitude sparseness of signal value, that is, pixel value. In
other words, the signal values do not fully utilize the given
bit-depth. For example, if an image whose bit-depth is 10
bits exhibits sparseness, it contains fewer than 1024 sig-
nal values, although the bit-depth can represent up to 1024
signal values. Some studies on image coding report that
coding efficiency can be improved by considering ampli-
tude sparseness. Lossless coding algorithms [14], [15] and
a near-lossless coding algorithm [16] improve coding effi-
ciency by utilizing fewer pixel values for images with am-
plitude sparseness.

The histogram of an image with sparseness has some
insignificant elements, that is, their frequency is zero (here-
after called zero-frequency). Signal values that have zero-
frequency do not impact the quantization error. Therefore,
by appropriately suppressing the quantization process for
zero-frequency signal values, we can expect to reduce the
complexity while still minimizing quantization error. How-
ever, conventional DP quantization methods do not consider
sparseness, suggesting that there is room for further reduc-
tions in the complexity of DP quantization. Authors pro-
posed a basic scheme for reducing the complexity of DP
quantization based on sparseness in [17], [18]. This paper
enhances the basic studies [17], [18] for the following three
points. Firstly, this paper presents a complete algorithm that
reduces the complexity of DP quantization for images with
sparseness, while still minimizing quantization error. The
proposed algorithm more strictly restricts the search range
of DP quantization than the basic scheme of [17], [18], from
the viewpoint of the evaluation of upper bounds and lower
bounds of the search range. Secondly, this paper enhances
experimental results through evaluations on more kinds of
image contents than those used in [17], [18]. Furthermore,
these image contents have higher special resolutions, higher
bit-depth and wider color-gamut than those in [17], [18]. Fi-
nally, this paper discusses the complexity of proposed algo-
rithm based on statistical tests of numerical simulations.

This paper is organized as follows. Section 2 formu-
lates the problem of quantizer optimization. Section 3 in-
troduces DP quantization as the basic algorithm of our pro-
posed method. Section 4 interprets DP quantization using
a trellis transition diagram in order to facilitate the under-
standing of our proposed method. Section 5 provides sparse
DP quantization; it extends DP quantization by utilizing
input signal sparseness. As reference information, nota-
tions used in Sects. 2 to 5 are summarized in Table 1. Sec-
tion 6 details the experiments done to evaluate the proposed
method. Finally, Sect. 7 presents our conclusions.

2. Formulation of Quantizer Design

In this section, we formulate the design of a quantizer that
translates a K-level discrete signal to a M-level equivalent
(M < K). For this formulation, we use the histogram of the
signal as the input to the quantizer. The k-th element of the
histogram is h[k] (k = 0, · · · ,K − 1), which is the frequency
of signal value k. For example, in the case of an 8-bit sig-
nal, the range of k is 0 to 255. The formulated quantizer is
defined using two parameters ∆m and Lm; ∆m is the length
of the m-th sub-interval of the histogram. Lm is the upper
boundary of the m-th sub-interval in the histogram. In the
following, Lm is simply called boundary. The boundaries
are described as follows: Lm =

m∑
j=0

∆ j − 1 (m = 0, · · · ,M − 2)

LM−1 = K − 1
(1)

Henceforth, the m-th interval [Lm − (∆m − 1), Lm] of the his-
togram is called the m-th bin. Since each bin is set to have
at least one element, Lm (0 ≤ m ≤ M − 2) is restricted in the
following range:

m ≤ Lm ≤ K − (M − m) (2)

Figure 1 illustrates the above-mentioned parameters for the
case where the histogram with eight elements (K = 8) is
quantized to one with four bins (M = 4). Figure 1 (b) shows
each bin contains 2(= ∆0) elements, 3(= ∆1) elements, 1(=
∆2) element, and 2(= ∆3) elements of the input histogram,
respectively; and the upper boundary of each bin becomes
L0 = ∆0 − 1 = 1, L1 = L0 + ∆1 = 4, L2 = L1 + ∆2 = 5, and
L3 = L2 + ∆3 = 7, respectively.

Quantizer design is based on minimizing the quantiza-
tion error created by approximating all values in the m-th
bin [Lm − (∆m − 1), Lm] in the histogram with representative
value ĉ(∆m, Lm). As the quantization error of the m-th bin
[Lm − (∆m − 1), Lm], we use the summation of square error

Fig. 1 Example of parameters for quantization.
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Table 1 Notations.
Symbol Description

K the number of levels of input signal
M the number of levels of quantized signal
h[k] the k-th element (k = 0, · · · ,K − 1) of the histogram of input signal, which is abbreviated “the histogram” in this table
Lm the upper boundary of the m-th interval in the histogram (m = 0, · · · ,M − 1)
∆m the length of the m-th interval of the histogram (m = 0, · · · ,M − 1)
e(∆m, Lm) quantization error of the m-th interval [Lm − (∆m − 1), Lm] of the histogram
S m[Lm] the minimum summation of quantization error in case that the interval [0, Lm] of the histogram is divided into m + 1 sub-intervals
K̃ the number of the significant elements of the histogram
Ψu[m] the maximum significant element index of the boundary of the m-th bin (m = 0, · · · ,M − 1)
Ψl[m] the minimum significant element index of the boundary of the m-th bin (m = 0, · · · ,M − 1)
F[k̃] the element index 1) corresponding to the k̃-th significant element 2) of the histogram (k̃ = 0, · · · , K̃ − 1)
G[k] the significant element index 3) corresponding to the k-th element of the histogram (k = 0, · · · ,K − 1);
ψl[m] the minimum element index for significant elements belonging to interval [m,m − M + K] of the histogram (m = 0, · · · ,M − 1)
ψu[m − M + K] the maximum element index for significant elements belonging to interval [m,m − M + K] of the histogram (m = 0, · · · ,M − 1)
ρu[m] the maximum number of consecutive insignificant elements in interval [m − M + K,K − 1] of the histogram (m = 0, · · · ,M − 1)
ρl[m] the maximum number of consecutive insignificant elements in interval [0,m] of the histogram (m = 0, · · · ,M − 1)
S̃ m[L̃m] minimum summation of quantization error in case that the interval [0, F[L̃m]] of the histogram is divided into m + 1 sub-intervals
E[∆̃m, L̃m] quantization error of the interval [F[L̃m − (∆̃m − 1)], F[L̃m]] of the histogram
Tm−1[L̃m] the optimal boundary of the m − 1-th bin next to the m-th bin with boundary L̃m

∆̃
(L̃m)
m ∆̃m which minimizes the right side of Eq. (11)

1) Element index is an index to identify each element of the histogram.
2) The significant elements are listed in a sequence and each significant element in the sequence is referred by index k̃.
3) Significant element index is an index to identify each significant element of the histogram. Note that look-up table G[k] provides the inverse mapping

of look-up table F[k̃], and vice versa.

e(∆m, Lm) defined as follows:

e(∆m, Lm) =

Lm∑
k=Lm−∆m+1

{k − ĉ(∆m, Lm)}2h[k] (3)

where ĉ(∆m, Lm) is the integer value that is the closest to the
centroid of the m-th bin [Lm − (∆m − 1), Lm]. The centroid is
defined as follows:

c(∆m, Lm) =

∑Lm
k=Lm−(∆m−1) kh[k]∑Lm
k=Lm−(∆m−1) h[k]

(4)

Note that each bin is set so that the denominator of equation
(4) does not become zero. In other words, each bin is set
so as to include at least one significant element. Optimizing
the quantizer means finding the parameters that minimize
the following summation of quantization error

(∆∗0, · · · ,∆
∗
M−1) = arg min

∆0,··· ,∆M−1

M−1∑
m=0

e(∆m, Lm)

 (5)

3. DP Quantization

In this section, we describe DP quantization, the basic al-
gorithm of our proposed method. This description of DP
quantization will help to clarify the difference between DP
quantization and our proposed method described in Sect. 5
and allow a better understanding of our proposed method.

In the optimization problem of Eq. (5), the number of
combinations of M parameters (∆0, · · · ,∆M−1) grows expo-
nentially. Using the brute force method to search for the op-
timal combination, (∆∗0, · · · ,∆

∗
M−1), takes exponential time

and is not realistic in terms of complexity.
Considering that the quantization error e(∆m, Lm) of the

m-th bin depends on the boundary Lm of the m-th bin and
the width ∆m of the same bin, dynamic programming based
approaches (DP quantization) [9]–[11] have been used to
solve the optimization problem of Eq. (5).

DP quantization focuses on a recurrence relation of
quantization error. We define S m[Lm] for each Lm (m =

0, · · · ,M − 1) as the minimum summation of quantization
error

∑m
i=0 e(∆i, Li) where the interval [0, Lm] of histogram

h[k] (k = 0, · · · ,K − 1) is divided into m + 1 bins. Since
e(∆m, Lm) depends on Lm and ∆m, S m[Lm] can be expressed
using S m−1[Lm − ∆m] in the following recursive equation:

S m[Lm] = min
∆m
{S m−1[Lm − ∆m] + e(∆m, Lm)} (6)

where m = 1, · · · ,M−1 and Lm = m, · · · ,K−(M−m). Using
Eq. (6), the computation of S m[Lm] results in the selection of
the best parameter among the values of ∆m = 1, · · · , Lm −

m + 1. The range of ∆m is described in Appendix A.
Applying Eq. (6) to Eq. (5), the minimization problem

of Eq. (5) becomes as follows:

min
∆M−1
{S M−2[LM−1 − ∆M−1] + e(∆M−1, LM−1)} (7)

Furthermore, applying Eq. (6) recursively and noting
LM−1 = K−1 in Eq. (1), the minimization problem of Eq. (5)
is to find the optimal solution (∆∗0, · · · ,∆

∗
M−1) from among

1
2 M3 − 2K+5

2 M2 + K2+7K+4
2 M − K2 − K candidates†. Thus,

†This number is derived in Appendix C as the number of can-
didate paths in a trellis diagram that is described in Sect. 4.
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DP quantization can provide a polynomial time solution to
the minimization problem.

4. Interpretation of DP Quantization as Optimal Path
Search

Using a trellis transition diagram, we provide an interpre-
tation of the optimization process of DP quantization. This
interpretation will be useful in understanding the proposed
algorithm described in Sect. 5. The trellis transition dia-
gram of Fig. 2 illustrates the quantization result for the ex-
ample shown in Fig. 1(b). In Fig. 2, the vertical axis and
the horizontal axis represent signal values k ∈ {0, 1, · · · , 7}
and quantization indices m ∈ {0, 1, 2, 3}, respectively. The
node at (k,m) in the trellis transition diagram has a cost
value that is the minimum summation of quantization er-
ror caused by approximating interval [0, k] in the histogram
with m+1 levels. For example, the node at (4, 1) has the min-
imum summation of quantization error that is generated by
using two representative values to quantize the five elements
(k = 0, · · · , 4) of the histogram. Note that the node on the
bottom-left corner is a dummy node introduced as the start
node and does not have a cost value. Each path in the trellis
transition diagram has a cost that is quantization error for a
histogram interval determined by both endpoints of the path.
For example, the cost of the path from node (1, 0) to node
(4, 1) becomes the quantization error caused by quantizing
the histogram interval [2, 4] as the second bin. Quantiza-
tion shown in Fig. 1(b) corresponds to traversed paths indi-
cated by the bold blue line in the trellis transition diagram of
Fig. 2. The horizontal displacement of each traversed path
is its interval length. For example, traversed paths indicated
by the bold blue line have four paths whose horizontal dis-
placements are 2(= ∆0), 3(= ∆1), 1(= ∆2) and 2(= ∆3), re-
spectively. Thus, the design of the optimal quantizer can be
represented as the optimal path search over the trellis transi-
tion diagram.

Using the trellis transition diagram, we can interpret
the reduction in complexity of optimal quantization offered
by dynamic programming as follows. Let us focus on a red
node in Fig. 3. The red node has four traversable paths from
gray nodes. The traversable paths are characterized by hor-
izontal displacements (1, 2, 3, and 4) corresponding to ∆2.
When we try to find the optimal path up to the red node in
Fig. 3, it is not necessary to search all paths from the start
node to the red node. It is enough to search paths from each
gray node to the red node. This is because each gray node
has an accumulated cost that is equal to the minimum sum-
mation of quantization error corresponding to the optimal
path from the start node up to each gray node. Evaluating
the summation of the accumulated cost stored in a gray node
and the cost provided on the path from the gray node to the
red node, we can identify the minimum summation of quan-
tization error as corresponding to the optimal path that con-
nects the start node to the red node through the gray node.

Fig. 2 Traversed path corresponding to quantization shown in Fig. 1(b).

Fig. 3 Optimal path search for red node.

5. Sparse DP Quantization

5.1 Focus for Complexity Reduction

In this section, we introduce a complexity reduction algo-
rithm for DP quantization that focuses on insignificant ele-
ments with zero-frequency. When the signal value Lm + 1
has zero-frequency, that is, h[Lm + 1] = 0, the quantization
error of interval [Lm − (∆m − 1), Lm + 1] in the histogram is
equal to that of interval [Lm − (∆m − 1), Lm]. This is because
h[Lm + 1](= 0) has no effect on the quantization error. Thus,
in the case of h[Lm + 1] = 0, we can skip the computation of
S m[Lm + 1] indicated by Eq. (6). In other words, for mini-
mization of quantization error, it is enough to consider only
significant elements whose frequencies are non-zero.

In order to verify sparseness of signal values, we as-
sessed standard images described later in Sect. 6. The
sparseness of each color channel is defined as the ratio of
the number of insignificant elements to the number of all
elements, as follows:

Sparseness =
the number of insignificant elements

the number of all elements
(8)

Table 2 confirms that all images examined have sparseness
to some extent.

5.2 Restriction of Search Range Considering Sparseness

Considering sparseness, it is possible to skip some elements
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Table 2 Sparseness of standard images (cells in the “Sparseness” col-
umn represent values given by Eq. (8)).

Image G-channel
Sparseness [%]

Image01 64.1
Image02 62.4
Image03 63.4
Image04 63.4
Image05 63.4
Image06 63.4
Image07 63.5
Image08 64.0
Image09 63.5
Image10 65.4
Image11 56.6
Image12 57.7
Image13 69.7
Image14 57.9
Image15 64.9
Image16 62.1
Image17 58.2
Image18 58.4
Image19 63.5
Image20 57.4
Image21 57.9
Image22 57.3
Image23 57.2
Image24 57.7
Image25 57.3
Image26 58.1

R-channel B-channel
Sparseness [%] Sparseness [%]

64.1 62.5
62.5 62.4
63.4 63.4
63.7 63.4
63.4 63.4
63.4 63.4
63.7 66.4
64.4 63.4
63.7 65.3
65.5 67.5
57.1 56.4
56.3 59.4
69.4 67.1
57.8 56.8
65 62.7

61.3 60.4
60.9 56.8
60.6 56.4
62.1 59.4
58.2 56.6
56.5 60
59.7 56.4
56.8 56.5
58.3 56.3
59.3 56.5
56.5 56.3

Fig. 4 Insignificant nodes (black circles) and significant nodes (circles
with numeral) in the case of K = 8 and M = 4.

of a histogram in DP quantization. Before explaining de-
tailed algorithm, we provide its basic idea using a toy ex-
ample. In preparation for description of the proposed quan-
tization algorithm, we define some symbols and terminolo-
gies below. Index k identifies an element of histogram h[k]
(k = 0, · · · ,K−1). The index is called element index. K̃ rep-
resents the number of significant elements of the histogram.
Those significant elements are listed in a sequence and each
significant element in the sequence is referred by index k̃
(k̃ = 0, · · · , K̃ − 1). The index is called significant element
index.

Figure 4 provides an example of a trellis transition di-
agram whose elements with k = 1, 5, 6 are insignificant for
the case of M = 4 and K = 8. The nodes in the trellis
transition diagram are classified into two types, significant
node and insignificant node. Significant node is located in

the position where the abscissa is a significant element. In-
significant node is located in the position where the abscissa
is an insignificant element. In this figure, significant nodes
and insignificant nodes are represented by circles with nu-
meral and black circles, respectively. The numeral in each
circle represents the significant element index.

As described in Sect. 2, the boundary of each bin is in
the range defined by inequality (2). In Fig. 4, the blue bro-
ken line and the green broken line correspond to superior
end and inferior end defined by inequality (2). Thus, the op-
timal path is restricted to candidates that pass through nodes
located between the green broken line and the blue broken
line.

If there are any insignificant elements in a quantized
histogram, insignificant elements can be excluded from the
candidates for the boundary of each bin. From the view-
point of searching the optimal path in the trellis transition
diagram, it is not necessary to search paths via insignifi-
cant nodes. Thus, the search range for the optimal path is
restricted to candidates that pass through significant nodes
within a parallelogram area surrounded by broken-lines.

Furthermore, the leftmost nodes within the search
range can be additionally restricted according to the source
nodes of the transition. Let us consider the leftmost node
within the search range in each row in the trellis transition
diagram. In the followings, the node located at the position
of k = κ and m = µ is referred as “node (κ, µ)”. In the case
of the 0-th row (m = 0), the node (0, 0) on the green broken
line is a significant node. This node is identified as the left-
most node in this row. In the case of the first row (m = 1),
the node (1, 1) on the green broken line is an insignificant
node. In the right side of the green broken line, the closest
significant node to the node (1, 1) is node (2, 1) indicated by
a green circle with the numeral of one. In the case of the sec-
ond row (m = 2), although node (2, 2) on the green broken
line is a significant node, this node is excluded from can-
didates for searching the optimal path. This is because the
transition source to the node (2, 2) is only node (1, 1), which
is excluded from candidates for searching the optimal path
as stated in the case of m = 1. Thus, as the leftmost node in
this row, node (3, 2) is identified.

Similarly, the rightmost nodes within the search range
can be additionally restricted according to the destination
nodes of the transition. Let us consider the rightmost node
within the search range in each row. In the case of m = 1,
node (5, 1) on the blue broken line is an insignificant node.
In the left side of the blue broken line, the closest signifi-
cant node to the node (5, 1) is node (4, 1). But, this node
is excluded from candidates for searching the optimal path
as well as insignificant nodes. This is because there are no
possible paths to transit from the node (4, 1). The destina-
tion to transit from the node (4, 1) is only node (5, 2) and
(6, 2), which are insignificant nodes. Thus, as the rightmost
node in this row, we select node (3, 1) indicated by a blue
circle with the numeral of two. In the case of m = 0, as with
the case of m = 1, although node (4, 0) on the blue broken
line and node (3, 0) are significant nodes, these nodes are
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excluded from candidates for searching the optimal path.
This is because there are no possible paths to transit from
the node (4, 0) and (3, 0). The destination to transit from
the node (4, 0) is only node (5, 1) which is an insignificant
node, and those from the node (3, 0) are node (5, 1) and (4, 1)
which are excluded from candidates for searching the opti-
mal path as stated in the case of m = 1. Thus, as the right-
most node in this row, we select node (2, 0) indicated by a
blue circle with the numeral of one.

The above-illustrated restriction of the nodes in the
trellis diagram are formulated as the range specification of
the index of each bin. The leftmost node within the search
range in the m-th row is identified as the minimum signifi-
cant element index of the boundary of m-th bin, which is re-
ferred as the lower limit of the m-th bin, hereinafter. For the
lower limit of the m-th bin, table Ψl[m] (m = 0, · · · ,M−1) is
prepared. Ψl[m] (m = 0, · · · ,M−1) is generated as follows:

Ψl[m] =


G[max(ψl[m],m + ρl[m])]

(m = 0, · · · ,M − 2)
K̃ − 1 (m = M − 1)

(9)

where, table G[k] lists the significant element index corre-
sponding to the k-th element. max() returns the greater of
the given values. ψl[m] is the minimum element index for
significant elements belonging to interval [m,m − M + K].
In the example of Fig. 4, ψl[m] indicates the closest signif-
icant node to the green broken line in the right side of the
green broken line. In other words, ψl[m] indicates the sig-
nificant element which is the closest to the inferior end in
the range for the boundary Lm of the m-th bin. ρl[m] is the
maximum number of consecutive insignificant elements in
interval [0,m], and is generated according to the process
shown in Fig. 5. In the example of Fig. 4, the element in-
dex m + ρl[m] in the above equation can be interpreted as
follows. ρl[m] is the maximum number of consecutive in-
significant elements in the left side of the green broken line
and on itself, that is, ρl[0] = 0, ρl[1] = ρl[2] = 1. m corre-
sponds to the element index of the node on the green broken
line. Thus, the element index m+ρl[m] indicates the leftmost
node among candidates whose transition source are limited
to significant nodes.

The rightmost node within the search range in the m-th
row is identified as the maximum significant element index
of the boundary of m-th bin, which is referred as the upper
limit of the m-th bin, hereinafter. For the upper limit of the
m-th bin, table Ψu[m] (m = 0, · · · ,M−1) is prepared. Ψu[m]
(m = 0, · · · ,M − 1) is generated as follows:

Ψu[m] = G[min(ψu[m − M + K],
m − M + K − ρu[m])]
(m = 0, · · · ,M − 1)

(10)

where min() returns the smaller of the given values. ψu[m −
M + K] is the maximum element index for significant ele-
ments belonging to interval [m,m−M +K] of the histogram.

1. if h[0] , 0
2. c← 0
3. ρl[0]← 0
4. else
5. c← 1
6. ρl[0]← 1
7. for m = 1, · · · ,M − 1
8. if h[m] , 0
9. c← 0

10. else
11. c + +

12. ρl[m]← max(ρl[m − 1], c)

Fig. 5 Generation algorithm for look-up-table ρl[m].

1. if h[K − 1] , 0
2. c← 0
3. ρu[M − 1]← 0
4. else
5. c← 1
6. ρu[M − 1]← 1
7. for m = M − 2, · · · , 0
8. if h[m − M + K] , 0
9. c← 0

10. else
11. c + +

12. ρu[m]← max(ρu[m + 1], c)

Fig. 6 Generation algorithm for look-up-table ρu[m].

In the example of Fig. 4, ψu[m − M + K] corresponds to the
closest significant node to the blue broken line in the left
side of the blue broken line. In other words, ψu[m −M + K]
indicates the significant element which is the closest to the
superior end in the range for the boundary Lm of the m-th
bin. ρu[m] is the maximum number of consecutive insignif-
icant elements in interval [m − M + K,K − 1], and is gener-
ated according to the process shown in Fig. 6. In the exam-
ple of Fig. 4, the element index m − M + K − ρu[m] in the
above equation can be interpreted as follows. ρu[m] is the
maximum number of consecutive insignificant elements in
the right side of the blue broken line and on itself, that is,
ρu[0] = ρu[1] = 2, ρu[2] = 1. m − M + K corresponds to
the element index of the node on the blue broken line. Thus,
the element index m − M + K − ρu[m] indicates the right-
most node among candidates whose transition destinations
are limited to significant nodes.

5.3 Optimal Quantizer Design Considering Sparseness

In this subsection, we describe our algorithm of sparse DP
quantization that reduces the complexity by skipping com-
putation for insignificant elements while retaining optimal-
ity in terms of minimizing quantization error. In the fol-
lowing, we use table F[k̃] that lists the element index corre-
sponding to the k̃-th significant element.

Let us consider dividing histogram interval [0, F[L̃m]],
whose boundary is the L̃m-th significant element, into m + 1
bins. The sub-interval [F[L̃i − (∆̃i − 1)], F[L̃i]] (where,
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1. Load histogram h[k] (k = 0, · · · ,K − 1) of the signal values
2. Load the number of bin M
3. Generate look-up-tables G[k] (k = 0, · · · ,K − 1), F[k̃] (k̃ = 0, · · · , K̃ − 1), Ψl[m], Ψu[m] (m = 0, · · · ,M − 1)
4. Generate look-up-table E[ĩe − ĩs + 1, ĩe] (ĩs ≤ ĩe, ĩe = 0, · · · , K̃ − 1, ĩs = 0, · · · , K̃ − 1) for quantization error of each interval in histogram h[k]
5. for j = 0, · · · ,G[K − M − 1]
6. S 0[ j]← E[0, j]
7. for m = 1, · · · , M − 1
8. for L̃m = Ψl[m], · · · ,Ψu[m]
9. S̃ m[L̃m]← min

∆̃m=1,··· ,L̃m−Ψl[m−1]

[
S̃ m−1[L̃m − ∆̃m] + E[L̃m − (∆̃m − 1), L̃m]

]
10. ∆̃

(L̃m)
m ← arg min

∆̃m=1,··· ,L̃m−Ψl[m−1]

[
S̃ m−1[L̃m − ∆̃m] + E[L̃m − (∆̃m − 1), L̃m]

]
11. Tm−1[L̃m]← L̃m − ∆̃

(L̃m)
m

12. L̃∗M−1 ← K̃ − 1
13. for m = M − 1, · · · , 1
14. L̃∗m−1 ← Tm−1[L̃∗m]
15. ∆∗m ← F[L̃∗m] - F[L̃∗m−1]
16. ∆∗0 ← F[L̃∗0] +1

Fig. 7 Sparse DP quantization algorithm.

i = 0, · · · ,m) of the interval [0, F[L̃m]] is the i-th bin. ∆̃i is
the number of significant elements in the i-th bin, and L̃i is
the significant element index of the boundary of the i-th bin,
in other words, L̃i is the maximum significant index among
significant elements in the i-th bin. We compute quantiza-
tion error e(F[L̃i] − F[L̃i − (∆̃i − 1)] + 1, F[L̃i]) caused by
using the centroid value to approximate all values in the i-th
bin. This error is stored in look-up table E[∆̃i, L̃i] and re-
fer to the entries as needed, in order to eliminate duplicate
computations for quantization error. We define a look-up
table to store the minimum summation of quantization er-
ror
∑m

i=0 E[∆̃i, L̃i] as S̃ m[L̃m]. Note that S̃ m[L̃m] is equal to
S m[F[L̃m]].

Since E[∆̃m, L̃m] depends on the significant element in-
dex L̃m of the boundary of the m-th bin and the number of
significant elements ∆̃m in the m-th bin, the value stored in
S̃ m[L̃m] is computed using S̃ m−1[L̃m − ∆̃m] as follows:

S̃ m[L̃m] = min
∆̃m

{
S̃ m−1[L̃m − ∆̃m] + E[∆̃m, L̃m]

}
(11)

where m = 1, · · · ,M − 1. Using recursive equation (11), the
computation of S̃ m[L̃m] results in the selection of the optimal
parameter ∆̃m among 1, · · · , L̃m − Ψl[m − 1]. The range of
∆̃m can be found in Appendix B. Considering that the upper
limit and the lower limit of significant indices in the m-th
bin are defined as Ψu[m] and Ψl[m] respectively, L̃m can be
taken from Ψl[m] to Ψu[m]. The value stored in S̃ m[L̃m]
is used in computing S̃ m+1[L̃m+1]. In the case of m = 0,
S̃ 0[L̃0] represents the quantization error caused by using the
centroid to approximate histogram interval [0, F[L̃0]], and
we obtain:

S̃ 0[L̃0] = E[0, F[L̃0]]

The optimal boundary of the m−1-th bin, which is next
to the m-th bin with boundary L̃m (= Ψl[m], · · · ,Ψu[m]), is
stored in table Tm−1[L̃m] as follows:

Tm−1[L̃m] = L̃m − ∆̃(L̃m)
m

where ∆̃
(L̃m)
m denote ∆̃m which minimizes the right side of

Eq. (11). Casting the above processes in pseudo-code yields
instructions 4 to 11 in Fig. 7. Instruction 3 in Fig. 7 gen-
erates the look-up tables Ψl[], Ψu[] described in Sect. 5.2
and G[], F[]. Instruction 4 generates a look-up-table that
stores the quantization error of every interval in the his-
togram. The stored value in E[ĩe − ĩs + 1, ĩe] (ĩs ≤ ĩe, ĩe =

0, · · · , K̃ − 1, ĩs = 0, · · · , K̃ − 1) is the quantization error of
the interval [F[ĩs], F[ĩe]] in the histogram. ĩs and ĩe are sig-
nificant element indices that identify an interval in the his-
togram. The minimization problem of Eq. (5) is rewritten
as the following recursive formulation:

min
∆̃M−1

{
S̃ M−2[L̃M−1 − ∆̃M−1] + E[∆̃M−1, L̃M−1]

}
In the final step at the instruction 10 in Fig. 7, we obtain
∆̃

(L̃M−1)
M−1 as follows:

∆̃
(L̃M−1)
M−1 = arg min

∆̃M−1

{
S̃ M−2[L̃M−1 − ∆̃M−1] + E[∆̃M−1, L̃M−1]

}
The optimal parameters (∆∗0, · · · ,∆

∗
M−1) are obtained

from the following process, the back-track process. Since
the possible value of L̃M−1 is limited to K̃ − 1, as the op-
timal value of L̃M−1, we have L̃∗M−1 = K̃ − 1. By us-
ing L̃∗M−1 = K̃ − 1 and referring to table TM−2[], we ob-
tain L̃∗M−2 = TM−2[L̃∗M−1]. Similarly, we obtain L̃∗M−3 =

TM−3[L̃∗M−2] ,· · · , L̃∗0 = T0[L̃∗1] as the significant element in-
dices of the boundary of each bin. By accessing F[] with
these obtained significant element indices L̃∗M−1, L̃∗M−2,· · · ,
L̃∗0, we get the element indices of the boundary of each bin.
As a result, the intervals of each bin are derived as follows:
∆∗M−1 = F[L̃∗M−1] − F[L̃∗M−2], ∆∗M−2 = F[L̃∗M−2] − F[L̃∗M−3]
,· · · , ∆∗1 = F[L̃∗1]−F[L̃∗0], ∆∗0 = F[L̃∗0]+1. Casting the above-
mentioned processes in pseudo-code yields instructions 12
to 16 in Fig. 7.
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6. Experiments

We performed the following experiments in order to in-
vestigate the effectiveness of our quantization algorithm
from the viewpoint of complexity. As the input signal
of each quantization algorithm, we used the sequences in
ITE/ARIB Ultra-high definition/wide-color-gamut standard
test sequences - Series A, Series B [19], [20]†. The se-
quences employ the progressive scan format with resolu-
tion of 3840 × 2160 pixels/frame in the RGB4:4:4 color for-
mat defined as ITU-R Recommendation BT.2020. The se-
quences are provided as still serial number files in uncom-
pressed DPX format [21]. Pixel values of RGB components
in the DPX file are treated as 16-bit integers. Since the
actual pixel value only has 12 bit depth, it is stored in the
higher 12 bits of the 16-bit integer and the remaining 4 bits
are set to 0. In other words, these signals were sampled at 12
bit scale, so K = 4096. By extracting the higher 12 bits of
each color component for every pixel, we obtained the eval-
uation data. Each color channel signals of the 61th frame††

of each sequence were used in the following evaluation ex-
periments. Given the existence of legacy displays, it is often
necessary to convert high bit depth signals into low bit depth
signals that have just ten or eight bits/channel. Accordingly,
we set M = 1024, 256 as the number of bins. Additionally,
we also investigated the cases of M = 512, 128 for con-
sidering the characteristic of the proposed algorithm due to
change in the number of bins. These experiments were per-
formed on a computer with CPU:Intel core i7 (2.8 GHz) and
memory: 8 GB.

In order to evaluate the complexity reduction achieved
by sparse DP quantization, we compared sparse DP quanti-
zation (abbreviated to SDP-Q) with DP quantization (abbre-
viated to DP-Q) described in Sect. 3, in terms of processing
time. The results are shown as bar graphs in Fig. 8, where
processing time is the average of 100 trials. Additionally,
we evaluated the complexity reduction attained by SDP-Q
using the following metric:

complexity reduction ratio =

processing time of DP-Q − processing time of SDP-Q
processing time of DP-Q

(12)

The line graphs in Fig. 8 show the complexity reduction ra-
tio for each image. From Table 2 and Fig. 8, we can confirm
that the complexity reduction ratio improves as sparseness
increases. In order to elucidate the overall performance for
all images, Table 3 shows average DP-Q and SDP-Q pro-
cessing times for all images at every M value. From this
table, we can confirm that sparse DP quantization can, rela-
tive to DP quantization, reduce complexity by 82.9 to 84.2%
on average. Additionally, Table 4 shows the breakdown of

†Only Japanese manuals are available now. The Web site of
the ITE says that English version is being made at present.
††The 61th frame is the head frame that contains captured

scenes. The first 60 frames capture caption telop only.

the processing time of SDP-Q; look-up table (LUT) genera-
tion processes corresponding to instruction 3 and 4 in Fig. 7,
and search processes corresponding to the other instructions
in Fig. 7. It is observed that “search processes” has strong
effect in the total processing time.

In order to evaluate computing time reduced by SDP-
Q with different M values, we applied analysis of variance
(ANOVA) to complexity reduction ratio with M. Table 5
shows the results of ANOVA test for complexity reduction
ratio. In this case, the critical value at the 5% significance
level is found 2.6955 from the F-distribution table. It was
observed that F-ratio values for every color channel in Ta-
ble 5 were less than the critical value. Thus, we could not
reject the null hypothesis that four kinds of M values pro-
duce the same expected values of complexity reduction ra-
tio. That is, we could not obtain statistical evidence that
there was significant difference among the expected values
of complexity reduction ratio with four kinds of M values.

Next, we analyze the complexity of the search pro-
cesses and the LUT generation processes. The search pro-
cesses conduct the following P1. As a dominant factor in the
generation of look-up tables, let us focus on that of look-up
table E[] which conducts the following P2.

(P1) optimal path search based on DP recursive equation
(P2) construction of look-up table E[] to store quantization

error for each quantized bin

The complexity of “P1” is related to the number of fea-
sible paths within the search range. In the following, feasi-
ble path within the search range is abbreviated to candidate
path. The number of candidate paths for DP-Q is derived
from K and M as follows:

Ωpath(M,K)

=
1
2

M3 −
2K + 5

2
M2 +

K2 + 7K + 4
2

M − K2 − K (13)

The derivation of the above equation can be found in Ap-
pendix C. The figures in column “DP-Q” in Table 6 were
generated based on the above equation. By contrast, the
number of candidate paths for SDP-Q could not be derived
like DP-Q due to the restriction of search range described in
Sect. 5.2. So, we counted up candidate paths for each image
for every M, and computed the average number of all images
for every M value. These average numbers are shown as the
figures in column “SDP-Q” in Table 6. The figures in col-
umn “reduction ratio” in Table 6 are computed by applying
the same concept as Eq. (12) to the candidate paths of DP-
Q and SDP-Q. We evaluated the number of candidate paths
reduced by SDP-Q through applying ANOVA to its reduc-
tion ratio with different M values. Table 7 shows the results
of the above-mentioned ANOVA test. It was observed that
F-ratio values for every color channel in Table 7 were less
than the critical value (2.6955) at the 5% significance level.
Thus, we could not reject the null hypothesis that four kinds
of M values produce the same expected values of the above-
mentioned reduction ratio.
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Fig. 8 Processing time of DP-Q and SDP-Q (bar graphs labeled “DP-Q” are processing times for DP
quantization, bar graphs labeled “SDP-Q” are processing times for SDP quantization, and “Reduction
ratio” are values defined in Eq. (12)).

The complexity of “P2” is related to the number of in-
tervals in the input histogram. In the following, the quan-
tized bin is abbreviated to candidate interval. The number
of candidate intervals for DP-Q is derived from K and M as

follows:

Ωinterval(M,K) = (−M2 + M + K2 + K)/2 (14)

The derivation of the above equation can be found in Ap-
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Table 3 Average processing time of DP-Q and SDP-Q of all images in
every M (cells in the “Reduction ratio” column represent values defined in
Eq. (12)).

(a) G-channel
M DP-Q SDP-Q reduction ratio

[msec] [msec] [%]
1024 5667.5 957.6 83.1
512 4000.0 662.6 83.4
256 2490.0 406.8 83.7
128 1546.1 248.2 83.9

(b) R-channel
M DP-Q SDP-Q reduction ratio

[msec] [msec] [%]
1024 5666.0 957.0 83.1
512 3996.2 657.9 83.5
256 2488.8 400.5 83.9
128 1546.6 244.1 84.2

(c) B-channel
M DP-Q SDP-Q reduction ratio

[msec] [msec] [%]
1024 5665.7 969.3 82.9
512 4001.3 670.2 83.2
256 2491.6 410.9 83.5
128 1548.7 252.1 83.7

Table 4 The breakdown of processing time of SDPQ (“LUT generation
processes consist of instruction 3 and 4 in Fig. 7, and “search processes”
consist of the other instructions in Fig. 7).

(a) G-channel
M LUT generation processes search processes

1024 43.6 914.1
512 71.5 591.1
256 77.4 329.4
128 77.8 170.4

(b) R-channel
M LUT generation processes search processes

1024 42.3 914.7
512 70.4 587.5
256 76.0 324.5
128 76.8 167.3

(c) B-channel
M LUT generation processes search processes

1024 46.0 923.3
512 73.5 596.7
256 79.5 331.4
128 79.8 172.3

pendix D. The figures in column “DP-Q” in Table 8 were
generated based on the above equation. By contrast, candi-
date intervals for SDP-Q were counted for each image for
every M. The average number of candidate intervals for
every M value was computed. These average numbers are
shown as the figures in column “SDP-Q” in Table 8.

We evaluated the number of candidate intervals re-
duced by SDP-Q through applying ANOVA to its reduction
ratio with different M values. Table 9 shows the results of
the above-mentioned ANOVA test. It was observed that F-
ratio values for every color channel in Table 9 exceed the
critical value (2.6955) at the 5% significance level. Thus,
the ANOVA test suggested that there was significant differ-
ences among the expected values of the above-mentioned

Table 5 ANOVA test results for complexity reduction ratio of processing
time (df, SS and MS mean Degrees of Freedom, Sums of Squares, Mean
Squares, respectively).

(a) G-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 10.14 3.38 0.48

Error 100 700.39 7.00 –
Total 103 710.53 – –

(b) R-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 17.95 5.98 0.96

Error 100 625.55 6.26 –
Total 103 643.50 – –

(c) B-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 10.01 3.34 0.46

Error 100 726.58 7.27 –
Total 103 736.59 – –

Table 6 Average number of candidate paths in every M.

(a) G-channel
M DP-Q SDP-Q reduction ratio [%]

1024 4827117568 808879659 83.2
512 3278238720 532953038 83.7
256 1874162176 298821085 84.1
128 992694528 155958701 84.8

(b) R-channel
M DP-Q SDP-Q reduction ratio [%]

1024 4827117568 808782460 83.2
512 3278238720 528395833 83.9
256 1874162176 293897544 84.3
128 992694528 153101171 84.6

(c) B-channel
M DP-Q SDP-Q reduction ratio [%]

1024 4827117568 818392732 83.0
512 3278238720 538483520 83.6
256 1874162176 301716348 83.9
128 992694528 157991606 84.1

Table 7 ANOVA test results for reduction ratio of the number of can-
didate paths (df, SS and MS mean Degrees of Freedom, Sums of Squares,
Mean Squares, respectively).

(a) G-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 15.97 5.32 0.76

Error 100 696.01 6.96 –
Total 103 711.98 – –

(b) R-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 26.48 8.83 1.40

Error 100 628.40 6.28 –
Total 103 654.88 – –

(c) B-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 16.19 5.40 0.77

Error 100 702.54 7.03 –
Total 103 718.73 – –

reduction ratio with four kinds of M values.
Let us consider how M value affects the reduction ra-

tio of the number of candidate intervals. Although we
cannot derive the number of candidate intervals for SDP-
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Table 8 Average number of candidate intervals in every M.

(a) G-channel
M DP-Q SDP-Q reduction ratio [%]

1024 7866880 757177 90.4
512 8259840 1150137 86.1
256 8358016 1248313 85.1
128 8382528 1272825 84.8

(b) R-channel
M DP-Q SDP-Q reduction ratio [%]

1024 7866880 743271 90.6
512 8259840 1136231 86.2
256 8358016 1234407 85.2
128 8382528 1258919 85.0

(c) B-channel
M DP-Q SDP-Q reduction ratio [%]

1024 7866880 792665 89.9
512 8259840 1185625 85.6
256 8358016 1283801 84.6
128 8382528 1308313 84.4

Table 9 ANOVA test results for reduction ratio of the number of candi-
date intervals (df, SS and MS mean Degrees of Freedom, Sums of Squares,
Mean Squares, respectively).

(a) G-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 521.74 173.91 22.75

Error 100 764.31 7.64 –
Total 103 1286.05 – –

(b) R-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 523.78 174.59 24.03

Error 100 726.47 7.26 –
Total 103 1250.25 – –

(c) B-channel
Source of Variation df SS MS F-ratio
Between Treatments 3 516.54 172.18 18.50

Error 100 930.58 9.31 –
Total 103 1447.12 – –

Q analytically, the number can be roughly estimated as
Ωinterval(M, K̃). Note that the estimation Ωinterval(M, K̃)
does not take account of the restriction of search range de-
scribed in Sect. 5.2. Using the above estimation, the reduc-
tion ratio of the number of candidate intervals is approxi-
mated as follows:

Ωinterval(M,K) −Ωinterval(M, K̃)
Ωinterval(M,K)

=
K2 + K − K̃2 − K̃
−M2 + M + K2 + K

(15)

Here, the numerator of the above equation is independent
from M. The denominator of the above equation monotoni-
cally decreases as M increases, in the range of 1 ≤ M. Thus,
it is expected that Eq. (15) monotonically increases in the
range of 1 ≤ M. This expectation agrees with the observed
results that are shown in column “reduction ratio” in Table 8.

7. Conclusions

This paper studied the complexity reduction possible with
DP quantization which focuses on the sparseness of sig-
nal values. The proposed method, which is called sparse
DP quantization, keeps the optimality of DP quantization in
terms of minimizing quantization error. Specifically, sparse
DP quantization can reduce the complexity of DP quanti-
zation without increasing quantization error. Experiments
showed that sparse DP quantization can achieve 82.9 to
84.2% complexity reduction, on average, compared to DP
quantization.

Sparse DP quantization can be used as a complemen-
tary approach to conventional methods [10], [11] for com-
plexity reduction of DP quantization, since the conventional
methods take approaches that are independent of signal
value sparseness. Therefore, by combining sparse DP quan-
tization and conventional methods, the complexity of DP
quantization can be reduced further.

Let us mention future works on the family of DP
quantization technologies from the following two aspects.
Firstly, an important future work is an extension for HDR
image format. There are growing expectations for HDR
imaging in many areas. Many HDR imaging applications
use floating-point data. By contrast, the family of DP quan-
tization technologies are designed on the premise that inputs
are discrete signal formatted as integer data, as described in
this paper. So, it is beyond the scope of this paper to ap-
ply the family of DP quantization technologies to floating-
point data such as HDR image format at this time. But, we
would like to discuss such extension in a future paper. Sec-
ondly, another important future work is an extensions for
video sequences. Although sparse DP quantization signif-
icantly reduced the computational complexity over the ex-
isting DP quantization, it is still costly operation to design
optimal quantizer for every frame in video sequences. So,
it is worth to extend sparse DP quantization from the view
point of complexity reduction based on temporal correlation
among a video sequence. We would like to study such ex-
tension as a future work.
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Appendix A: Range of ∆m

Let us consider the range of ∆m. From Eq. (2), we have

m − 1 ≤ Lm−1 ≤ K − (M − m + 1)

From the above equation and Lm−1 = Lm − ∆m, we get the
range of ∆m in the following:

Lm − K + (M − m + 1) ≤ ∆m ≤ Lm − m + 1 (A· 1)

Furthermore, considering ∆m ≥ 1, we obtain

1 ≤ ∆m ≤ Lm − m + 1 (A· 2)

Appendix B: Range of ∆̃m

Let us consider the range of ∆̃m. From L̃m−1 = L̃m − ∆̃m, the
range of L̃m − ∆̃m becomes

Ψl[m − 1] ≤ L̃m − ∆̃m ≤ Ψu[m − 1]

Using the above relationship, the range of ∆̃m becomes

L̃m − Ψu[m − 1] ≤ ∆̃m ≤ Lm − Ψl[m − 1] (A· 3)

Furthermore, considering ∆̃m ≥ 1, we obtain

1 ≤ ∆̃m ≤ L̃m − Ψl[m − 1] (A· 4)

Appendix C: Derivation of Eq. (13)

The paths in a trellis transition diagram are divided into
three classes as follows:
(i) nodes in a range with m = 0
(ii) nodes in a range with m = 1, · · · ,M − 2
(iii) nodes in a range with m = M − 1

Firstly, let us consider the class (i). In this class, there
are K − M + 1 kinds of nodes, and every node has single
path. So, we find that there are K − M + 1 kinds of paths.

Secondly, let us consider the class (ii). In this class, a
node (m + `,m) has `+ 1 kinds of paths. In a group of nodes
which are located at (m + `,m) where ` = 0, 1, · · · ,K − M,
m = 1, · · · ,M − 2, there are following number of paths:

M−2∑
m=1

K−M∑
`=0

(` + 1) = (M − 2)
K−M∑
`=0

(` + 1)

Thirdly, let us consider the class (iii). In this class,
there is single node, and the node has K − M + 1 kinds of
paths.

From the above results, we obtain the following:

Ωpath(M,K)

= (K − M + 1) + (M − 2)
K−M∑
`=0

(` + 1) + (K − M + 1)

=
1
2

M3 −
2K + 5

2
M2 +

K2 + 7K + 4
2

M − K2 − K

Appendix D: Derivation of Eq. (14)

The lower boundary of the interval are divided into two
classes as follow:
(i) lower boundaries in a range with k = 0, 1, · · · ,M − 1
(ii) lower boundaries in a range with k = M,M+1, · · · ,K−1

Firstly, let us consider the class (i). In this class, the
allowable upper bound is K − M + k. There are K − M + 1
kinds of intervals for every k, respectively. For example,
when the lower boundary is k = 0, there are K−M +1 kinds
of intervals; [0, 0], [0, 1], · · · , [0,K − M]. So, we find the
sum of the number of intervals as follows:

(K − M + 1)M (A· 5)

Secondly, let us consider the class (ii). In this class, the
allowable upper bound is K − 1. When the lower boundary
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is k, there are K − k kinds of intervals; [k, k], [k, k + 1], · · · ,
[k,K − 1]. So, we find the sum of the number of intervals as
follows:

K−1∑
k=M

(K − k) (A· 6)

From Eqs. (A· 5) and (A· 6), we obtain the following:

Ωinterval(M,K)

= (K − M + 1)M +

K−1∑
k=M

(K − k)

= (−M2 + M + K2 + K)/2
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