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A Note on Two Constructions of Zero-Difference Balanced

Functions∗

Zongxiang YI†a), Member, Yuyin YU†b), Chunming TANG†c), and Yanbin ZHENG††d), Nonmembers

SUMMARY Notes on two constructions of zero-difference balanced

(ZDB) functions are made in this letter. Then ZDB functions over Ze ×∏k
i=0 Fqi

are obtained. And it shows that all the known ZDB functions

using cyclotomic cosets over Zn are special cases of a generic construction.

Moreover, applications of these ZDB functions are presented.

key words: constant composition code, constant weight code, difference

system of sets, frequency-hopping sequence, zero-difference balanced func-

tion

1. Introduction

Let (A,+) and (B,+) be two finite abelian groups. A function

f from A to B is called an (n,m, λ) zero-difference balanced

(ZDB) function if there is a constant number λ, such that

|{x ∈ A | f (x + a) − f (x) = 0}| = λ

for every element a ∈ A \ {0}, where n = |A|, m = | Im( f )|,

and Im( f ) is the image set of f .

In 2008, Ding first proposed the concept of ZDB func-

tion and showed that optimal constant composition codes

(CCC) can be obtained from ZDB functions [1]. Later,

Ding[2], Zhou et al.[3] and Wang and Zhou[4] showed that

optimal perfect difference systems of sets (DSS), opti-

mal constant weight codes (CWC) and optimal frequency-

hopping sequences (FHS) can be obtained from ZDB func-

tions, respectively. Since CCC, CWC, DSS and FHS have

many applications in combination designs and communica-

tion systems, many researchers have been working on con-

structing more ZDB functions (see [1, 2, 3, 4, 5, 6, 7, 8, 9,
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10, 11, 12] and the references therein).

In this letter, we concern those ZDB functions con-

structed by generalized cyclotomic cosets. Some authors

[7, 8] studied the construction of ZDB functions on the rings

Zn. They showed that there exist non-trivial ZDB functions

on Zn only for odd integers n. Ding et al. [7] constructed a

class of ZDB functions for any positive integer n by using

the product of finite fields. In 2017, Yi et al. generalized the

construction from the residue rings Zn and finite fields Fq to

generic rings [12].

The main contribution of the letter are twofold. Firstly,

by generalizing the construction of ZDB functions pro-

posed by Cai et al. [10], ZDB functions can be obtained

over Ze ×
∏k

i=0 Fqi . Secondly, it shows that all the known

ZDB functions using cyclotomic cosets over Zn [6, 7, 8], are

indeed special cases of the generic construction in [12].

This letter is organized as follows: In Section 2, the

construction in [12] is recalled, and then notes on two con-

structions of ZDB functions are made. Applications of ZDB

functions are presented in Section 3. Section 4 concludes

this letter.

2. Two constructions of ZDB Functions

2.1 Notations

Unless otherwise stated, (R,+,×) is always a commutative

ring with identity. Let R× denote the set of all invertible

elements in (R,×). Let R∗ denote the set of all nonzero

elements in R. Define x/y = x × y−1, for x ∈ R, y ∈ R×.

For any subset A of R and any element a of R, define

a + A = {a + x | x ∈ A}, A + a = a + A

aA = {ax | x ∈ A}, Aa = {xa | x ∈ A}.

Moreover, the set of all natural numbers is denoted by

N. The set of all integers is denoted by Z. The set of all

positive integers is denoted by Z+. A finite field with q

elements is denoted by Fq.

2.2 The Method of Yi

In this subsection, we will recall the method of Yi [12].

Proposition 1 ([12]). Let (R,+,×) be a ring of order n, and

let G be a subgroup of (R,×). Suppose |G | = e. Define

S = {αG | α ∈ R}. If G satisfies the condition

(G − 1) \ {0} ⊂ R×, (1)

then
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1. S is a partition of R;

2. |αG | = e, for every α ∈ R∗;

3. |S| = n−1
e
+ 1;

4. For every a ∈ R∗,

{x ∈ R | f (x + a) = f (x)} = {a(g − 1)−1 | g ∈ G \ {1}};

5. f = f2( f1(x)) is an (n, n−1
e
+1, e−1) ZDB function from

(R,+) to (Z n−1
e
+1,+), where f1(x) is the map from R to

S which maps an element x into αG such that x ∈ αG,

and f2(x) is an arbitrary bijective map from S toZ n−1
m
+1.

In Proposition 1, a set of coset representatives of S,

denoted by LG , can be obtained by randomly selecting one

element inαG ∈ S. Note that 0G = {0} ∈ S and 0 ∈ LG . Let

S
∗
= S\{{0}}. Similarly, a set of coset representatives of S∗,

denoted by L∗
G

, can be obtained too, namely, L∗
G
= LG \{0}.

2.3 One construction of ZDB functions

In this subsection, we will propose one construction of ZDB

functions. With the notations in Subsection 2.2, two indi-

cators are defined. For any r ∈ R∗, there exists a unique

element α ∈ L∗
G

such that r ∈ αG. Furthermore, there exists

a unique element g ∈ G such that r = αg.

Now the row indicator RIL∗
G

and the column indicator

CIL∗
G

are defined as follows:

RIL∗
G

:R∗ →L∗
G, CIL∗

G
:R∗ →G,

r 7→α, r 7→g.

The column indicator has the following property.

Lemma 1. Let (R,+,×) be a ring. Let G be an subgroup of

(R,×), such that (G − 1) \ {0} ⊂ R×. Suppose e = |G |. Let

a(g) be a function from G to R∗, such that RIL∗
G
(a(g)g) =

RIL∗
G
(a(g)) for every g ∈ G. Then

{CIL∗
G
(a(g))/CIL∗

G
(a(g)g) | g ∈ G} = G.

Moreover, CIL∗
G
(a(g))/CIL∗

G
(a(g)g) = 1 if and only if g = 1.

Proof. Suppose RIL∗
G
(a(g)) = α. Let a(g) = αg′, where

g′ ∈ G. Then a(g)g = αg′g. We have

CIL∗
G
(a(g))/CIL∗

G
(a(g)g) = g′/(g′g).

When g runs over G, g′/(g′g) run over G too. Note that

g′/(g′g) = 1 if and only if g = 1 for any g′ ∈ G. So

CIL∗
G
(a(g))/CIL∗

G
(a(g)g) = 1 if and only if g = 1.

Now we give our construction as Theorem 1.

Theorem 1. Let (R,+,×) be a ring of order n, and let G, H

be two subgroups of (R,×). Suppose the following conditions

hold:

1. (G − 1) \ {0} ⊂ R×;

2. (H − 1) \ {0} ⊂ R×;

3. |H | = |G | − 1.

Then there exist (en, en−1
e−1
+ 1, e − 2) ZDB functions from

(R,+) × (G,×) to (Z en−1
e−1
+1,+), where e = |G |.

Proof. Let 0 and 1 denote the identities of (R,+) and (R,×),

respectively. Define

T = {0, (0, 1)}
⋃

L∗
H

⋃
L∗
G × G. (2)

Followed from Proposition 1, we have |L∗
H
| = n−1

e−1
, |L∗

G
| =

n−1
e

. Thus |T| = |L∗
H
| + |L∗

G
|e + 2 = en−1

e−1
+ 1. Denote

R = (R,+) × (G,×). Now we define a function from R to T:

f1(r, x) =




0, if r = 0 and x = 1,

(0, 1), if r = 0 and x , 1,

RIL∗
H
(r), if r , 0 and x = 1,

(RIL∗
G
(r), xCIL∗

G
(r)), if r , 0 and x , 1.

Let f2(x) be an arbitrary bijective map from T to Z en−1
e−1
+1.

We assert that f = f2( f1(x)) is an (en, en−1
e−1
+ 1, e − 2) ZDB

function from R to (Z en−1
e−1
+1,+). Obviously, for any ∆ =

(∆r,∆x) , (0, 1), we have

|{y ∈ R | f (y+∆)− f (y) = 0}| = |{y ∈ R | f1(y+∆) = f1(y)}|.

In the following, we will show that

|{y ∈ R | f1(y + ∆) = f1(y)}| = e − 2.

Firstly, we make a partition of R. Let

R =

4⋃

i=1

Ri,

where

R1 = {(r, x) ∈ R | r = 0, x = 1}, R2 = {(r, x) ∈ R | r = 0, x , 1},

R3 = {(r, x) ∈ R | r , 0, x = 1}, R4 = {(r, x) ∈ R | r , 0, x , 1}.

Note that if f1(y +∆) = f1(y), then y +∆ and y must belong

to some Ri where 1 ≤ i ≤ 4.

Secondly, we have a discussion over (∆r,∆x) , (0, 1).

1. Case ∆r , 0 and ∆x = 1:

1.1. If (r, x) ∈ R1, then (∆r, 1) < R1. So

|{(r, x) ∈ R1 | f1(∆r, 1) = f1(0, 1)}| = 0.

1.2. If (r, x) ∈ R2, then (∆r, x) < R2. So

|{(r, x) ∈ R2 | f1(∆r, x) = f1(0, x)}| = 0.

1.3. If (r, x) ∈ R3, then

|{(r, x) ∈ R3 | f1(r + ∆r, 1) = f1(r, 1)}|

=|{r ∈ R | RIL∗
H
(r + ∆r ) = RIL∗

H
(r) |

=|H | − 1 = e − 2.

In the above, the second identity is followed from

Proposition 1.

1.4. If (r, x) ∈ R4, then r + ∆r , r. It implies either

RIL∗
H
(r + ∆r ) , RIL∗

H
(r) or xCILG

(r + ∆r ) ,

xCILG
(r). Both of them would lead to f1(r +

∆r, x) , f1(r, x). So

|{(r, x) ∈ R4 | f1(r + ∆r, x) = f1(r, x)}| = 0.

To sum up, when ∆r , 0 and ∆x = 1, we have

|{(r, x) ∈ R | f1(r + ∆r, x) = f1(r, x)}| = e − 2.

2. Case ∆r = 0 and ∆x , 1:

2.1. If (r, x) ∈ R1, then (0,∆x) < R1. So

|{(r, x) ∈ R1 | f1(0,∆x) = f1(0, 1)}| = 0.

2.2. If (r, x) ∈ R2, then f1(0, x∆x) = f1(0, x), if and

only if, both x∆x , 1 and x , 1 hold. So

|{(r, x) ∈ R2 | f1(0, x∆x) = f1(0, x)}| = e − 2.

2.3. If (r, x) ∈ R3, then (r,∆x) < R3. So



LETTER

3

|{(r, x) ∈ R3 | f1(r,∆x) = f1(r, 1)}| = 0.

2.4. If (r, x) ∈ R4, then x∆xCILG
(r) , xCILG

(r). So

|{(r, x) ∈ R4 | f1(r, x∆x) = f1(r, x)}| = 0.

To sum up, when ∆r = 0 and ∆x , 1, we have

|{(r, x) ∈ R | f1(r + ∆r, x) = f1(r, x)}| = e − 2.

3. Case ∆r , 0 and ∆x , 1:

3.1. If (r, x) ∈ R1, then (∆r,∆x) < R1. So

|{(r, x) ∈ R1 | f1(∆r,∆x) = f1(0, 1)}| = 0.

3.2. If (r, x) ∈ R2, then (∆r, x∆x) < R2. So

|{(r, x) ∈ R2 | f1(∆r, x∆x) = f1(0, x)}| = 0.

3.3. If (r, x) ∈ R3, then (r + ∆r,∆x) < R3. So

|{(r, x) ∈ R3 | f1(r + ∆r,∆x) = f1(r, 1)}| = 0.

3.4. If (r, x) ∈ R4, then

|{(r, x) ∈ R4 | f1(r + ∆r, x∆x) = f1(r, x)}|

=|{(r, x) ∈ R4 |

RIL∗
G
(r + ∆r ) = RIL∗

G
(r),

x∆xCILG
(r + ∆r ) = xCILG

(r),

x , 1 and x∆x , 1

}|

=|{(r, x) ∈ R4 |

r = ∆r (g − 1)−1, g ∈ G \ {1},

∆x ILG
(rg) = ILG

(r),

x , 1 and x∆x , 1

}|

=|{r ∈ R |
r = ∆r (g − 1)−1, g ∈ G \ {1},

and ∆x = CILG
(r)/CILG

(rg)
}|

× |{x ∈ G | x , 1 and x∆x , 1.}| = e − 2.

The second identity is followed from Proposition 1, and

the last identity is followed from Lemma 1.

To sum up, when ∆r , 0 and ∆x , 1, we have

|{(r, x) ∈ R | f1(r + ∆r, x∆x ) = f1(r, x)}| = e − 2.

Finally, when ∆ = (∆r,∆x) , (0, 1), we have

|{y ∈ R | f1(y + ∆) = f1(y)}| = e − 2.

Remark 1. Theorem 1 can also be obtained by the main con-

struction in [11], but the conditions that Theorem 1 requires

are much simpler to be considered and easier to be checked

than those in [11].

To apply Theorem 1, let R = Zn. In [8] the authors have

shown how to construct subgroups satisfying the Condition

(1) on Zn. So we have the following result.

Corollary 1. Let n = p
r1

1
p
r2

2
· · · p

rk
k

, where 2 < p1 <

p2 < · · · < pk are odd prime numbers, and r1, r2, . . . , rk
are positive integers. Then for any positive integers e

such that e(e − 1) | gcd(p1 − 1, p2 − 1, · · · , pk − 1), there

exist (en, en−1
e−1
+ 1, e − 2) ZDB functions from (Zen,+) to

(Z en−1
e−1 +1,+).

Remark 2. Corollary 1 is the same as Theorem 1 in [10]. So

Theorem 1 in this paper can be viewed as a generalization of

Theorem 1 in [10].

Moreover, we can obtain ZDB functions over the prod-

uct of some finite fields by Theorem 1. Note that F×
q is cyclic

and any cyclic group is isomorphic to Ze for some integer e.

So in Corollary 2, when applying Theorem 1, we use (Ze,+)

instead of(G,×) where e = |G |.

Corollary 2. Let n = p
r1

1
p
r2

2
· · · p

rk
k

, where p1 < p2 < · · · <

pk are prime numbers, and r1, r2, . . . , rk are positive integers.

Denote R =
∏k

i=1 Fp
ri
i

. Then for any positive integer e

such that e(e − 1) | gcd(p
r1

1
− 1, p

r2

2
− 1, · · · , p

rk
k

− 1), there

exist (en, en−1
e−1
+ 1, e − 2) ZDB functions from (R × Ze,+) to

(Z en−1
e−1
+1,+).

Remark 3. [7] showed how to construct subgroups satisfying

the Condition (1) on Fpri
i

. Then ZDB functions can be

obtained by Corollary 2. For example, let n = 25 and e = 4,

we obtain a (100,34, 2) ZDB function from F25 × Z4 to Z34.

Moreover, let n = 121 and e = 4, we obtain a (726, 146, 4)

ZDB function by Corollary 2. This ZDB function can not

be retrieved by the constructions in [7, 8, 10]. But it may be

retrieved by the construction in [12], if an appropriate ring

is given.

To show that Theorem 1 can generate more ZDB func-

tions over different rings,we consider the matrix ring M2(F5).

Denote A =

(
3 0

0 3

)
and B =

(
4 4

1 0

)
. It is easy to

check that both G = 〈A〉 and H = 〈B〉 satsfy the conditions

in Proposition 1, and that |G | = 4, |H | = |G | − 1 = 3. Hence

there exists a (2500,834, 2) ZDB function over M2(F5) by

Theorem 1. It is the first ZDB function proposed over ma-

trix rings and noncommunicative rings.

2.4 The other construction of ZDB functions

In this subsection, we will construct the second construction

of ZDB functions. With the notations in Subsection 2.2, we

have

Proposition 2. Let (R,+,×) be a ring of order n ≥ 3, and

let G be a subgroup of (R,×). If G satisfies the following

conditions:

1. (G − 1) \ {0} ⊂ R×;

2. (G + 1) ⊂ R×,

then there exist (n, n−1
2e
+ 1, 2e − 1) ZDB functions, where

e = |G |.

Proof. Let −G = −1×G and H = G
⋃
(−G) is a subgroup of

(R,×). It is easy to verify that |H | = 2e and (H − 1) \ {0} ⊂

R×. Then the proof is completed by Proposition 1.

Remark 4. The proof indicates that Proposition 2 is a special

case of Proposition 1 since the constructed subset H is a

subgroup satisfying Condition (1). So the special cases of

Proposition 2 are indeed special cases of Proposition 1.

Finally, we will illustrate that the ZDB functions in

[6, 7, 8] are indeed special cases of the generic construction

in [12].

1. Let R = Zn and G = 〈b〉, where b be an element

constructed by Lemma 3 in [8]. Then Theorem 1 in [6]
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and Theorem 1 in [8] can be obtained by Proposition 1.

2. Let R =
∏k

i=1 Fqi where n =
∏k

i=0 qi and qi are prime

powers (i = 1, 2, . . . , k). Let G = 〈b〉, where b =

〈b1, b2, . . . , bk〉 and bi is an element in Fqi of order

e (i = 1, 2, . . . , k). Obviously we have e | qi − 1 for

i = 1, 2, . . . , k. Then Theorem 1 in [7] can be obtained

by Proposition 1.

3. Let R = Z2m−1 and G = 〈2〉, where m is an prime

number. It is easy to verify that G satisfies Condition

(1) in Proposition 1 and |G | = m. So Theorem 3 in [7]

can be obtained by Proposition 1.

4. Let R = Z2m−1 and G = 〈2〉, where m is an odd prime

number. It is easy to verify that G satisfies all the

conditions in Proposition 2 and |G | = m. So Theorem

5 in [7] can be obtained by Proposition 2.

5. Let s be a prime, b ≥ 2, and gcd(s, b − 1) = 1. Let

R = Z bs−1
b−1

and G = 〈b〉. It is easy to verify that G

satisfies Condition (1) in Proposition 1 and |G | = s. So

Corollary 1 in [8] can be obtained by Proposition 1.

6. Let s be an odd prime, b ≥ 2, and gcd(s, b − 1) = 1.

Let R = Z bs−1
b−1

and G = 〈b〉. It is easy to verify that G

satisfies all the conditions in Proposition 2 and |G | = s.

So Corollary 2 in [8] can be obtained by Proposition 2.

7. Let s be a prime, b ≥ 2, and gcd(s, b− 1) = 1. Suppose

p = bs−1
b−1

is an odd prime. Let R = Fp × Fp and

G = 〈b〉. Note that Zp = Fp . It is easy to verify that G

satisfies Condition (1) in Proposition 1 and |G | = s. So

Theorem 2 in [8] can be obtained by Proposition 1.

3. Applications

The ZDB functions in Proposition 2 have the same struc-

ture as those in [12], and they have no new parameters. So

only the applications of ZDB functions in Theorem 1 are

presented in this section. It is necessary to show the follow-

ing property of our ZDB functions before introducing the

applications.

Proposition 3. Let f : A → B be an (en, en−1
e−1
+ 1, e − 2)

ZDB function constructed by Theorem 1, and let m = en−1
e−1

.

Denote wb = |{x ∈ A | f (x) = i}| for every b ∈ B . Then

for the multi-set, we have

{wb | b ∈ B} = {1, e − 1, e − 1, . . . , e − 1
︸                     ︷︷                     ︸

m times

}.

3.1 Optimal Constant Composition Codes

An (n,M, d, [w0, w1, . . . , wq−1])q constant composition code

(CCC) is a code over an abelian group {b0, b1, . . . , bq−1}

with length n, size M and minimum Hamming distance

d, such that in every codeword the element bi appears

exactly wi times for every i (0 ≤ i ≤ q − 1). Let

Aq(n, d, [w0, w1, . . . , wq−1]) denote the maximum size of an

(n,M, d, [w0, w1, . . . , wq−1])q CCC. A CCC is optimal if the

bound in Lemma 2 is met.

Lemma 2. [13] If

nd − n2
+

q−1∑

i=0

w2
i > 0,

then

Aq(n, d, [w0, w1, . . . , wq−1]) ≤
nd

nd − n2
+

∑q−1

i=0
w2
i

.

Using the framework in [1], new optimal CCCs can be

constructed from ZDB functions.

Theorem 2. Let f be an (en, en−1
e−1
+ 1, e − 2) ZDB function

constructed by Theorem 1. Then there exists an optimal

(en, en, en − e + 2, [1, e − 1, e − 1, . . . , e − 1]) en−1
e−1
+1 CCC.

To compare the parameters of some known optimal

CCCs, the reader is referred to Table II in [10].

3.2 Optimal Constant Weight Codes

An (n,M, d, w)q constant weight code (CWC) is a code over

an abelian group {b0, b1, . . . , bq−1} with length n, size M

and minimum Hamming distance d, such that the Hamming

weight of each codeword is w. Let Aq(n, d, w) denote the

maximum size of an (n,M, d, w)q CWC. A CWC is optimal

if the bound in Lemma 3 is met.

Lemma 3. [14] If nd − 2nw + l
l−1
w2 > 0, then

Aq(n, d, w) ≤
nd

nd − 2nw + l
l−1
w2
.

The codes constructed from ZDB functions in Theo-

rem 2 are CWCs. Zhou et al. and Yi et al. gave specific

constructions in [3] and [12], respectively. With the frame-

work established by [12], the ZDB functions constructed in

Theorem 1 can generate optimal CWCs.

Theorem 3. With the notations in Theorem 1, let f =

f2( f1(x)) be an (en, en−1
e−1
+ 1, e − 2) ZDB function such

that f2 maps 0 to 0. Then there exists an optimal

(en, en, en − e + 2, en − 1) en−1
e−1
+1 CWC.

Remark 5. Note that f2(x) is a bijective map from T (defined

in (2)) to Z en−1
e−1
+1. There are many such bijective maps

mapping 0 to 0.

3.3 Optimal and Perfect Difference Systems of Sets

Difference systems of sets (DSS) are related with comma-

free codes, authentication codes and secrete sharing schemes

[15, 16]. Let {D0,D1, . . . , Dq−1} be disjoint subsets of

an abelian group (G,+). Denote |G | = n and |Di | = wi
for every i. Then {D0,D1, . . . ,Dq−1} is said to be an

(n, {w0, w1, . . . , wq−1}, λ) DSS if the multi-set

{x − y | x ∈ Di, y ∈ Dj, 0 ≤ i , j ≤ q − 1 }

contains every non-zero element g ∈ G at least λ times.

Moreover, a DSS is perfect if every non-zero element g

appears exactly λ times in the multi-set just mentioned above.

It is required that
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τq(n, λ) =

q−1∑

i=0

|Di |

as small as possible. A DSS is called optimal if the bound

in Lemma 4 is met.

Lemma 4. [17] For an (n, [w0, w1, . . . , wq−1], λ) DSS, we

have

τq(n, λ) ≥

√
SQU ARE(λ(n− 1) + ⌈

λ(n−1)
q−1

⌉) ,

where SQU ARE(x) denotes the smallest square number that

is no less than x and ⌈x⌉ denotes the smallest integer that no

less that x.

Using the framework in [2], we obtain optimal DSSs in

Theorem 4.

Theorem 4. Let f be an (en, en−1
e−1
+ 1, e − 2) ZDB function

constructed by Theorem 1. Then there exists an optimal

(en, {1, e − 1, . . . , e − 1}, en − e + 2) perfect DSS.

Remark 6. DSSs on non-cyclic groups are related to authen-

tication codes and secret sharing schemes[15, 16].

The optimal DSSs constructed in this paper are

partitioned-type. To compare the parameters of some known

partitioned-typeoptimal DSSs, the reader is referred to Table

III in [10].

4. Conclusion

In this letter, we generalized the construction of ZDB func-

tions in [10]. It may instantiate ZDB functions with new pa-

rameters if Condition (1) is studied over other rings. More-

over examples of ZDB functions over noncommunicative

ring are first given. Finally we point out that some known

ZDB functions are indeed special cases of the generic con-

struction in [12].
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